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Autophagy is a highly regulated physiologic mechanism in which
cells maintain homeostasis by degrading excessive or unnecessary
proteins and damaged or aged organelles through the lysosomal
machinery (Yorimitsu and Klionsky, 2005) [1]. MyoD is basic helix-
loop-helix (bHLH) transcription factors that regulate myoblast
proliferation and myogenic differentiation. MyoD is expressed in
adult skeletal muscle (Megeney et al., 1996) [2] and adult fibers
(Brack et al., 2005) [3]. MyoD is mainly degraded by the ubiquitin-
proteasome system (Floyd et al., 2001) [4] and partly by autophagy
(Kim et al., 2012) [5]. Data showed that autophagy decreased
MyoD protein in C2C12 cells by Western blotting analysis.

& 2017 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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Western blotting analysis, real-time PCR
ata format
 Analyzed

xperimental factors
 Autophagy in C2C12 cells was induced by treatment of high fetal bovine serum

(FBS).

xperimental
features
MyoD degradation by autophagy showed Western blotting under high con-
centrations of FBS.
ata source location
 Chuncheon, Gangwon-do, Republic of Korea

ata accessibility
 All data are available with this article
D
Value of the data

� This data could give a base for the detection of MyoD protein in both muscle cells and C2C12 cells
by Western blotting analysis.

� The data will be useful for investigating that nutrition oversupply including high concentration of
FBS may increase autophagy in both muscle cells and C2C12 cells.

� The data allow us to promote that regulation of MyoD protein may suppress myoblast proliferation
and myogenic differentiation.
1. Data

The autophagy was increased by treatment of dose-dependent FBS (1–20%) and a subsequent
autophagy markers, LC3II and Beclin-1 proteins significantly increased (Fig. 1). Cell proliferation signal
phospho-ERK significantly decreased according to dose-dependent FBS (Fig. 2). Proapoptotic mole-
cule Bax protein expression was increased in more than 5% FBS treatments compared to the absence
of FBS and antiapoptotic molecule Bcl-2 protein expression was reduced in more than 2% FBS
treatments (Fig. 3). Under the same conditions, cytosolic MyoD protein was significantly decreased in
10 and 20% FBS condition (Fig. 4A), but MyoD mRNA did not change (Fig. 4B). C2C12 cells were treated
) and Beclin 1 proteins (A, C) in C2C12 cells. Data represent mean7SD of three experiments.
01 vs. 0% FBS.



Fig. 2. Expression of p-ERK in C2C12 cells. Data represent mean7SD of three experiments. *po0.05, **po0.01, ***po0.001
vs. 0% FBS.

Fig. 3. Expression of Bax (A, B) and Bcl-2 proteins (A, C) in C2C12 cells. Data represent mean7SD of three experiments.
*po0.05, ***po0.001 vs. 0% FBS.

Y.-M. Yoo, Y.C. Park / Data in Brief 13 (2017) 650–654652
with autophagy inhibitor bafilomycin A1, and then completely blocked degradation of MyoD (Fig. 5).
Together, these results suggest that high FBS-induced autophagy results in degradation of MyoD
protein in C2C12 myoblast cells.
2. Experimental design, materials and methods

2.1. Cell culture

We performed as described previously [5]. C2C12 myoblast cells were cultured in Dulbecco's
modified Eagle's medium (DMEM, GibcoBRL, Gaithersburg, MD, USA) with 5% fetal bovine serum (FBS,
GibcoBRL) at 37 °C with 5% CO2. C2C12 cells were incubated in DMEM containing 1–20% FBS and/or
with 0.1 μM autophagy inhibitor bafilomycin A1 (Calbiochem, San Diego, MO, USA) for 24 h.



Fig. 4. Expression of MyoD protein (A) and mRNA (B) in C2C12 cells. Data represent mean7SD of three experiments.
***po0.001 vs. 0% FBS.

Fig. 5. MyoD expression with autophagy inhibitor bafilomycin A1 in C2C12 cells. Data represent mean7SD of three experi-
ments. **po0.01, ***po0.001 vs. 0% FBS. Inh, autophagy inhibitor bafilomycin A1.
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2.2. Western blot analysis

We performed as described previously [6]. Cells with 80–90% confluence was prepared using
buffer (150 mM NaCl, 1% NP-40, 50 mM Tris–HCl, pH 7.4, 0.1 mM phenylmethylsulfonyl fluoride,
5 mg/mL aprotinin, 5 mg/mL pepstatin A, 1 mg/mL chymostatin, 5 mM Na3VO4, and 5 mM NaF), incu-
bated for 30 min at 4 °C, and centrifuged at 13,000� g for 20 min at 4 °C. Proteins (40 mg) were
separated by 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Antibodies were LC3,
Beclin 1, p-ERK, ERK, Bax, Bcl-2, MyoD, and GAPDH from Santa Cruz Biotechnology (Santa Cruz, CA,
USA). Protein bands measured using ImageJ software (version 1.37; Wayne Rasband, NIH, Bethesda,
MD, USA) and normalized to GAPDH.
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2.3. RNA extraction and quantitative real-time PCR

We performed as described previously [7]. Total RNA was prepared using Trizol reagent (Invi-
trogen, Carlsbad, CA, USA). cDNA template (2 μL) was analyzed in triplicate by addition of 10 μL 2�
SYBRs Premix Ex TaqTM (TaKaRa Bio. Inc., Otsu, Shiga, Japan) using a 7300 Real-time PCR System
(Applied Biosystems, Foster, CA, USA): denaturation at 95 °C for 5 min, 40 cycles of denaturation at
95 °C for 30 s, annealing at 60 °C for 30 s, and extension at 72 °C for 45 s. The primers were MyoD, 50-
AGTGAATGAGGCCTTCGAGA-30 (sense) and 50-GCATCTGAGTCGCCACTGTA-30 (antisense); β-actin, 50-
AGCCATGTACGTAGCCATCC-30 (sense) and 50-TTTGATGTCACGCACGATTT-30 (antisense). Fluorescence
intensity threshold was taken as the threshold cycle in the exponential phase of PCR amplification.
Relative expression was calculated using the equation R¼2-[ΔCT sample-ΔCT control].

2.4. Statistical analysis

Significant differences were determined by ANOVA using the Prism Graph Pad v4.0 (Graph Pad
Software Inc., San Diego, CA, USA). P values o 0.05 were considered statistically significant.
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