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Abstract 

Background:  Challenges remain on the selection of patients who potentially respond to a class of drugs that target 
epigenetics for cancer treatment. This study aims to investigate TET2/DNMT3A mutations and antitumor activity of a 
novel epigenetic agent in multiple human cancer cell lines and animal models.

Methods:  Seventeen cancer cell lines and multiple xenograft models bearing representative human solid tumors 
were subjected to 4′-thio-2′-deoxycytidine (T-dCyd) or control treatment. Gene mutations in cell lines were examined 
by whole exome and/or Sanger sequencing. Specific gene expression was measured in cells and xenograft tumor 
samples by Western blotting and immunohistochemistry. TET2/DNMT3A mutation status in 47,571 human tumor 
samples was analyzed at cBioPortal for Cancer Genomics.

Results:  Cell survival was significantly inhibited by T-dCyd in breast BT549, lung NCI-H23, melanoma SKMEL5 and 
renal ACHN cancer lines harboring deleterious TET2 and nonsynonymous DNMT3A mutations compared to 13 lines 
without such mutation pattern (P = 0.007). The treatment upregulated p21 and induced cell cycle arrest in NCI-H23 
cells, and dramatically inhibited their xenograft tumor growth versus wildtype models. T-dCyd administrations led to a 
significant p21 increase and near eradication of tumor cells in the double-mutant xenografts by histological evalua-
tion. TET2/DNMT3A was co-mutated in human lung, breast, skin and kidney cancers and frequently in angioimmunob-
lastic and peripheral T cell lymphomas and several types of leukemia.

Conclusions:  Cell and animal models with concurrent mutations in TET2 and DNMT3A were sensitive to T-dCyd 
treatment. The mutations were detectable in human solid tumors and frequently occur in some hematological 
malignancies.

Keywords:  DNMT3A and TET2 mutations, NCI-H23 cells, p21, 4′-thio-2′-deoxycytidine (T-dCyd), Whole exome 
sequencing, Xenograft tumors
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Introduction
The family of DNA methyltransferases (DNMTs) 
including DNMT3A (NM_022552.4) catalyzes the addi-
tion of a methyl group to 5-cytosine residue of CpG 
dinucleotides. DNMT3A, encoded by DNMT3A gene 
(2p23.3), methylate previously unmethylated regions 
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of genomic DNA and is responsible for genome-wide 
de novo DNA methylation [1]. DNMT3A also func-
tions as a transcriptional co-repressor that does not 
require its de novo methyltransferase activity to silence 
gene transcription [2, 3]. It is frequently mutated in 
AML and was associated with poor prognosis; how-
ever, DNMT3A alteration has not been much described 
in human solid tumors [4]. Currently, data are mixed 
regarding the relationship between DNMT3A muta-
tions and treatment response to DNMT inhibitors such 
as decitabine or azacitidine in myeloid malignancies 
[5–7]. It remains unclear whether DNMT3A mutation 
is associated with antitumor activity of DNMT inhibi-
tors and other epigenetic modulators in human solid 
tumors and their corresponding animal models.

TET2 (NM_001127208.2) coded by this gene (4q24) 
is a member of the TET family proteins (TET1–3) that 
convert 5-methylcytosine to 5-hydroxymethylcytosine 
in DNA, and promotes site-specific DNA demethyla-
tion [8]. In addition to its role in demethylation, TET2 
appears to act as a tumor suppressor that is involved in 
the control of balancing survival, growth and differen-
tiation in normal hematopoiesis. Loss of TET2 induced 
leukemogenesis in hematopoietic cells [9]. TET2 muta-
tions, as an oncogenic process, are frequently observed 
in AML, MDS and lymphoid malignancies [10–12] as 
well as mutated in some human solid tumors [13]. It has 
been shown that TET2 mutations were associated with 
higher response rate to decitabine and azacitidine ther-
apy in MDS [14]. However, no preclinical and clinical 
data are available on the association between the TET2 
mutations and antitumor activity of DNMT inhibitors 
and other epigenetic modulating agents in human solid 
tumors. In addition, DNMT3A and TET2 mutations 
occur concurrently in human malignancies such as T 
cell lymphoma [15, 16]. Double-gene knockout led to 
the transformation of hematopoietic stem cells through 
blocking cellular differentiation [17].

A novel epigenetic modulator 4′-thio-2′-
deoxycytidine (T-dCyd) demonstrated antitumor activ-
ity in  vivo although it was unclear for its mechanisms 
of action [18], and is currently in early clinical devel-
opment. In this study, we hypothesized that aberration 
of the genes within the epigenetic regulatory network 
is critical to T-dCyd antitumor activity. The hypothesis 
was examined through T-dCyd treatment of multiple 
cancer cell lines and xenograft models with and with-
out relevant gene mutations implicated in the epige-
netics. We also investigated TET2/DNMT3A mutation 
frequencies in over 100 cancer types using cBioPortal 
for Cancer Genomics (www.​cbiop​ortal.​org) [19].

Methods
Drugs, study model cell lines and drug treatment
Lung adenocarcinoma NCI-H23 and EKVX, colorec-
tal adenocarcinoma COLO205, HCT15, HCT116 and 
KM12, ovarian carcinoma SKOV3 and OVCAR3, and 
melanoma SKMEL2, SKMEL5 and M14, breast can-
cer MCF7, T47D, MDA-MB-231 and BT549, renal cell 
adenocarcinoma ACHN and prostate cancer DU145 
cell lines were obtained from the Tumor/Cell Line 
Repository, Division of Cancer Treatment and Diagno-
sis, National Cancer Institute (Frederick, MD). T-dCyd 
was obtained from the Developmental Therapeutics 
Program, Division of Cancer Treatment and Diagnosis, 
National Cancer Institute (Rockville, MD). They were 
dissolved in 0.05% Tween 80 saline and reconstituted 
to 10 mM; aliquots of the drug were stored at − 80  °C 
until use.

DNMT3A/TET2 mutations by WES in cancer cells and human 
malignancies
Genomic DNA extraction in cancer cell lines was per-
formed using Omega Biotek nucleic acid isolation kit 
per the manufacturer instructions (Omega Bio-tek, 
Norcross, GA). DNA concentration was measured with 
use of Promega QuantiFluor dsDNA System on a Quan-
tus Fluorometer (Promega, Madison, WI). The integrity 
of DNA was  analyzed using the Genomic DNA  Screen 
Tape on an Agilent 2200 TapeStation instrument (Agi-
lent Technologies,  Santa Clara, CA). The whole exome 
sequencing (WES) was carried out by Illumina Nextera 
Rapid Capture Exome sequencing following the standard 
Illumina kit protocol (Illumina, San Diego, CA). Briefly, 
50  ng of genomic DNA was  fragmented,  and barcoded 
linkers were ligated to generate indexed libraries. These 
were hybridized to human exome probe pool to cap-
ture and enrich for exome sequences. The exome librar-
ies were  quantified using Promega QuantiFluor dsDNA 
System, and size and purity of the libraries were analyzed 
by High Sensitivity D1000 Screen Tape on the Agilent 
2200 TapeStation instrument. The libraries were pooled 
and run on an Illumina HiSeq 2500 sequencer utiliz-
ing the paired end 100  bp rapid run format to generate 
an average of 30 × sequencing coverage per sample. The 
raw FASTQ data were adaptor-trimmed and mapped to 
hg19 human reference genome with the BWA Enrich-
ment  software, and specific variants were  annotated 
using the Variant Studio software  within the Illumina 
BaseSpace applications suite (www.​bases​pace.​illum​ina.​
com).
TET2 and DNMT3A mutations in a curated set of 

the non-redundant studies including 47,571 human 
tumor samples were analyzed at cBioPortal for Cancer 
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Genomics [19]. The data were lastly accessed on Decem-
ber 26, 2020.

PCR and Sanger sequencing
Primers were designed to amplify ~ 300  bp genomic 
sequence flanking the mutation of interest of TET2 gene. 
The primers that cover the TET2 c.5162T > G mutation 
in exon 11 were 5′-AGT​CTC​AGC​CGA​TGG​ATC​TG-3′ 
(forward) and 5′-AGG​GCA​TGA​AGA​GAG​CTG​TT-3′ 
(reverse). PCR was carried out using the Kapa HiFi Hot-
Start PCR kit (Kapa Biosystems, Wilmington, MA), and 
the amplicons were purified by the Mag-Bind® Rxn-
Pure Plus reagent (Omega Bio-tek). Each amplicon was 
sequenced with forward and reverse primers using the 
Big Dye chemistry on an ABI 3130 capillary genetic ana-
lyzer (Applied Biosystems, Foster City, CA).

Immunohistochemistry or immunocytochemistry 
and quantitative analysis
Immunohistochemistry on the formalin-fixed and par-
affin-embedded sections was described previously [20–
22]. In brief, rabbit monoclonal antibodies to DNMT3A 
(clone D23G1) and CDKN1A/p21Waf1/Cip1 (p21, clone 
12D1) were obtained from Cell Signaling Technology 
(Danvers, MA), and rabbit polyclonal antibodies to TET2 
(ABE364) was purchased from EMD Millipore (Burling-
ton ​, MA). They were added to slides in dilutions of 1:50 
for DNMT3A and p21, and 1:1000 for TET2. The bind-
ing of antibodies to their antigenic sites in sections was 
amplified using Vectastain Elite avidin–biotin-peroxidase 
complex kits (Vector Laboratories, Burlingame, CA). The 
antigen–antibody reaction sites were visualized using 
3,3-diaminobenzidine for 7 to 10 min and, subsequently, 
sections were counterstained with Mayer’s hematoxylin. 
Formalin-fixed and paraffin-embedded MCF-7, HCT116 
treated with 10 nM of topotecan and NCI-H23 cells were 
used as positive controls for DNMT3A, p21 and TET2, 
respectively. Areas of tumor cell staining on each tumor 
sample were analyzed with the assistance of a digital 
imaging system (DAKO, Carpinteria, CA) reporting the 
intensity and percentage of staining for DNMT3A, and 
TET2 to determine the staining Index (SI). It was calcu-
lated as the percentage multiplied by intensity of staining 
(after subtracting the tissue readout of the corresponding 
negative control) divided by 100 (SI = intensity × per-
centage/100) [20]. p21 was reported as the percentage of 
tumor cell staining as described previously [23].

Clonogenic assay
After 48 h of drug treatment, 2000 cells were washed and 
plated into 6-well plates with each condition in triplicate 
as described previously [24]. After 10–14  days, colo-
nies were fixed in 10% methanol 10% acetic acid glacial 

solution and, following wash, stained with 0.1% crys-
tal violet in plates. The colonies formed were counted 
using an automated ACCU count TM 1000 (Biologic 
Inc., Manassas, VA). The fraction of colony forma-
tion (growth) relative to vehicle-treated control or of 
growth inhibition was calculated by: (average of drug-
treated)/vehicle-treated) × 100 or as: [1 − (average of 
drug-treated)/vehicle-treated)] × 100.

Western blotting
Cell pellets were lysed in 1 × sample buffer contain-
ing phosphatase and protease inhibitors. The lysates 
were sonicated, quantified and boiled for 10 min. Equal 
amount was electrophoresed in 7.5% or 4–20% SDS–
polyacrylamide gels (Bio-Rad, Hercules, CA, USA). After 
transferring the proteins on to nitrocellulose membrane, 
filters were incubated in 5% non-fat dry milk in PBST 
(1X PBS plus 0.2% Tween-20) for 1  h. Blot was probed 
with p21 antibody (1:1000 dilution, Cell Signaling Tech-
nology, Danvers, MA) or TET2 antibody (EMD Milli-
pore) in 1:2000 dilution and ß-actin antibody (1: 10,000 
dilution) overnight at 4  °C in PBST, and subsequently 
incubated with a horseradish peroxidase-conjugated sec-
ondary antibody (BioRad) for 1  h at room temperature. 
Immuno-bound antibodies were detected by Super Sig-
nal West Pico Chemiluminescent Substrate detection 
reagent (Pierce/Thermo Scientific, Rockford, IL, USA) 
and visualized by autoradiography. The band density on 
the scanned images was quantified by ImageJ software 
(ImageJ.net).

Cell cycle analysis
Cells were treated with different concentrations of 
T-dCyd and vehicle. After 24  h of treatment, they were 
detached with AccutaseTM solution (Millipore), washed 
twice with PBS and fixed in cold 70% ethanol overnight. 
Following washing, fixed cells were stained with 1 ml of 
propidium iodide solution (50 µg/ml) supplemented with 
50 µl RNaseA (50 mg/ml) at 37  °C for 1 h and analyzed 
with a FACSCanto II Flow Cytometer (Becton Dickinson, 
Franklin Lakes, NJ). After collecting at least 20,000 cells, 
the cell cycle profile was analyzed using the FlowJo soft-
ware (Becton Dickinson).

TUNEL assay
The assay (R&D Systems, Minneapolis, MN) measures 
the fragmented DNA in cells undergoing apoptosis [20]. 
DNA breaks at 3′-DNA ends were labeled with bioti-
nylated nucleotides catalyzed by terminal deoxynucle-
otidyl transferase. An avidin-conjugated horseradish 
peroxidase (Vector Laboratories Inc.) specifically bound 
to the biotinylated DNA fragments and produced a brown 
precipitate in the presence of 3,3-diaminobenzidine. A 
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tumor specimen treated by nuclease was used as a posi-
tive control, and the same tumor section without nucle-
ase treatment was used as a negative control.

Human xenograft tumor establishment and drug 
administration
Female athymic nude mice (nu/nu NCr; Animal Produc-
tion Program, National Cancer Institute at Frederick, 
Frederick, MD, USA) were implanted by subcutaneous 
injection of a cell suspension of human cancer cells into 
the flank tissues as described previously [25]. The mice 
were subjected to the treatment groups for each model 
when the tumors reached a median tumor staging size 
less than 200  mg in weight. They were subsequently 
treated with T-dCyd at 4 mg per kg, PO or with saline in 
mice bearing NCI-H23 (or IP) and SKOV3 tumors on a 
weekly schedule with daily dosing for 5 days for 3 cycles, 
and M14 for 4 cycles and COLO205 for 2 cycles. Tumor 
size was measuredly weekly during treatment. The 
National Cancer Institute Frederick National Labora-
tory for Cancer Research is accredited by the Association 
for Assessment and Accreditation of Laboratory Animal 
Care International and observes the US Public Health 
Service Policy on Care and Use of Laboratory Animals. 
All the experiments were conducted per an approved ani-
mal care and use committee protocol in accordance with 

the procedures outlined in the Guide for Care and Use of 
Laboratory Animals, Eighth Edition (National Research 
Council, 2011; National Academy Press; Washington, 
D.C.).

Statistical analysis
Unpaired student t test was used to assess the differ-
ence in tumor sizes on the H&E slides, and expression 
of DNMT3A, TET2 and p21 between T-dCyd and saline 
treatments in NCI-H23 xenograft tumors. The unpaired 
t test was also utilized to evaluate the cell growth inhibi-
tion by T-dCyd between cell lines with co-occurrence of 
TET2/DNMT3A mutations and without such pattern of 
mutations, as well as growth inhibition between vehicle- 
and T-dCyd-treatments in NCI-H23 and SKOV3 cells. 
p21 expression between T-dCyd at different concentra-
tions and vehicle treatment in NCI-H23 cells was evalu-
ated using one sample t test (GraphPad Prism version 
8.4.3). All statistical tests were two-sided, and the signifi-
cance level was pre-specified with a P value of < 0.05.

Results
TET2 and DNMT3A mutations in cancer cell lines 
and human malignancies
The cell lines studied in  vitro and in  vivo were sub-
jected to WES analysis as described in Methods. We 

Table 1  TET2 and DNMT3A mutation status in cancer cell lines

a Predicted by SIFT (sorting intolerant from tolerant) and/or PolyPhen (polymorphism phenotyping)
b Wildtype also refers to the synonymous variants

Cell line DNMT3A TET2

Mutation status; typea Nucleotide; protein Mutation status; type Nucleotide; protein

ACHN Missense; deleterious c.2069T > C; p.V690A Missense; deleterious c.1088C > T; p.P363L

Missense; deleterious c.5162T > G; p.L1721W

BT549 Missense; deleterious c.2587G > A; p.E863K Missense; deleterious c.1064G > A; p.G355D

Missense; deleterious c.4117G > A; p.A1373T

SKMEL5 Missense c.736G > T; p.A246S Missense; deleterious c.1430C > T; p.S477F

NCI-H23 Nonsense c.667G > T; p.G223X Missense; deleterious c.5162T > G; p.L1721W

SKMEL2 Wildtypeb – Missense; deleterious c.5162T > G; p.L1721W

DU145 Wildtype – Missense; deleterious c.5162T > G; p.L1721W

KM12 Missense; deleterious c.2283G > A; p.M761I Missense c.5284A > G; p.I1762V

OVCAR3 Wildtype – Wildtype –

COLO205 Wildtype – Wildtype –

MDA231 Wildtype – Missense; deleterious c.5162T > G; p.L1721W

MCF7 Wildtype – Missense; deleterious c.86C > G; p. P29R

M14 Wildtype – Wildtype –

EKVX Missense; deleterious c.2375G > A; p.R792H Missense c.5284A > G; p.I1762V

T47D Wildtype – Missense; deleterious c.5162T > G; p.L1721W

SKOV3 Wildtype – Wildtype –

HCT116 Wildtype – Missense c.5284A > G; p.I1762V

HCT15 Missense; deleterious c.2283G > A; p.M761I Missense c.5284A > G; p.I1762V
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revealed a novel deleterious TET2 c.5162T > G p.L1721W 
missense mutation, along with confirmation of the 
DNMT3A c.667G > T (p.G223X) nonsense mutation in 
NCI-H23 cells (Table  1). Notably, the deleterious TET2 
L1721W missense mutation was recurrent and found in 
35.3% (6/17) of cancer lines examined. In addition, del-
eterious TET2 p.S477F (c.1430C > T) and nonsynony-
mous DNMT3A missense mutations were identified in 
SKMEL5 cells. Such mutation pattern was also observed 
in BT549 and ACHN cells but not in other 13 lines 
(Table  1). The TET2 c.5162T > G mutation in NCI-H23 
cells was validated by Sanger sequencing (Fig. 1a).

To investigate whether TET2/DNMT3A mutations 
were detectable in human tumor samples, we ana-
lyzed frequency of TET2 and DNMT3A mutations in a 
spectrum of over 100 cancer types. The mutation rates 
for DNMT3A and TET2 in either gene or both were as 
high as 92.9% in angioimmunoblastic T cell lymphoma, 
80% in chronic myelomonocytic leukemia, 58.4% AML 
with mutated NPM1 and 57.1% in peripheral T cell lym-
phoma (Fig. 1b). The genes were also frequently mutated 
in several other types of leukemias, desmoplastic mela-
noma and cutaneous squamous cell carcinoma, glioblas-
toma and myelodysplasia. The alterations were found in 
10.2% of 1241 cutaneous melanoma, 10% of 80 cases of 
breast mixed ductal and lobular carcinoma, 4.9% of 933 
colorectal adenocarcinoma, and 4.1% of 2268 lung ade-
nocarcinomas as well as 3.1% of 722 cases of renal clear 
cell carcinoma (Fig.  1b). The data suggest that TET2/
DNMT3A mutations were present in many types of 
human malignancies and frequent in T cell lymphomas, 
chronic myelomonocytic leukemia and AML.

TET2/DNMT3A mutations and T‑dCyd antitumor activity 
in cells and animal models
To test our hypothesis that gene mutations in the epige-
netic regulatory network were associated with T-dCyd 
antitumor activity, a panel of 17 cancer lines was analyzed 
by clonogenic assay. There was a dose-dependent inhibi-
tion of growth in co-mutant NCI-H23 and little activity in 
wildtype SKOV3 cells (Fig.  2a). Similar dose-dependent 
inhibition was noted in other cell lines with double-muta-
tions and, to a lesser degree, in those with other patterns 
of alteration (Additional file  1: Fig. S1). To explore the 
mechanisms of growth inhibition by T-dCyd, expres-
sion of p21 was examined in NCI-H23 cells by Western 

blotting and immunocytochemistry (data not shown). 
p21 was increased by T-dCyd treatment (Fig. 2b), which 
was accompanied by TET2 inhibition and G2/S cell cycle 
arrest in NCI-H23 but not SKOV3 cells (Additional file 1: 
Fig. S1). When treated with 0.5 µMT-dCyd, growth inhi-
bition was minimal to ~ 40% in 13 cell lines with wildtype 
and other status (DNMT3A wildtype/TET2 mutations, 
and DNMT3A mutations/TET2 p.I1762V mutation), 
and ~ 51% to 97.5% inhibition in 4 cell lines with delete-
rious TET2 and nonsynonymous DNMT3A mutations 
(P = 0.007; Fig.  2c). Noticeably, DNMT3A mutations in 
coupling with non-deleterious TET2p.I1762V mutation 
were associated with lower activity of antitumor cells 
(Table 1 and Fig. 2c).

Subcutaneous xenograft models were established in 
nude mice to validate the in vitro findings. Animals were 
randomized to T-dCyd at 4  mg/kg or saline treatment 
as described in Methods. Mice with wildtype tumors 
including M14, SKOV3 and COLO205 had growth delay 
of < 25% after T-dCyd administrations (Fig.  2d). In con-
trast, average growth delay was 83% in mice bearing NCI-
H23 tumors. T-dCyd treatment had no significant effect 
on the weight in the NCI-H23 xenograft mice (mean net 
weight loss 3.2% by T-dCyd vs. 0.2% in the control group) 
and no treatment-related death.

Pharmacodynamic effects of T‑dCyd in mutant xenograft 
tumors
To evaluate the molecular response to T-dCyd treatment, 
mice bearing NCI-H23 xenografts were subsequently 
established and treated with both 4 mg/kg and 2 mg/kg 
of T-dCyd or saline as a treatment schedule described 
in Methods. Tumor samples were collected at different 
time points as indicated in Fig. 3a. The harvested tumors 
were quartered, in which one piece was formalin-fixed 
and paraffin-embedded and the cut-sections were stained 
with H&E for tumor confirmation and used to assess the 
T-dCyd pharmacodynamics.

The effects of T-dCyd on p21, TET2 and DNMT3A 
were examined by immunohistochemistry in paraffin-
embedded NCI-H23 xenograft tumors. TET2 expression 
was significantly inhibited by T-dCyd dosed at both 4 mg/
kg and 2 mg/kg, respectively, at end of first cycle (C1D5), 
and the inhibition was sustainable at C3D5 (Table  2; 
Additional file 1: Table S1). It seemed that DNMT3A was 
increased at C1D5 but not sustainable at C3D5, likely due 

Fig. 1  Validation of TET2 mutation in NCI-H23 cells by Sanger sequencing, and frequency of TET2 and/or DNMT3A mutations in human 
malignancies: a TET2 c.5162T > G missense mutation (upper panel; arrow) in NCI-H23 cells versus no alteration at the site in HCT116 cells (lower 
panel). Shown were all forward strands. b Frequency of TET2 and/or DNMT3A mutations in human malignancies analyzed from cBioPortal. AML, 
acute myeloid leukemia; CEBPA, CCAAT/enhancer-binding protein alpha; NPM, nucleophosmin; NSCLC, non-small cell lung cancer; NOS, not 
otherwise specified

(See figure on next page.)
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to a compensatory mechanism for a temporary increase 
(Table 2; Fig. 3b). Remarkably, nuclear p21 was increased 
by T-dCyd treatment (68.4% vs 8.7% by saline at C1D5, 
P = 0.0003; Table  2; Fig.  3c). The incremental increases 
were observed by subsequent dosing and reached 85.9% 
at the end of cycle 3 (P < 0.0001). Similarly, p21 was sig-
nificantly augmented after drug administrations in the 
group dosed at 2 mg/kg of T-dCyd (P < 0.0001; Additional 
file 1: Table S1, Fig. S2a).

Tumor areas were measured on H&E sections of the 
T-dCyd- and saline-treated samples collected at C3D5 

by a digital imaging system (DAKO). Consistent with 
the measurement during therapy, digital quantitation 
confirmed that T-dCyd treatment resulted in a dramatic 
tumor reduction with an average of ~ 74% of smaller 
tumor areas than saline-treated controls (P < 0.01; 
Fig. 3d). Fewer residue tumor cells including a nugget of 
apoptosis and mostly non-tumor and necrotic compo-
nents were present in the T-dCyd-treated tumor samples 
by microscopy. By contrast, saline-treated lesions were 
densely packed with tumor cells (Fig.  3d). In addition, 
significant reduction of the tumor areas with a few tumor 

Fig. 2  Cell and tumor growth inhibition by T-dCyd treatment in multiple cancer cell lines and xenograft tumor models with and without 
deleterious TET2 and nonsynonymous DNMT3A mutations: a The cell growth inhibition by increasing concentrations, as indicated, of T-dCyd in 
NCI-H23 cells with TET2/DNMT3A mutations (black bars) and wildtype SKOV3 cells (gray bars), ***P < 0.0001 compared to vehicle treatment; ns, 
not significant (left panel). b p21 expression in NCI-H23 cells treated with T-dCyd at 48 h by Western blotting (right panel), *P < 0.05 compared to 
vehicle. c Cell growth inhibition by 0.5 μM of T-dCyd evaluated by clonogenic assay in mutant groups (black), wildtype group (gray) and other status 
(dark gray), **P = 0.007 compared between black bar group and gray/dark-gray bar groups. d Tumor growth delay [(T-C)/C] in the mutant xenograft 
tumors (black), and wildtype tumors (gray) by T-dCyd treatment (all dosed with 4 mg/kg of T-dCyd). Dotted line indicated 30% of tumor growth 
delay. C, control; ns, not significant; T, treatment
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Fig. 3  Effects of T-dCyd on NCI-H23 xenograft tumors in mice treated with 4 mg/kg T-dCyd and saline by immunohistochemical and microscopic 
analyses (6 mouse tumor samples per group): a The timeline of xenograft tumor sample collection as indicated by arrows. b Modulation of 
DNMT3A at C1D5 by T-dCyd versus saline shown in violin plota (left panel), *P < 0.05. Representative images of DNMT3A in the tumors treated by 
saline and T-dCyd at C1D5 (right panel), and the inset is a representative DNMT3A image at C3D5 (original magnification × 200). c Modulation of 
p21 at C1D5 by T-dCyd compared with saline shown in violin plota (left panel), ***P < 0.001. Representative images of p21 in the tumors treated by 
saline and T-dCyd at C1D5 (right panel), and the inset is a representative p21 image at C3D5 (× 200). d Measurement of the tumor areas on H&E 
sections quantified by digital imaging instrument in the T-dCyd group compared to saline group at C3D5 in the violin plota (left panel), **P < 0.01. 
Representative H&E sections of saline- and T-dCyd-treated tumor samples at C3D5 (right panel). Note a small solitary residue tumor lesion in the 
light blue circle with the presence of a bit of apoptosis (Inset; × 200) at end of T-dCyd treatment. aNote: the solid band in the violin plot is median, 
upper or lower quartile (dotted line) represent 25% of data greater or less than this value, top and bottom borders of the violin plot are maximal and 
minimal values; and each dot represents an individual data point. C, cycle; D, day
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cells was achieved in the group dosed by T-dCyd at 2 mg/
kg level (Additional file 1: Fig. S2b).

Discussion
In this study, we identified a novel deleterious TET2 
missense mutation at L1721W in NCI-H23 cells, not 
recorded in the COSMIC database, using WES technol-
ogy and confirmed by Sanger sequencing. TET2 L1721W 
mutation was recurrent in cancer cell lines derived from 
carcinomas of the breast, NSCLC, melanoma, renal, pros-
tate, and was reportedly detected in patients with MDS 
[10]. TET2 and/or DNMT3A was mutated in human 
solid tumors as well as in hematological malignancies to 
a greater degree (Fig.  1b). As such, they were most fre-
quently mutated in T cell lymphomas, chronic myelo-
monocytic leukemia and AMLs. The alterations also 
occurred in desmoplastic melanoma, cutaneous squa-
mous cell carcinoma and MDS. These mutations struck 
relatively frequent in myeloproliferative neoplasms and 
mucinous adenocarcinoma of the colon and rectum; they 
were detectable in cutaneous melanoma, breast mixed 
ductal and lobular carcinoma, renal clear cell carcinoma 
with sarcomatoid features and lung adenocarcinomas.

We demonstrated an association between the TET2/
DNMT3A mutations and growth inhibition of cancer 
cells by T-dCyd treatment across 17 human solid tumor 
cell lines. Significant inhibition was achieved in cancer 
cells and animals bearing tumors that harbor deleteri-
ous TET2 and nonsynonymous DNMT3A mutations. In 
contrast, those without such pattern of alterations were 
less responsive to treatment both in vitro and in vivo. It is 
worth noting that all DNMT3A mutations, except those 
co-occurring with non-deleterious TET2p.I1762V muta-
tion, were associated with significant T-dCyd antitumor 
activities. Remarkably, T-dCyd given at 4  mg/kg nearly 
eradicated the tumor cells in NCI-H23 xenograft tumors 
at the end of treatment. DNMT3A mutation was shown 

to be associated with response to decitabine and azacy-
tidine therapy in myeloid malignancies, and TET2 muta-
tion was associated with the objective response to these 
DNMT inhibitors in MDS [6, 14].

We found an increase in p21, relative to DNA break-
age/apoptosis (Additional file  1: Fig. S3), and G2/S cell 
cycle arrest by T-dCyd in TET2/DNMT3A-mutant 
NCI-H23 cells. Correspondingly, p21 was dramatically 
increased in NCI-H23 xenograft tumors by T-dCyd at 
effective doses. DNMT3A regulates p21 expression as a 
transcriptional co-repressor rather than through its DNA 
methyltransferase activity [2]. The mutant DNMT3A may 
have an impaired ability to bind to the transcriptional 
repression complex, thus abridging its transcriptional 
repression to p21 [4]. Reportedly, silencing DNMT3A led 
to an increase in p21 upon DNA damaging agent chal-
lenge [26–29]. Importantly, the incremental upregulation 
of p21 by T-dCyd dosing was accompanied by a remark-
able arrest of tumor growth in the mutations-positive 
tumors in  vivo. Additionally, T-dCyd inhibited TET2 in 
the double-mutant NCI-H23 cells and xenograft tumors 
(Additional file 1: Fig. S4). Thus, DNMT3A alteration in 
conjunction with deleterious TET2 mutation was critical 
to T-dCyd antitumor effect.

Conclusions
We demonstrated that co-occurrence of TET2 and 
DNMT3A mutations was present in human solid tumor 
cell lines and many types of human malignancies. Cell 
lines and animal model with deleterious TET2 and non-
synonymous DNMT3A mutations were sensitive to 
T-dCyd treatment. The deleterious TET2 c.5162T > G 
p.L1721W missense mutation is novel in NCI-H23 cells. 
The data confirmed our hypothesis that DNMT3A and 
TET2 gene alterations in the epigenetic regulatory net-
work were critical to T-dCyd antitumor activity. There-
fore, our preclinical data provide a promise to selectively 
treat cancer patients whose tumors carry deleterious 
TET2 and nonsynonymous DNMT3A mutations.
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Table 2  Modulation of TET2, DNMT3A and p21 by T-dCyd 
(4 mg/kg) treatment in vivo

a Immunohistochemistry data from saline-treated samples at C1D1 were used 
and shown since p21, DNMT3A and TET2 immunohistochemistry results were 
similar at C1D1 and C3D5 by saline treatment
b Compared to saline group by unpaired t test
c There were five instead of 6 tumor samples available for analyses of TET2 and 
DNMT3A at C3D5. C,

cycle, D, day

Target, 
mean ± SD

Salinea T-dCyd

C1D5 P valueb C3D5c P valueb

TET2 42.7 ± 3.0 17.3 ± 6.7  < 0.0001 12.8 ± 6.0  < 0.0001

DNMT3A 13.0 ± 2.1 21.8 ± 6.7 0.02 10.6 ± 7.5 0.52

p21 8.7 ± 3.3 68.4 ± 12.2 0.0003 85.9 ± 6.1  < 0.0001
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Additional file 1: Fig. S1. Inhibition of growth and TET2, and cell cycle 
arrest by T-dCyd in human solid tumor cell lines. Fig. S2. Effects of T-dCyd 
on DNMT3A/TET2-mutant NCI-H23 xenograft tumors in mice treated with 
2 mg/kg T-dCyd by immunohistochemical and microscopic analyses (6 
tumor samples per group). Fig. S3. Effects of T-dCyd on the induction of 
apoptosis in NCI-H23 cells. Fig. S4. Effects of T-dCyd on TET2 expression in 
DNMT3A/TET2-mutant NCI-H23 xenograft tumors.
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