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Abstract
The structure–activity relationship (SAR) matrix (SARM) methodology and data structure was originally developed to 
extract structurally related compound series from data sets of any composition, organize these series in matrices reminiscent 
of R-group tables, and visualize SAR patterns. The SARM approach combines the identification of structural relationships 
between series of active compounds with analog design, which is facilitated by systematically exploring combinations of 
core structures and substituents that have not been synthesized. The SARM methodology was extended through the introduc-
tion of DeepSARM, which added deep learning and generative modeling to target-based analog design by taking compound 
information from related targets into account to further increase structural novelty. Herein, we present the foundations of the 
SARM methodology and discuss how DeepSARM modeling can be adapted for the design of compounds with dual-target 
activity. Generating dual-target compounds represents an equally attractive and challenging task for polypharmacology-
oriented drug discovery. The DeepSARM-based approach is illustrated using a computational proof-of-concept application 
focusing on the design of candidate inhibitors for two prominent anti-cancer targets.

Keywords Structure–activity relationships · SAR matrix · Molecular grid maps · Deep generative modeling · Dual-target 
compound design

Systematic analysis and visualization 
of structure–activity relationships

The availability of increasingly large sets of active com-
pounds for many pharmaceutical targets has triggered inter-
est in developing new computational approaches to system-
atically explore structure–activity relationships (SARs) in 
such data sets and visualize SARs [1]. Relevant methods 
include, for example, numerical SAR analysis functions 
[2, 3], statistical methods to monitor SAR progression in 
evolving data sets [4–6], and various approaches for SAR 
visualization. These include the use of scaffold hierarchies 
[7–9], molecular networks [10, 11], or different views of 
activity landscapes [12, 13]. However, methods that combine 

systematic SAR analysis, visualization, and compound 
design are rare [8, 14]. In this context, the SAR matrix 
(SARM) approach was developed.

SAR matrix

The SARM methodology and data structure [14] was origi-
nally designed to systematically extract analog series with 
single substitution sites from compound data sets, identify 
series with structurally analogous cores, and organize these 
series in a matrix format reminiscent of R-group tables (this 
matrix is also referred to as a SARM). Thereby, structural 
relationships in compound data sets are systematically 
explored. Depending of the nature and extent of available 
structural relationships, data sets typically yield multiple 
SARMs, each of which organizes a set of analog series 
with structurally closely related cores. SARM generation 
is based upon a dual-step compound fragmentation scheme 
adapted from matched molecular pair (MMP) analysis [15]. 
An MMP is defined as a pair of compounds that are only 
distinguished by a chemical modification at a single site 
[15]. In the first step, database compounds are subjected to 
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systematic fragmentation of exocyclic single bonds, yield-
ing keys (core structures) and values (substituents), which 
are stored in an index table. In the second step, the obtained 
cores are re-submitted to the same fragmentation protocol 
to identify cores that are only distinguished by a chemical 
change at a single site (structurally analogous cores), yield-
ing a second index table. Each subset of structurally analo-
gous cores and the compounds containing these cores yield 
an individual SARM. In this data structure, each row con-
tains an analog series (compounds sharing the same core) 
and each column compounds from different series sharing 
the same substituent. Accordingly, the SARM consists of 
cells that represent all possible combinations of cores and 
substituents from the subset of related analog series. Each 
cell represents an individual key-value combination (com-
pound). Hence, cells may contain existing compounds or 
virtual analogs (i.e., unexplored core and substituent com-
binations). Therefore, as a desired product of systematic 
fragmentation and structural organization, SARMs provide 
virtual candidates that complement and further extend cur-
rently available analog space. Hence, the SARM method 
and data structure integrates structural analysis with com-
pound design. Cells containing existing compounds can be 
color-coded by potency values, thereby facilitating SAR 

visualization. Furthermore, the potency of virtual candidates 
can be predicted on the basis of SARMs using local quan-
titative SAR (QSAR) models [16] following Free-Wilson 
additivity principles [17]. Therefore, matrix neighborhoods 
formed by virtual candidates and experimental analogs with 
corresponding cores or substituents are identified. For com-
pound potency prediction across different SARMs, machine 
learning models can also be derived. Figure 1a illustrates the 
generation of SARMs and their information content.

The global distribution of existing and virtual compounds 
across SARMs can also be visualized in a meta data struc-
ture termed Molecular Grid Map (MGM) [18]. Here, pair-
wise molecular fingerprint similarity between all SARM 
compounds is calculated as a reference frame for combining 
related and unrelated analog series from different SARMs. 
From the resulting fingerprint space, a 2D projection is gen-
erated through dimensionality reduction. Compound posi-
tions are then algorithmically mapped to a regularly spaced 
grid and the positioning is subjected to combinatorial optimi-
zation [19] to arrive at a final similarity-based organization 
and color-coded display of the entire compound population 
from a set of SARMs. Figure 1b summarizes MGM genera-
tion and Fig. 1c shows a representative example. The MGM 
data structure makes it possible to view all relationships 

Fig. 1  SARM and MGM. a SARM construction is illustrated using 
a model data set comprising nine compounds (CPD A–I;  pIC50 val-
ues are reported in dark blue). Substituents distinguishing analogs 
are shown on a light blue background. SARM generation is based 
upon a dual-step fragmentation scheme  that identifies analog series 
with structurally related cores. Substructures distinguishing cores 
are shown in red. Each SARM cell color-coded by potency repre-
sents a unique compound (A–I) and an empty cell a virtual analog, 
i.e., a not yet explored combination of a core (key) and substituent 
(value). The potency of a virtual analog (X) is predicted on the basis 
of suitable compound neighborhoods using local (Free-Wilson-type) 
QSAR models (lower right). The figure has been taken from ref. [25]. 

b MGM generation is illustrated using another model data set with 
nine compounds (CPD A–I). Initially, SARMs are constructed (V1 is 
a virtual analog). Then, similarity calculations are carried out, dimen-
sionality reduction is performed (PCA principal component analysis; 
t-SNE t-stochastic neighborhood embedding), and the initial grid 
positioning of compounds is optimized. The figure was taken from 
ref. [18]. c Shown is an exemplary small MGM for a set of 92 cyc-
lin-dependent kinase 1/cyclin B1 inhibitors (shown on squares) and 
156 virtual analogs originating from SARM analysis (circles). Back-
ground squares and circles are color-coded by experimental potencies 
and values predicted using local (Free-Wilson-type) QSAR models, 
respectively (figure taken from ref. [18])



589Journal of Computer-Aided Molecular Design (2021) 35:587–600 

1 3

between existing and virtual compounds from SARMs and 
focus on regions that are rich in SAR information or regions 
where potent compounds are consistently predicted. SARM 
and MGM analysis have been successfully applied to identify 
new active compounds for different targets [20, 21].

Virtual analogs from SARMs result from the recombina-
tion of core structures and substituents extracted from exist-
ing analog series. Although these virtual candidates further 
extend analog space for a collection of active compounds, 
they do not contain novel structural fragments. Accordingly, 
this close-in compound design strategy is tailored towards 
hit expansion and lead optimization. Structural novelty of 
virtual analogs can be further increased by adding novel 
fragments from external compounds to the design pool. 

This can be accomplished, for example, through genera-
tive modeling using deep learning architectures [22, 23]. 
Therefore, the DeepSARM approach has been introduced 
[24]. Generative molecular design using DeepSARM leads 
to an expansion of SARMs for a given data set through the 
incorporation of fragments derived from compounds that are 
active against related targets. Thereby, the number of virtual 
analogs contained in SARMs further increases. For exam-
ple, if one is interested in inhibitors of a particular protein 
kinase, a deep generative model can be derived on the basis 
of compounds with activity against related kinases (such as 
the family to which the kinase of interest belongs). Once 
derived, the model is fine-tuned for the primary kinase target 
by focusing on its known inhibitors. For SARM expansion 
with novel virtual analogs, DeepSARM employs a recurrent 

Fig. 1  (continued)
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neural network structure [24] that is discussed below. Details 
of the SARM approach and its DeepSARM extension have 
recently been reviewed [25].

DeepSARM architecture

The DeepSARM recurrent neural network structure depicted 
in Fig. 2a includes three encoder-decoder generator compo-
nents [26, 27], each of which consists of two long short-term 
memory (LSTM) units [28]. An encoder-decoder generator 

Fig. 2  DeepSARM. a The central DeepSARM recurrent neural net-
work architecture is outlined, as described in the text (figure taken 
from ref. [25]). b DeepSARM model derivation including the pre-

training and fine-tuning steps is summarized. “cpds” stands for com-
pounds (figure adapted from ref. [24] and modified)
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derives sequence-to-sequence (Seq2Seq) models for trans-
forming one data sequence into another. For generative mod-
eling, key and value fragments are represented as SMILES 
strings [29] that are vectorized [26]. The Seq2Seq models 
were generated with Keras [30]. Calculation parameters and 
further calculation details were reported previously [24].

Key and value fragments 1 and 2 originate from the first 
(compound) and second (core) fragmentation step and the 
corresponding index tables. The DeepSARM key 2 gen-
erator (first Seq2Seq model) learns to construct new key 2 
structures from input key 2 fragments. In the second phase, 
the value 2 generator (second Seq2Seq model) derives new 
value 2 fragments from the key 2 structures obtained in the 
previous step. The resulting key 2 and value 2 fragments 
yield new key 1 fragments. In the third phase, the value 1 
generator (third Seq2Seq model) uses these key 1 fragments 
as input to produce new value 1 fragments. Newly derived 
key 1 and value 1 fragments expand original SARMs with 
new virtual compounds (key-value combinations). Filters 
between Seq2Seq models rank fragments on the basis of 
log_likelihood scores derived from the probability distribu-
tion of the decoder.

Figure 2b summarizes the derivation of DeepSARM 
models. The Seq2Seq model components are initially trained 
with a large number of compounds with activity against 
a target family or group (or combinations of families or 
groups, as further discussed below). During the first training 
phase, the recurrent neural network learns both the SMILES 
syntax and the structural spectrum of the source compounds. 
Hence, typically large numbers of compounds with desired 
structure–activity relationships are initially used. During 
the second training phase, the resulting model is fine-tuned 
focusing on compounds with activity against an individual 
target of interest (e.g., a member of the target family or 
group used for pre-training). This process leads to the adjust-
ment of initially derived transferred model weights.

Through this pre-training and fine-tuning procedure, key 
and value fragments that are not contained in compounds 
active against the primary target, but are related to them on 
the basis of log_likelihood scores from Seq2Seq models, 
enter SARM design. New key and value fragments meet-
ing a pre-defined log_likelihood criterion are then added 
to the respective SARM(s) on the vertical and horizontal 
axis, respectively. Their combinations give rise to new vir-
tual analogs (key–value combinations), leading to SARM 
expansion. The log_likelihood score of a new virtual analog 
is obtained as the sum of the individual scores of its frag-
ments and may be used to prioritize virtual candidates.

DeepSARM concept for dual‑target ligand 
design

We have reasoned that the DeepSARM approach might 
be further extended for the computational design of com-
pounds with desired activity against two different targets 
(dual-target ligands). Such ligands are prime candidates for 
polypharmacology [31, 32], an increasingly popular thera-
peutic approach in drug discovery. Polypharmacology refers 
to the concomitant engagement of multiple targets and the 
ensuing pharmacological effects through the administration 
of compound combinations or multi-target ligands [31]. 
Such multi-target engagement is often critical for achieving 
therapeutic efficacy in areas such as oncology or neurode-
generative diseases [31, 32]. Polypharmacological agents 
have often been serendipitously discovered. Accordingly, the 
design of dual-target ligands with pre-defined activity has 
become a hot topic in drug discovery [32]. DeepSARM can 
be adapted for the rational design of dual-target ligands, as 
discussed in the following.

The two-phase training procedure of DeepSARM out-
lined above was originally conceived to enrich extrapolative 
compound design for a specific target with structural infor-
mation from compounds active against related targets. For 
example, a model might initially be pre-trained for a large 
kinase group and then fine-tuned for an individual member 
of this kinase group. This learning strategy is in principle 
transferable to dual-target compound design. Generative 
DeepSARM modeling is principally focused on expanding 
SARMs with novel analogs, which further expands bioac-
tive chemical space surrounding active compound series. 
By combining chemical space for different targets and cor-
responding target classes, dual-target ligand design becomes 
feasible using the DeepSARM framework.

Specifically, if we aim to generate dual-target ligands with 
activity against target A + B, then a DeepSARM model can 
initially be trained with active compounds available for tar-
get class A (i.e., the class to which target A belongs) plus 
active compounds available for target class B. Hence, instead 
of an individual target class, a compound pool resulting from 
the combination of two classes is used. This is followed by 
fine-tuning, for which at least two different strategies can be 
considered. Ideally, if at least small numbers of dual-target 
ligands shared by target A and B are available, these com-
pounds can be directly used for fine tuning, aiming to gener-
ate additional dual-target ligands with novel structural fea-
tures derived from the compound pool. Alternatively, if no 
dual-target ligands are known, fine-tuning can be attempted 
on the basis of combined compounds active against target 
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A or target B. This strategy aims to identify dual-target 
ligands that combine structural features from these active 
compounds taking target class information into account. 
Depending on the nature of the target combinations of inter-
est and the compound data available, additional fine-tuning 
strategies might be envisioned by varying the compositions 
of compound sets for learning.

Computational proof‑of‑concept application

Target combination and data

As an exemplary proof-of-concept application, dual-target 
ligand design focusing on serine/threonine polo-like kinase 
1 (PLK1) [33] and bromodomain-containing protein 4 
(BRD4) [34] is reported. PLK1 is a central regulator of cell 
cycle progression and DNA damage responses. BRD4 is a 
chromatin-targeting protein that recognizes acetylated lysine 
residues and acts as an epigenetic regulator. Uncontrolled 
PLK1 and BRD4 activities are implicated in carcinogen-
esis. Accordingly, both proteins are intensely investigated as 

anti-cancer targets [33, 34] and represent an attractive target 
combination for polypharmacology.

From ChEMBL (version 27) [35], 309 and 1340 inhibi-
tors with reliable activity measurements were obtained for 
PLK1 and BRD4, respectively, 26 of which were found to be 
active against both targets (known dual-target compounds). 
PLK1 and BRD4 were assigned to the “protein kinase” and 
“bromodomain” target class, respectively, following the 
ChEMBL classification scheme [35]. For the combined tar-
get classes, a total 56,239 compounds with reliable activity 
data were obtained (including PLK1 and BRD4 inhibitors).

DeepSARM design

First, we subjected the combined 1649 PLK1 and BRD4 
inhibitors to SARM analysis. Then, for dual-target ligand 
design with DeepSARM, the following strategy was applied 
in this case: For initial training, the combined 56,239 target 
class compounds were used. Fine-tuning of the resulting 
model was then carried out with the set 26 known PLK1/
BRD4 dual-target inhibitors. The training strategy is sum-
marized on the left in Fig. 2b. Since a small set of known 
dual-target compounds was available in this case, preference 
was given to these compounds over individual PLK1 and 
BRD4 inhibitors (which were included in the initial training 
phase). Thereby, fine-tuning capacity on the basis of small 
compound sets with dual-target activity was assessed.

Known PLK1/BRD4 dual-target compounds were found 
in 86 original SARMs, all of which were expanded using 
generative DeepSARM model. Figure 3a shows an exem-
plary SARM expansion generated on the basis of Key2-36 
from original SARMs following DeepSARM’s sequential 
generative modeling protocol (Fig. 2a). The original SARM 
consisted of four keys (1–4 in Fig. 3b) and five values (1, 
3–5, and 11 in Fig. 3c), which represented10 dual-target 
ligands10 virtual analogs. The expanded SARM contained 
16 keys and 14 values and 204 new virtual analogs. The 
12 keys and nine values originating from DeepSARM are 
depicted in Fig. 3b and c, respectively. Compound cells in 
the expanded SARM are color-coded on the basis of log_
likelihood scores. Decreasing scores indicate increasing 
compound probabilities assigned by DeepSARM, which 
reproduced existing compounds with low scores. The 
expanded SARM in Fig. 3a represents a typical DeepSARM 
result.

Prioritization of candidate compounds

To aid in compound prioritization, PLK1 and BRD4 inhibi-
tor activity prediction models were derived using Light-
GBM, an implementation of the gradient boosting decision 

Fig. 3  SARM expansion. In a, an exemplary SARM is shown result-
ing from the analysis of PLK1 and BRD4 inhibitors using Deep-
SARM and Key2-36 as input. Compounds forming the original 
SARM (framed in blue) resulted from combinations of keys 1–4 and 
values 1, 3–5, and 11. All other keys and values originated from gen-
erative modeling, which further expanded the SARM with more than 
200 new virtual compounds. Compound cells are color-coded accord-
ing to log_likelihood scores originating from DeepSARM using a 
continuous color spectrum ranging from green (favorable) over yel-
low to red (unfavorable). In b and c, keys and values comprising the 
SARM are shown, respectively, including fragments derived from 
known inhibitors forming the original SARM (blue numbers) and 
others generated by DeepSARM (black numbers)

Fig. 3  (continued)

◂
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tree algorithm [36]. The goal was to identify virtual can-
didates for which high potency values were predicted for 
both BRD4 and PLK1, serving as an indicator of dual-target 
inhibitor potential. For model building, 1079 BRD4 and 291 
PLK1 inhibitors were selected, for which  IC50 measurements 
were available. For the remaining small subsets of inhibitors, 
only  Ki values were available. Since  IC50 and  Ki measure-
ments cannot be directly compared, the latter values were 
not considered for modeling in this case. In model construc-
tion, 80% of the compounds were used for training and 20% 
for testing. Figure 4a and b show the results of representative 

potency predictions for BRD4 and PLK1 inhibitors, respec-
tively. In both cases, reasonable prediction models were 
obtained with  R2 values for training and test set predictions 
of ~ 0.8 and ~ 0.7, respectively. For most test compounds, 

Fig. 4  Activity prediction models. Shown are representative results of machine learning models derived to predict the potency values of a BRD4 
and b PLK1 inhibitors. For training and test compounds, comparisons of experimental and predicted potency values are reported

Fig. 5  Dual-target activity prediction. In a and b, relative potency pre-
dictions are reported for virtual compounds from the expanded Key2-
36 SARM (according to Fig.  3a) against BRD4 and PLK1, respec-
tively. Compound cells are color-coded using a continuous spectrum 
from red (lowest potency) over yellow to green (highest). Cells con-
taining compounds from the original SARM are framed in blue and 
cells containing two prioritized candidate inhibitors are framed in pink

◂
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Fig. 6  Candidate compounds and X-ray structures. a The structures of 
the two candidate compounds (indexed comp00244 and comp00246) are 
displayed. These virtual candidates are analogs (the distinguishing struc-
tural modification is highlighted in pink). b X-ray structures of closely 

related compounds in complex with PLK1 (ribbon representation) are 
shown (top). At the bottom, the structures of these inhibitors are dis-
played in corresponding orientation reflecting a similar binding mode. 
An ethyl vs. carboxamide R-group replacement is encircled in blue



597Journal of Computer-Aided Molecular Design (2021) 35:587–600 

1 3

potency was predicted within an order of magnitude, which 
was sufficiently accurate for compound prioritization.

The two models were then independently used to pre-
dict potency values for virtual compounds from expanded 
SARMs. Of note, since the models were derived exclusively 
on the basis of active compounds, all virtual compounds 
were predicted to be active (within the potency value range 
of the training set). Thus, predicted potency values must be 
considered on a relative scale for new compounds. Figure 5a 
and b report exemplary potency predictions for the expanded 
Key2-36 SARM (according to Fig. 3a). For known inhibi-
tors, experimental potency values are reported. For most vir-
tual compounds, low BRD4 potency was predicted (Fig. 5a). 
Only a few compounds were predicted (or known) to have 
highest potency values within this data set, which repre-
sented combinations of key 3 and key 10 from the original 
SARM and DeepSARM, respectively, and values 3 and 5 
(original SARM). The compounds representing combina-
tions of key 3 and values 3 or 5 were known dual-target 
ligands contained in the SARM. Encouragingly, for the two 
DeepSARM candidates, comparable potency was predicted.

For PLK1, the predicted potency range for virtual com-
pounds was very narrow (Fig. 5b), reflecting the potency 
distribution in the original compound data set. However, 
the two DeepSARM candidates prioritized on the basis of 
BRD4 predictions were again among the compounds with 
highest predicted potency values, comparable to the two 
known dual-target inhibitors. Hence, on a relative scale, 
these virtual compounds were preferred candidates for 
BRD4/PLK1 dual-target ligands, given the consistency of 
their predictions.

Candidate compounds and follow‑up analysis

On the basis of the findings discussed above, we focused 
our attention on the two DeepSARM candidates, depicted in 
Fig. 6a (indexed comp00244 and comp00246, respectively). 
These two virtual compounds were close structural analogs 
only distinguished by a cyclopentane to cyclohexane ring 
substitution. We have searched the Protein Data Bank [37] 
for X-ray structures of PLK1 and BRD4 containing these 

or related compounds and identified a structure of a close 
analog of comp00244 in complex with PLK1, shown on 
the left in Fig. 6b. The crystallographic inhibitor was only 
distinguished from comp00244 by an ethyl to carboxamide 
substitution. Furthermore, we identified another structure of 
PLK1 in complex with a closely related pyrazoloquinazo-
line inhibitor, as shown on the right in Fig. 6b. This inhibi-
tor displayed a very similar binding mode compared to the 
comp00244 analog and contained the carboxamide group of 
comp00244 at the corresponding position where it interacted 
with PLK1 residues. Hence, on the basis of these obser-
vations, the newly generated compounds comp00244/246 
are very likely to at least inhibit PLK1. Of course, their 
predicted dual-target ligand potential awaits experimental 
evaluation.

Enhanced SARM and MGM display

For dual-target ligand design, a new color-coded repre-
sentation was also implemented that is applicable to both 
SARM and MGM. Following this design idea, compound 
cells in SARMs and grid positions in MGMs are represented 
as divided circles (nodes) color-coded by (experimental or 
predicted) potency values for the two targets under consid-
eration. Figure 7a shows the expanded SARM from Fig. 5 
in this intuitive dual-target view and Fig. 7b shows a cor-
responding MGM representation for this compound set on 
an (algorithmically derived) 19 × 19 grid. Here, node bor-
ders are used to distinguish different compound categories. 
According to the chosen color spectrum, dark green nodes 
represent preferred candidate compounds. Structural ana-
logs (such as comp00244/246) occupy adjacent positions. 
The MGM display can be further expanded, for example, to 
include multiple SARMs containing dual-target ligands such 
that virtual candidate compounds can be viewed in context.
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Fig. 7  SARM and MGM display for dual-target ligand design. a The 
expanded Key2-36 SARM is shown using a modified compound rep-
resentation accounting for dual-target activity. b The corresponding 
MGM representation is shown. For all compounds, potency values 
were predicted for both targets. The positions of virtual candidates 
comp00244/246 are framed in red

◂

Concluding discussion

Compounds with desired dual-target activity are of high 
interest in polypharmacology-oriented drug discovery. 
However, apart from dual-pharmacophore screening, com-
putational approaches for the identification or design of 
dual-target ligands are still rare. The SARM approach was 
originally developed for different purposes. It was focused 
on the systematic identification and structural organization 
of related analog series. Furthermore, it was designed to 
bridge between structural analysis and compound design 
by extrapolating from organized series to generate new 
virtual analogs. Subsequently, the DeepSARM method-
ology was introduced to further expand analog space for 
given series through generative modeling, taking compound 
information from related targets into account. So far, Deep-
SARM has only been applied to compounds with activity 
against a single target. However, given its two-stage train-
ing scheme, we have reasoned that DeepSARM might be 
adapted for dual-target ligand design, which represents the 
concept introduced herein. The initial training phase makes 
it possible to focus on chemical space populated with com-
pounds active against target groups. Subsequent fine-tuning 
enables the design of compounds that are likely to be active 
against a specific target combination from these groups. The 
DeepSARM approach for dual-target ligand design can be 
adjusted depending on the compound information that is 
available. In the exemplary application presented herein, we 
have shown that fine-tuning on the basis of only small num-
bers of available dual-target ligands can produce attractive 
candidate compounds for further exploration. DeepSARM 
modeling substantially extends the analog space of original 
SARMs, leading to SARM expansion, which also applies to 
dual-target ligand design, as shown herein. Candidate com-
pounds can be selected on the basis of log_likelihood scores 
originating from DeepSARM and/or results from externally 
derived activity prediction models. Compound prioritization 
schemes can be modified or extended according to individ-
ual preferences. At present, dual-target ligand design via the 
DeepSARM framework is still at the conceptual level. How-
ever, we demonstrate the computational feasibility of the 
approach. The results of the exemplary application reported 
herein should be of sufficient interest to pave the way for 
other DeepSARM dual-target ligand design projects leading 
to experimental work. From a design perspective, a strength 

of the SARM data structure and its DeepSARM expansion 
is the visualization capacity, including MGM display, which 
enables intuitive access to candidate compounds, even for 
practicing chemists who might not be familiar with all com-
putational details.

In conclusion, we have introduced a new concept for dual-
target ligand design based upon the DeepSARM framework, 
which should merit further consideration. It is also hoped 
that our analysis might trigger further computational inves-
tigations supporting polypharmacological drug discovery.
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