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Genome-wide association studies (GWAS) have identified >100 schizophrenia (SCZ)-associated 

loci, but using these findings to illuminate disease biology remains a challenge. Here, we present 

integrative RIsk Gene Selector (iRIGS), a Bayesian framework that integrates multi-omics data 

and gene networks to infer risk genes in GWAS loci. By applying iRIGS to SCZ GWAS data, we 

predicted a set of high-confidence risk genes (HRGs), most of which are not the nearest genes to 

the GWAS index variants. HRGs account for a significantly enriched heritability estimated by 

stratified LD-score regression. Moreover, HRGs are predominantly expressed in brain tissues, 

especially prenatally, and are enriched for targets of approved drugs, suggesting opportunities to 

reposition existing drugs for SCZ. Thus, iRIGS can leverage accumulating functional genomics 

and GWAS data to advance understanding of SCZ etiology and potential therapeutics.

Introduction

For most complex diseases, translating genome-wide association study (GWAS) findings to 

uncover their underlying biological mechanisms and, clinical applicability remains a great 

challenge1. While drug development guided by genetic evidence should have greater rates of 

success2, few effective drug targets have been identified through GWAS analysis thus far. 

Schizophrenia (SCZ), represents a paradigmatic example of this challenge. The Psychiatric 

Genomics Consortium (PGC) has assembled tens of thousands of samples worldwide and 

reported 108 genomic loci associated with SCZ in a milestone paper3. However, only one 

recognized drug target, the dopamine receptor D2 (DRD2), stood out from the results. The 

therapeutic impasse is largely a consequence of the paucity of novel, accurate drug 

targetable genes4. For most, if not all GWAS loci, it is non-trivial to pinpoint the 

corresponding risk genes, as the loci usually cover multiple candidate genes and the genuine 

risk gene(s) may be megabases away from the index single nucleotide polymorphisms 

(SNPs)5. Genes in the closest proximity to index SNPs were intuitively assigned as risk 

genes in previous studies6, however, increasing evidence suggests that risk genes may not be 

those in the closest proximity7.

There has been tremendous effort in the past few years to dissect the machinery of gene 

regulation. Epigenomics data generated in large-scale projects such as Functional 

Annotation of the Mammalian Genome 5 (FANTOM5) provide critical links between 

regulatory elements and the genes they regulate8. Also, the recent advances of genome-scale 

chromosome conformation capture (Hi-C) technology provide global views of both short- 

and long-range interactions among genomic loci9,10. Hi-C data have been successfully used 

to infer the long-range interaction between distal regulatory elements (DREs) and target 

promoters9,10. These studies showed the promise of linking GWAS loci to disease risk 

genes, however, such data accumulated to date are far from satisfactory. On the other hand, 

individual omics data provide complementary support so that integrating multi-omics data is 

expected to strengthen the signal for pinpointing risk genes. At a different level, multi-omics 

data on individual risk genes are further amplified when multiple risk genes are considered 

together, given the polygenecity of diseases like SCZ and that disease risk genes often 

converge to related biological processes; intuitively, the increased precision in the joint 

modeling is achieved by borrowing the supporting evidence from risk genes across all 

GWAS loci.
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In this study, we developed a Bayesian framework, entitled integrative RIsk Genes Selector 

(iRIGS), to probabilistically infer risk genes driving GWAS signals through integrating two 

layers of information: 1) the multiple lines of supporting evidence from multi-omics data for 

individual genes, and 2) the relationships of genes in the biological networks. In its simplest 

form, the framework can be viewed as a Bayesian model selection problem, i.e., to select 

genes from each of the GWAS loci such that the supporting evidence on the selected risk 

genes from all loci is collectively high. The proposed method is flexible to leverage data 

from different sources, e.g. transcriptomic and epigenomic data, and cumulatively 

orchestrate them to calculate the probability for risk gene prediction. The application of 

iRIGS to SCZ showed our predicted risk genes explain significantly enriched heritability, 

and are highly consistent with the leading pathophysiological hypotheses of SCZ and 

significantly enriched in targets of approved drugs as well. Taken together, these results 

confirmed and greatly expanded previous understanding of the disease biology of SCZ, 

supporting the ability of our framework in translating GWAS findings into biological 

mechanisms and clinical applicability.

Results

Overview of the iRIGS framework

Fig. 1 is a schematic illustration of the framework. Let L denote the number of GWAS loci 

and for a specific locus we collected all the genes located within a 2 Mb region centered at 

the index SNP as its candidates. The goal of iRIGS is to probabilistically rank candidate 

genes at each GWAS locus based on their cumulative supporting evidence and closeness in a 

gene-gene network. Specifically, our goal is to find a set of L genes, each selected from one 

GWAS locus, such that the selected L genes achieve the highest score underlying a specified 

scoring scheme. Computationally, it is infeasible to enumerate all possible gene 

combinations, and we therefore adopted a Gibbs sampling algorithm to address the 

challenge, transitioning the problem into a conditional single-dimensional sampling 

procedure. For example, when sampling the risk gene from candidates at the L-th locus, we 

assume that the risk genes at all other L-1 loci have been selected, and the sampling 

probability for a gene at the L-th locus is computed conditional on the L-1 risk genes, based 

on the combined support from this gene’s multi-omics support as well as its closeness to the 

other L-1 risk genes in network. The sampled gene at the L-th locus is then put back to the 

set of selected genes, and the sampling for the (L-1)-th locus is iterated, until all the loci are 

visited. This process is repeated until risk genes converge to stationary distribution. The 

posterior probability (PP) of each candidate being a risk gene can be assessed based on the 

sampling frequency. For each GWAS locus, one or potentially more risk genes can be 

selected according to PP. In this study, we only selected one risk gene with the highest PP 

for each locus. Details of iRIGS can be found in Methods and Supplementary Note.

Applying iRIGS to identify disease risk genes of SCZ

In a milestone paper of SCZ GWAS, PCG reported 108 independent, genome wide-

significant loci3. We performed iRIGS on these loci to identify risk genes of SCZ 

(Supplementary Table 1). One key component in iRIGS is a collection of genomic features 

that can be used to characterize SCZ risk genes. Given our limited knowledge of the disease 
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genes of SCZ, genuine characterization of genomic features of SCZ risk genes has not been 

clearly established. Here, we adapted iRIGS in a special form to infer preliminary SCZ risk 

genes to carry out ab initio discovery of associated genomic features. Specifically, we used a 

generic gene-gene network constructed from Gene Ontology (GO) to run iRIGS without 

genomics data (Methods), and denoted the identified risk genes as network-derived risk 

genes (NRGs). In total, we predicted 104 NRGs after merging the overlapping genes across 

loci.

To show that these 104 NRGs harbor genuine SCZ genes, we assessed the enrichment of 

NRGs with 18 gene sets that have been widely and repeatedly implicated in SCZ (Methods). 

For the enrichment analysis, we selected the 842 genes with PPs less than the median PP of 

all candidate genes as the background and termed them local background genes (LBGs). We 

observed significant enrichments in 5 gene sets after Bonferroni correction (Table 1), 

including postsynaptic density (PSD) proteins (Pcorrected = 4.03 × 10−5, OR = 4.52) and 

miR-137 targets (Pcorrected = 4.24 × 10−5, OR = 9.79). We also tried other thresholds to 

define LBGs, and the enrichment patterns are similar (Supplementary Table 2). Thus in the 

following analyses, we used the median PP as the LBG threshold. To further determine the 

enrichment is not biased due to GO annotations, we applied iRIGS to two other traits (Age-

Related Macular Degeneration (AMD) and obesity) using the same GO network, and no 

enrichments were observed in any of the gene sets (Pcorrected > 0.05).

We also evaluated whether NRGs carry more de novo mutations (DNMs) identified in SCZ 

compared to LBGs. We collected DNM data of parent-proband trios as well as unaffected 

siblings from previous studies11 (Methods). We focused only on the predicted deleterious 

DNMs (pdDNMs) defined as loss of function (nonsense, splicing, and frame shift) DNMs or 

missense DNMs with a deleterious score (DScore) > 3, in which DScore is defined as the 

number of deleteriousness predictions among 7 algorithms reported by ANNOVAR 12 

(Methods). We observed significant enrichment of proband pdDNMs with NRGs (P = 2.53 × 

10−3, OR = 3.88), while no enrichment was observed for synonymous DNMs (sDNMs) (P = 

1). As contrast, no significant enrichments were observed for either pdDNMs (P = 1) or 

sDNMs (P = 1) identified in unaffected siblings.

Discovery of characteristic genomic features of SCZ risk genes

The preliminary explorations above showed that the predicted NRGs capture the genetic 

risks of SCZ. We thus used the 104 NRGs to explore genomics data to learn genomic 

features that are characteristics of SCZ risk genes. We first found that NRGs are more likely 

to be differentially expressed (DE) compared to LBGs (P = 8.55 × 10−3) (Fig. 2a) in 

CommondMind data13 (Methods). We next explored DRE-promoter links of NRGs by 

testing the hypothesis that risk genes have more incoming regulatory links compared to 

background. We found that NRGs are indeed connected to more DREs in Hi-C and 

FANTOM5 data (Fig. 2b, Supplementary Fig. 1, Methods, and Supplementary Note). We 

also investigated the distance between NRGs and index SNPs. Although GWAS identified 

variants do not necessarily implicate the nearest genes7, this will nevertheless be the case for 

a number of risk loci. Among the 104 NRGs we predicted, twenty-three genes (22%) are the 
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nearest ones to the corresponding index SNPs, significantly higher than expected (P = 0.04, 

permutation test).

Integrating the learned genomic features to identify high-confidence risk genes (HRG) for 
SCZ

As shown above, different genomic features (DNMs, DE, DRE-promoter links, and distance 

to index SNP (DTS)) consistently exhibited supportive evidence on NRGs. We therefore 

integrated them into iRIGS (Methods) and predicted 104 high-confident risk genes (HRGs) 

in total (Supplementary Table 1). We next evaluated whether and how the integrated multi-

dimensional genomic features can improve our prediction.

a) Genomic features show aggregated effects on HRGs—For each GWAS locus, 

we calculated the ratio of maximum and median of PPs of local candidate genes, and found 

that HRGs carry significantly higher sampling probabilities than NRGs (P = 1.02 × 10−18, 

Fig. 3a), demonstrating the strong and aggregated influence of multi-dimensional genomic 

features on nominating risk genes.

b) Genomic positions of HRGs relative to GWAS index SNPs—Among the 104 

HRGs, 39 genes (38%) are nearest to the corresponding GWAS index SNPs (16 more genes 

than NRGs), significantly higher than expected (P < 1×10−6, permutation test). The extreme 

significance strongly supports the effectiveness of incorporating genomic features in 

selecting genuine risk genes, and in particular HRGs that are also nearest genes provide 

high-confidence candidates for follow-up studies.

Of particular interest are the remaining 65 HRGs that are not the nearest genes to the index 

SNPs. For each of these 65 HRGs, denoted as non-nearest HRGs, we picked the nearest 

gene from the corresponding locus as control. We also performed the gene set enrichment 

analysis to compare the 65 nearest non-HRG genes with the 65 non-nearest HRGs. The gene 

sets used here are the same ones used in Table 1. We found that non-nearest HRGs are more 

significantly enriched in the gene sets compared to nearest non-HRG genes (Supplementary 

Table 3), suggesting that the 65 non-nearest HRGs identified by iRIGS are more likely to be 

true risk genes than their nearest counterparts.

In the 2Mbp window of GWAS index SNPs most candidate genes are out of the linkage 

disequilibrium (LD) blocks of the index SNPs, and we investigated to what extent the 

identified HRGs are in GWAS loci LD blocks, which were defined as regions with r2 > 0.2 

with the index SNPs. Among the 104 identified HRGs, 34 (33%) genes are in LD blocks. 

For 39 HRGs that are also nearest to the index SNPs, around half (19) are in LD blocks, 

while for the 65 non-nearest HRGs only 15 are in LD blocks.

c) HRGs explain high disease heritability—We then utilized stratified linkage 

disequilibrium score regression (LDSC) to evaluate the SCZ heritability explained by 

HRGs14. We included the SNPs located within a 20 kb window centered at the transcription 

start site (TSS) of each gene for LDSC analysis. We observed that HRGs explain 

significantly enriched disease heritability (Enrichment = 39.36, P = 5.56 × 10−7) than LBG 

(Enrichment = 10.06, P = 6.31 × 10−14) (Fig. 3b). When focusing only on the 65 non-nearest 
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HRGs, we also observed a significant enrichment in heritability (Enrichment = 19.72, P = 

2.53 × 10−4), although the majority of which are not in strong LD with the index SNPs (Fig. 

3b). As expected, the enrichment of nearest HRGs is the highest since they are close to index 

SNPs. We also tried different window sizes around TSS (from 20 kb to 200 kb) for LDSC 

and observed the same trend of enrichments. Note that DTS is a confounding effect for 

LDSC since genes close to index SNPs are more likely to have a high LDSC score, and 

HRGs used here for LDSC analysis were obtained without the use of DTS in iRIGS..

The above evaluations demonstrate the effectiveness of incorporating multi-dimensional 

genomic features and strongly suggest that iRIGS is capable of nominating SCZ disease risk 

genes. In the remaining sections of Results, we used the 104 predicted HRGs to 

comprehensively characterize various properties of identified (putative) SCZ risk genes to 

gain more biological insights of SCZ.

Tissue- and developmental stage-specific expression of HRGs

We collected the expression data from Genotype-Tissue Expression (GTEx) project 

(Methods) and observed that HRGs have more pronounced tissue-specificity in brain than 

LBGs (Fig. 3c). We also observed a higher expression level of HRGs in prenatal than 

postnatal stages (P = 6.99 × 10−3, Fig. 3d) in BrainSpan data15 (Methods), while this pattern 

is absent for LBGs (P = 0.15, Fig. 3d). In addition to LBGs, we also generated a set of 

whole-genome background genes (WBGs) by including all the human genes minus HRGs 

for comparison. As expected, no difference was observed for WBGs between prenatal and 

postnatal stages (P = 0.27, Supplementary Fig. 2).

We also compared the spatiotemporal expression pattern between the 65 non-nearest HRGs 

and the corresponding 65 nearest non-HRG genes. We found that non-nearest HRGs are 

highly expressed in prenatal stages too (P = 5.83 × 10−4, Fig. 3d) while there is no 

significant difference for nearest non-HRG genes (P = 0.53, Fig. 3d). Interestingly, in GTEx 

data, we observed that nearest non-HRG genes are highly expressed in a majority of brain 

tissues while non-nearest HRGs are not (Supplementary Fig. 3).

Involvement of HRGs in biological functions implicated in SCZ

We repeated the enrichment analysis of HRGs with the same 18 gene sets previously used. 

We observed dramatic improvement in the enrichments of SCZ-relevant gene sets compared 

to NRGs. Under criteria Pcorrected < 0.05, NRGs are enriched in 5 gene sets, while HRGs are 

enriched in 10 sets, the majority of which showed remarkably enhanced ORs (Table 1). 

Among the 10 significantly enriched gene sets, fragile X mental retardation protein (FMRP) 

targets, PSD, and genes related to the presynaptic active zone (PRAZ) have been extensively 

implicated in SCZ due to their in-depth involvement in synaptic networks. Calcium channel 

and signaling (CCS) is involved in multiple functions including synaptic plasticity 

modulation and has pleiotropic effects on psychiatric diseases5. Targets of miRNA miR-137 

have been discussed in detail for the potential etiologic mechanism of SCZ16. Note that 

some of the enriched gene sets have also been previously implicated in DNM or rare coding 

mutation analyses, such as FMRP targets11 and PSD17, confirming the convergence between 

non-coding variants and coding mutations at the gene set level.
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Table 2 lists some well-established SCZ genes involved in the SCZ primary functional 

categories derived from the aforementioned gene sets3,9,18–35. Specifically, CACNA1C and 

CACNB2, both encoding voltage-gated calcium channel subunits, are involved in CCS and 

contribute to risk for SCZ3. CACNA1C is differentially expressed in SCZ patients (P = 

0.03), and both CACNA1C and CACNB2 capture multiple Hi-C links in brain Hi-C data 

(Supplementary Fig. 4), contributing to the high PP of both genes in iRIGS. We also 

predicted two DNA binding proteins, SOX29 and SATB220,21 (Supplementary Fig. 4), which 

have important roles in neurogenesis and have been widely implicated in SCZ. Several of 

our predicted HRGs are miR-137 target genes, including the aforementioned CACNA1C, 

and three other genes, GRIN2A, TCF4 and ZNF804A. GRIN2A, a glutamate-gated ion 

channel protein and a key mediator of synaptic plasticity23,24, has a pdDNM and multiple 

regulatory connections (Supplementary Fig. 4). TCF4, encoding Transcription Factor 4, 

participates in the initiation of neuronal differentiation by regulating the intrinsic excitability 

of prefrontal cortical neurons29,30, and knockdown of TCF4 alters the expression of genes 

important for developing prefrontal neocortex29,31. TCF4 is also linked with numerous 

DREs (Supplementary Fig. 4) in iRIGS. The reduced expression of ZNF804A in human 

neurons, especially in fetal brain, has been widely observed and hypothesized to contribute 

to SCZ etiology by affecting neurite growth and loss of dendritic spine density32.

We emphasize that, in addition to these well-established SCZ genes, iRIGS also nominated 

novel or non-canonical genes, especially those genes that are distal to the index SNPs. One 

particular example is the rs2514218 locus, in which DRD2, the target of all effective 

antipsychotic drugs, is the nearest to the index SNP. At that locus, the top predicted gene is 

neural cell adhesion molecule 1 (NCAM1), which is distal to the index SNP, while the 

nearest DRD2 is ranked the 3rd among all 16 candidate genes. We took a closer look at this 

region to gain more insights. NCAM1 captures 55 Hi-C links in brain Hi-C data 

(Supplementary Fig. 5), while there is only one for DRD2. In addition, NCAM1 has 207 

capture Hi-C links, much higher than DRD2 (111 links). We also observed 4 links for 

NCAM1 but none for DRD2 in FANTOM5 data. We further explored the expression 

patterns of NCAM1 and DRD2. In GTEx data, DRD2 is highly expressed in basal ganglia 

caudate, hypothalamus, basal ganglia nucleus accumbens, basal ganglia putamen and 

substantia nigra, but the expression in cortex and frontal cortex is rather low (Supplementary 

Fig. 6). NCAM1 is uniformly and highly expressed in all brain tissues (Supplementary Fig. 

6). In BrainSpan data, NCAM1 shows constitutively high expression across all stages, and 

particularly higher expression at prenatal stages with a trajectory that peaks at the early-mid 

fetal stage, while DRD2 shows lower expression across all developmental stages and no 

obvious pattern of transition between prenatal and postnatal stages (Supplementary Fig. 7). 

The temporal and spatial expression pattern of NCAM1 is consistent with the current 

understanding of SCZ36, and all these lines of evidence highlight that NCAM1 is a 

promising SCZ risk gene in addition to DRD2. Note that GTEx and BrainSpan data were not 

used in iRIGS, and therefore the spatiotemporal analysis of gene expression provides 

independent and unbiased support.

Another example is PTK2B, which is distal to the index SNP rs73229090 (the nearest gene 

is CLU). PTK2B encodes a kinase involved in calcium-induced regulation of ion channels 

and plays an important role in regulating neuronal activity. More interestingly, PTK2B has 
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been consistently found to interact with DAO, a potential SCZ gene implicated from non-

GWAS signals18,19. One pdDNM and a high number of regulatory links were observed for 

PTK2B (Supplementary Fig. 8), promoting it as the top gene predicted by iRIGS. 

Collectively, these findings strongly indicate that PTK2B is a potential risk gene for SCZ.

We have manually checked the remaining genes extensively, and for most HRGs we found 

support to varying degrees for these genes to be involved in SCZ pathophysiology. We 

highlighted these genes with extended supporting evidence and description in 

Supplementary Table 1.

Enrichment of HRGs in gene sets leading to altered neuronal phenotypes in mouse 
models

As it is increasingly clear that SCZ reflects perturbation of neurodevelopmental 

processes9,36, we were interested in assessing direct phenotypic manifestations of gene 

knockout in mouse models to see whether mutants in mouse genes orthologous to HRGs 

exhibit phenotypes highly related to central nervous system (CNS)37. Specifically, we 

collected 278 gene sets relevant to CNS and behavior/neurological phenotypes from Mouse 

Genome Informatics (MGI) Mammalian Phenotype Ontology (MPO) database (Methods) 

and observed significant enrichment of HRGs in 33 gene sets after Bonferroni correction 

(Supplementary Table 4). The enriched sets span from low-level molecular functions to 

broad behavioral phenotypes and brain morphologies, including “abnormal nervous system 

physiology” (P = 3.96 × 10−7, OR = 6.25), “abnormal nervous system morphology” (P = 

1.04 × 10−6, OR = 5.23), “abnormal brain morphology” (P = 9.19 × 10−7, OR = 6.86), and 

“abnormal behavior” (P = 3.80 × 10−6, OR = 4.34).

In addition, we also observed that the 65 non-nearest HRGs are significantly enriched in 19 

MPO gene sets (Supplementary Table 5), while no significantly enriched gene sets were 

observed for the 65 nearest non-HRG genes (Supplementary Table 6), providing strong and 

orthogonal support for iRIGS identified risk genes that are beyond the proximity to the 

GWAS index SNPs.

HRGs are likely to be potential drug targets

We were interested in whether the predicted HRGs have the potential of repositioning 

existing drugs for SCZ treatment. We curated a list of 2263 confirmed druggable targets 

from multiple sources (Methods), and found that 28 (27%) HRGs are targets of 198 FDA-

approved, clinically investigational, or preclinical drugs (Supplementary Fig. 9 and 

Supplementary Table 7). The overlap is a significant enrichment compared to LBGs (P = 

3.83 × 10−7, OR = 3.93). We observed that the 65 non-nearest HRGs are significantly 

enriched in drug targets too (P = 6.30 × 10−5, OR = 3.78), while the degree of enrichment of 

65 nearest non-HRG genes decreases dramatically (P = 0.03, OR = 2.13). In particular, we 

found that 5 HRGs (GRIA1, GRM3, KCNQ5, CACNA1C, and GRIN2A) are targets of 

nervous system drugs (Supplementary Fig. 9), corresponding to a statistically significant 

enrichment (P = 0.01, OR = 3.78).

One HRG, GRM3, which encodes the protein mGlu3, is of particular interest as it belongs to 

the G protein-coupled receptor (GPCR) family; these receptors are the targets of the 
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majority of clinically used drugs38. While there has been support in the literature for linkage 

of GRM3 with SCZ25,39,40, there have also been contrasting reports41,42; the results 

presented here provide additional evidence to support the hypothesis that GRM3 is a SCZ 

risk gene. Additionally, polymorphisms in GRM3 have been shown to correlate with 

cognitive performance in healthy individuals43,44, and cognitive impairments are an area of 

unmet medical need in SCZ. This suggests that our results may place mGlu3 in a particularly 

attractive position for therapeutics development for SCZ.

In addition to genes like GRM3, which has been previously indicated to be genetically 

associated with SCZ, we would propose that novel genes in our list may represent new 

candidates for involvement or potential treatment of SCZ. For example, TMEFF1 and 

TMEFF2 are family members with differential expression in the brain that are comprised of 

transmembrane proteins which include an epidermal growth factor (EGF)-like domain along 

with two follistatin-like domains45–47. The extracellular domains of these proteins can be 

cleaved and released from the cell surface, potentially functioning as neurotrophic factors. It 

has been suggested that TMEFF2 may be trophic for dopamine neurons and the protein has 

been reported to increase dendrite length in these cells47,48. Cleavage of the extracellular 

domain of TMEFF2 is stimulated by cytokines that induce inflammation, such as 

interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α)49. The fact that this protein is 

expressed on the cell surface suggests that it may be a candidate for drug targeting, 

potentially providing a completely new therapeutic strategy for SCZ and other neurological 

disorders.

Discussion

SCZ is a severe psychiatric disorder that is notoriously difficult to treat, particularly due to 

the poor understanding of disease etiology. Identifying risk genes at the associated loci, in 

our vision, is a crucial step to bridge GWAS findings and the biology of SCZ for novel 

therapeutics development. A direct benefit is drug-repositioning, as risk genes shared across 

different diseases provide a natural lever to repurpose drugs approved for other diseases for 

SCZ treatment. To bridge this gap, we developed an integrative framework, iRIGS, to 

pinpoint risk genes from a massive pool of candidates around SCZ associated loci, by jointly 

modeling high-dimensional genomic features across all GWAS loci for enhanced accuracy. 

As a result, we provided a gene-centric view of the genetic etiology of SCZ with strong 

support from multiple lines of evidence. Moreover, as a proof-of-concept, the predicted risk 

genes are strongly enriched in existing drug targets, demonstrating the promise of the 

identified risk genes for drug-repositioning for SCZ.

Our framework has a few key strengths that are worth further in-depth discussion. iRIGS 

jointly integrates genomic features of a set of risk genes rather than individual genes such 

that the weak evidence for individual risk genes is amplified by joining forces with other 

ones, boosting the inference accuracy. A challenge for joint modeling across GWAS loci is 

the correlation among risk genes. In iRIGS, instead of explicitly specifying correlations 

among all genes, which is impractical, the correlation is derived from gene network. The 

derived correlation can be viewed as a prior in a Bayesian framework for the gene-gene 

covariance matrix (Methods). In the algorithm implementation, we designed a Gibbs 
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sampling strategy to achieve two goals: making an astronomically challenging 

computational problem feasible as well as providing a probabilistic assessment of the 

selected risk genes, both of which are critical. By adopting a Gibbs sampling algorithm, we 

transformed the high-dimensional joint modeling into a much simpler one-dimensional 

problem, not only solving the computational challenge but also providing a set of risk genes 

with probabilistic interpretations. It is of note that although the algorithm samples one gene 

from each of the loci at each iteration, when zero or more than one risk gene exist at a locus 

the framework is still able to rank the genes by PPs without awareness of the exact number 

of risk genes at each locus. For loci that do not harbor risk genes for whatever reasons, this 

does not pose much challenge to the robustness of the algorithm either, and the sampling is 

distributed evenly to the candidate genes such that none of them have pronounced PPs. 

Considering that it is almost impossible to specify a prior number of risk genes at each locus 

(being either zero or larger than one), which is also very likely to vary widely across loci, the 

current implementation is robust even in the presence of these challenges.

Our framework is designed to take advantages of the high-dimensional genomics data, and 

the more relevant genomic features are included the more accurate the prediction is. The 

PsychENCODE project50, for example, is actively generating various epigenomics data for 

psychiatric disorders, and the accuracy of risk gene prediction for SCZ will be markedly 

enhanced when these data are incorporated into our framework. In addition, since the 

genomic features of genes at individual loci are jointly modeled across all loci, the accuracy 

of the prediction will also be remarkably improved as more loci are identified, e.g., by meta-

analyses of international consortia such as PGC. Moreover, the investigated genomic loci 

can also be expanded by including the sub-GWAS variants whose p-values are less than a 

relatively loose threshold compared with the GWAS threshold. It is our expectation that with 

the expansion of both genomics data and discovered GWAS loci the identification of risk 

genes will be greatly improved, advancing our understanding of the biology of SCZ for the 

ultimate goal of guiding effective therapeutics development. Note that the framework is 

equally applicable to other complex diseases, and especially suitable for the diseases with 

large volumes of omics data, such as transcriptomics, functional genomics, epigenomics, 

and others. For example, data from single cell sequencing from various immune cell types 

can be used for autoimmune diseases. It is our hope that this framework is able to catalyze 

translation of GWAS to biology and therapeutics for a variety of complex diseases.

Methods

Model description of iRIGS

We collected genes in the 2Mb region centered at a GWAS index SNP as the candidates for 

that particular locus. Let L be the number of GWAS loci, and we denote a vector of genes 

with length L, each being from one of the L GWAS loci, as (X1, …, XL), and term it a 

candidate risk gene set (CRGS). We denote the corresponding genomic features for this 

CRGS as (D1, …, DL), in which Dl is a vector of genomic features collected for gene Xl, and 

let D be the genomic data for all candidates across all GWAS loci. We use N to denote the 

gene-gene network. Now the goal is to calculate P(X1, …, XL|D,N), and select a CRGS with 

maximum posterior probability, conditional on the genomic features collectively on all genes 
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in the L loci, as well as the network topology. Assuming that genomics data of a gene 

depend only on the underlying gene, we have

P(X1, …, Xl |D, N) ∝ P(D | X1, …, Xl)P(X1, …, XL | N) = ∏l = 1
L P(Dl | Xl)P(X1, …, XL | N)

The first term represents the evidence embedded in genomics data, and the second term 

encodes the complex correlation of risk genes in network. Since it is impossible to explicitly 

specify the correlation among the genes, we derived the complex correlation from the 

network implicitly with the rationale that, the functional convergence of risk genes, reflected 

in the perspective of networks, is that disease genes are more densely connected, and 

therefore are more highly correlated. Specifically, we approximate it with one-dimensional 

conditional likelihoods, that is P(X1, …, XL | N) ≈ ∏l = 1
L P(Xl | X−l, N), where X-l is a vector of 

genes with the l-th gene removed. We can see that the joint posterior probability can be 

approximated by one-dimensional pseudo-likelihoods:

P(X1, …, Xl D, N) ∝ ∏l = 1
L P(Xl X−l, D, N) = ∏l = 1

L P(Dl Xl)P(Xl X−l, N)

Now the calculation is decomposed into a one-dimensional problem, evaluating one GWAS 

locus at a time. For each of the genes in locus l, the evidence comes from two sources: the 

support from the genomics data, i.e., P(Dl | Xl), and the support from risk genes in other loci 

through networks, i.e., P(Xl | X−l, N). Suppose all of the X-l genes are risk genes, then based 

on network topology a gene at locus l that is closer to X-l is more likely to be the risk gene 

compared to other candidates at the same locus. We do not know, however, which genes in 

other loci are risk genes, and therefore are not able to pre-specify risk genes X-l. 

Conceptually, we employed a Gibbs sampling strategy to first sample a candidate risk gene 

from a given locus l based on the one-dimensional posterior, and then repeat the sampling 

across the remaining loci. We iterated the sampling process until posterior distribution 

converges. Specially, in each round of Gibbs sampling, we calculated the sampling 

frequency for each candidate gene. The frequency was compared with last round, and if the 

sum of squares of frequency differences across all selected genes was smaller than a 

predefined threshold (1 × 10−4 was used in this study), the sampling procedure stopped. 

Based on the sampling we are able to assess the confidence of candidates being risk genes. 

Theoretically, we cast iRIGS as a Bayesian model selection problem, with each candidate in 

a locus being a risk gene as a model. We also defined a null (background) model X0 to 

represent that the candidate is a non-risk gene. The Bayesian model selection method 

calculates posterior odds of Xl over X0, i.e., 
P(Xl | X−l, D, N)
P(X0 | X−l, D, N) =

P(Dl | Xl)
P(D0 | X0)

P(Xl | X−l, N)
P(X0 | X−l, N) , where 

P(Dl | Xl)
P(D0 | X0)  is a Bayesian Factor (BF) derived from multi-omics data and 

P(Xl | X−l, N)
P(X0 | X−l, N)  is a prior 

odds derived from the network. The prior odds reflects the network evidence supporting Xl 

with the rationale that the prior odds is high when Xl is closer to X-l in network comparing 

to X0. The distance of Xl or X0 to X-l in the network is calculated using the random walk 

with restart (RWR) algorithm (Supplemental Note). We collected 7 genomic features to 
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compute the BF, including de novo mutation (DNM), differential expression (DE), distance 

to the index SNP (DTS), and 4 sets of regulatory connections determined by distal 

regulatory elements (DRE)-promoter links from Hi-C, capture Hi-C, and FANTOM5 data. 

We employed the Mahalanobis transformation51 to de-correlate the integrated multi-

dimensional data so that any supportive genomic features can be properly incorporated 

(Supplementary Note). In implementation, we assumed that the posterior probability of null 

model P(X0 | X−l, D, N) is invariant for all candidate genes and thus only calculated 

P(Xl | X−l, D, N). The application of iRIGS to 108 SCZ loci with 7 different genomic features 

took ~2 hours on an Intel Xeon E5 CPU with 2.40 GHz.

Gene set enrichment analysis

We collected gene sets with strong evidence of involvement in SCZ for gene set enrichment 

analysis (Table 1) from various sources. These gene sets include the fragile X mental 

retardation protein (FMRP) targets extracted from two previous studies52,53; Postsynaptic 

density (PSD) genes17,54; genes related to presynaptic proteins (PRP), presynaptic active 

zone (PRAZ), and synaptic vesicles (SYV)55; the GABAA receptor complex37; calcium 

channel and signaling (CCS) genes56; targets of microRNA miR-13716. In addition to the 

primary SCZ functional categories, we also collected a few autism spectrum disorder (ASD) 

gene sets for enrichment analysis due to the pathophysiology shared between psychiatric 

disorders, including genes from database AutDB57, evolutionarily constrained genes 

(ECG)58, essential genes59, genes from transmission and de novo association test (TADA)60, 

and targets of RBFOX1 (RNA Binding Protein, Fox-1 Homolog 1), a brain- and muscle-

specific splicing factor61.

We also compiled gene sets relevant to central nervous system (CNS) phenotypes in mouse 

models37. We leveraged the phenotypic terms in Mammalian Phenotype Ontology (MPO), a 

well-constructed vocabulary that unambiguously describes phenotypic observations62, and 

gene-phenotype relationships in Mouse Genome Informatics (MGI)63, to extract CNS gene 

sets. First, we identified 2066 descendant terms of the two relevant terms of the highest 

level: nervous system phenotype and behavior/neurological phenotype. We next downloaded 

all gene mutants of the mouse and their MPO annotations from MGI. Since the MPO was 

constructed in a hierarchical structure, we assigned genes annotated to a specific term to all 

its ancestry terms. We then mapped the mouse genes to human genes using Human and 

Mouse Homology Classes generated in MGI. We only kept the homology classes which 

contain unambiguously orthology relationships, i.e. the classes consist of only a single 

mouse-human gene homolog pair. At last, we obtained 278 terms that each contains at least 

50 human genes.

DNM enrichment analysis

We collected the SCZ DNM data from multiple previous studies11,36,64,65, in which exome 

sequencing was performed on parent-proband trios, and in some cases, with an unaffected 

sibling. In total, the sequenced cohort consisted of 973 trios and 84 unaffected siblings. We 

annotated the DNMs by ANNOVAR12 and extracted two classes of DNMs: i) loss of 

function (LoF) mutations including nonsense, splicing, and frame shift, and ii) missense 
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(Mis) mutations. Twelve bioinformatics tools were utilized to determine the deleteriousness 

of LoF and Mis DNMs in ANNOVAR, and we assigned a deleterious score (DScore) for 

each Mis mutation, defined as the number of deleteriousness predictions out of 12 prediction 

algorithms from ANNOVAR. We focused only on the predicted deleterious DNMs 

(pdDNMs) defined as LoF and Mis DNMs with a DScore > 3. Accordingly, the control set 

we used includes pdDNMs identified in all the control samples collected by denovo-db.

Gene expression analysis

For DE analysis we downloaded the data from CommondMind Consortium (https://

www.synapse.org/#!Synapse:syn5609493)13, in which RNA sequencing was performed on 

post-mortem dorsolateral prefrontal cortex (DLPFC) region for 258 subjects with SCZ and 

279 controls, and employed the Wilcoxon rank-sum test to see whether the iRIGS predicted 

risk genes carry lower p-values compared to background.

For tissue-specificity investigation, we used gene expression data from the Genotype-Tissue 

Expression (GTEx) release V666. We downloaded gene RPKM (reads per kilobase of 

transcript per million mapped reads) dataset from GTEx portal (https://www.gtexportal.org/

home/datasets), covering ~50 tissues. We adopted the Jensen-Shannon divergence67 to 

measure the tissue-specificity of each gene in each tissue (Supplementary Note).

For brain developmental stage-specificity investigation, we downloaded the RNA 

sequencing data of the developing human brains from BrainSpan15, and calculated the 

average expression of HRGs in all brain regions at each of the developmental stages (http://

help.brain-map.org/display/devhumanbrain/Documentation). We used the log2(RPKM) as 

the expression level of genes.

DRE-promoter link collection

We collected DRE-promoter links from multiple sources. One recent study9 inferred 

chromosome contact by constructing Hi-C libraries for two major regions, cortical and 

subcortical plate (CP) and germinal zone (GZ), of human cerebral cortex. The predicted 

DRE-promoter links listed in [table 22 and 23] were downloaded and in total we obtained 

221,069 and 228,323 links for CP and GZ, respectively. We also collected the DRE-

promoter links inferred from two more studies. One is the capture Hi-C study of cell line 

GM1287810. We obtained 1,618,000 DRE-promoter links predicted for GM12878 from 

http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2323/. The other dataset we used 

is from FANTOM5 project8 in which the cap analysis of gene expression (CAGE) 

technology was employed to infer the enhancer-promoter links across multiple human 

tissues. We downloaded the FANTOM5 data from http://enhancer.binf.ku.dk/presets/ and 

obtained 66,899 enhancer-promoter links.

Construction of drug-target network

We collected drug information from the DrugBank database (version 4.3)68 and Therapeutic 

Target Database (accessed on December, 2016)69. All chemical structures from these 

databases were prepared by the Open Babel toolkit (version 2.3.2)70. We assembled 

bioactivity data for drug-protein interactions collected from three publicly available 
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databases, including ChEMBL (version 21)71, BindingDB (data accessed on December, 

2016)72, IUPHAR/BPS Guide to PHARMACOLOGY (data accessed on December, 

2016)73. To improve the data quality, we only pooled the biophysical drug-protein 

interactions with the numeric bioactivity value using 4 criteria: (i) Ki, Kd, IC50 or EC50 ≤ 10 

μM; (ii) the target protein can be represented by a unique UniProt accession number; (iii) the 

target protein was marked as “reviewed” in the UniProt database74; and (iv) the target 

protein is from Homo sapiens. A fixed length (25 hash characters) generated from chemical 

SMILES by OpenBabel70 was used to encode each drug. All duplicated drugs were removed 

according to their 25 hash characters. Drugs were grouped using anatomical therapeutic 

chemical (ATC) classification system codes collected from DrugBank68. We defined 

antineoplastic drugs based on the first-class of ATC code, such as [N] for “nervous system” 

drugs.

Statistical analyses

For gene set enrichment, DNM enrichment, and drug target enrichment analysis, we adopted 

the one-sided Fisher’s exact test. For PP comparison, spatiotemporal expression analyses, 

and DRE-promoter link comparisons, we adopted the one-sided Wilcoxon rank sum test.

Reporting Summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Data availability

All the data used in this study are from public resources that were specified in Methods and 

Supplementary Note.

Code availability

The source code and the companying genomics datasets used in this study are available at 

https://www.vumc.org/cgg.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A schematic illustration of the iRIGS framework.
Each circle represents a candidate gene, and candidate genes from a GWAS locus are 

arranged horizontally. Candidate genes from different GWAS loci are piled up vertically. In 

the middle of the figure the L-1 loci have already been sampled, and for the L-th locus the 

colors of the genes represent the strength of the support from genomic features as well as the 

closeness to the L-1 sampled risk genes in the network space. After the sampling converges, 

the candidate gene with the highest PP at each locus is denoted as the inferred risk gene.
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Figure 2. Discovery of genomic features characteristic of SCZ risk genes.
Panel a) shows that network-derived risk genes (NRGs) are more likely to be differentially 

expressed (DE) compared to local background genes (LBGs). We directly used the P values 

of DE from the CommondMind Consortium to perform the comparison (one-sided 

Wilcoxon rank sum test, n = 99 and 562 for NRGs and LBGs respectively). Panel b) shows 

that NRGs capture more distal regulatory element (DRE)-promoter links based on the data 

from capture Hi-C, FANTOM5, and brain specific Hi-C (one-sided Wilcoxon rank sum test; 

for capture Hi-C and FANTOM5, n = 104 and 842 for NRGs and LBGs respectively; for 

brain specific Hi-C, n = 104 and 831 for NRGs and LBGs respectively). See main text and 

Supplementary Note for details. The box plots show median and the 25th and 75th 

percentiles. The whiskers extend from the box to the largest and smallest values no further 

than 1.5 * IQR from the box (where IQR is the inter-quartile range, or distance between the 

25th and 75th percentiles).
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Figure 3. Characteristics of predicted risk genes.
a) The distributions of the PPs of high-confidence risk genes (HRGs) and network-derived 

risk genes (NRGs) showed that HRGs carry significantly higher sampling posterior 

probabilities (PPs) than NRGs (one-sided Wilcoxon rank sum test, n = 107 for both HRGs 

and NRGs). The x-axis represents the ratio of maximum and median of PPs of candidate 

genes for each GWAS loci. b) Stratified LDSC to evaluate the enrichment of SCZ 

heritability explained by different groups of genes. The center values represent the 

enrichment and the error bars indicate the standard errors. c) The tissue-specificity of HRGs 
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across tissues in GTEx showed that HRGs are highly expressed in brain-related tissues (one-

sided Wilcoxon rank sum test and Bonferroni correction, n = 104 and 830 for NRGs and 

LBGs respectively). d) The expression of HRGs, the 65 non-nearest HRGs, the 

corresponding 65 nearest non-HRG genes and LBGs across developmental stages based on 

the BrainSpan data showed that HRGs and non-nearest HRGs are highly expressed at 

prenatal stages compared to postnatal stages, while the 65 corresponding nearest non-HRG 

genes and LBGs are not differentially expressed across developmental stages (one-sided 

Wilcoxon rank sum test using medians of expression at prenatal (n = 3) and postnatal (n = 4) 

stages). It also showed that HRGs have higher expression in brains than LBGs, consistent 

with the observation in c) that were based on GTEx data. The error bar plot shows the 

median and the 25th and 75th percentiles.
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Table 1.

Enrichment of network-derived risk genes (NRGs) and high-confidence risk genes (HRGs) in gene sets 

implicated in SCZ.

Gene set
a NRG vs LBG HRG vs WBG HRG vs LBG

Pcorrected OR Pcorrected OR Pcorrected OR

AutDB (781) 1.23×10−8 10.75 (18) 2.87×10−14 9.04 (27) 4.20×10−16 18.22

ECG (998) 1.60×10−4 4.63 (17) 3.21×10−16 8.85 (32) 9.69×10−15 10.65

Essential genes (3910) 4.19×10−11 4.91 (48) 9.23×10−8 3.35 (46) 3.00×10−9 4.25

FMRP-Darnell (832) 1 1.85 (9) 3.28×10−9 6.42 (22) 5.95×10−8 6.86

RBFOX1 (556) 0.11 3.60 (8) 4.98×10−4 4.71 (12) 2.36×10−5 9.10

miR-137 targets (281) 4.24×10−5 9.79 (11) 3.29 ×10−5 7.82 (10) 5.69×10−5 11.18

PSD (1444) 4.03×10−5 4.52 (20) 2.21×10−3 2.94 (19) 8.74×10−5 4.42

FMRP-Ascano (939) 0.41 2.38 (10) 1.55×10−3 3.51 (15) 4.30×10−3 3.61

CCS (73) 1 2.03 (1) 6.57×10−4 14.94 (5) 4.38×10−3 21.34

PRAZ (209) 1 2.04 (2) 1.82×10−3 7.14 (7) 4.78×10−3 8.69

mGluR5 (37) 1 0 (0) 0.02 17.60 (3) 0.08 25.13

PRP (336) 1 2.76 (4) 0.52 3.03 (5) 1 2.48

TADA (179) 1 4.10 (2) 1 2.22 (2) 1 3.32

ARC (25) 1 Inf (1) 1 8.16 (1) 1 Inf

PSD-95 (107) 1 8.20 (2) 1 3.75 (2) 1 8.31

NMDAR (59) 0.60 16.39 (2) 1 3.37 (1) 1 8.24

SYV(107) 1 2.73 (2) 1 1.84 (1) 1 2.06

GABAA (18) 1 0 (0) 1 0 (0) 1 0

a
In brackets are the numbers of genes in the corresponding gene sets. One-sided Fisher’s exact test and Bonferroni correction were used for 

enrichment analyses. Please refer to Methods for details of gene set abbreviations. Abbreviations: AutDB (autism genes from database AutDB), 
ECG (evolutionarily constrained genes), FMRP-Darnell (the fragile X mental retardation protein targets from), PSD (postsynaptic density genes), 
FMRP-Ascano (the fragile X mental retardation protein targets from), RBFOX1 (targets of RNA Binding Protein, Fox-1 Homolog 1), miR-137 
targets (microRNA 137 targets), PRAZ (genes related to presynaptic active zone), CCS (calcium channel and signaling genes), mGluR5 
(metabotropic glutamate receptor 5 complex), PRP (genes related to presynaptic proteins), ARC (neuronal activity-regulated cytoskeleton-
associated proteins), PSD-95 (postsynaptic density protein 95 complex), TADA (genes from transmission and de novo association tests), NMDAR 
(N-methyl-D-aspartate receptor network genes), SYV (genes related to synaptic vesicles), GABAA (neurotransmitter gamma-aminobutyric acid 

receptors), NRG (network-derived risk gene), HRG (high-confident risk gene), LBG (local background gene), WBG (whole-genome background 
gene), OR (odds ratio).
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Table 2.

Selected high-confidence risk genes (HRGs) involved in biological functions implicated in SCZ.

Gene Descriptions Nearest
c Reference

Calcium channel and signaling

CACNA1Ca Encodes an alpha-1 subunit of a voltage-dependent calcium channel and a target of miR-137 Yes 3

CACNB2a A member of the voltage-gated calcium channel superfamily No 3

PTK2Bb Involved in calcium-induced regulation of ion channels; interacts with DAO, a potential SCZ gene 
implicated from non-GWAS signal

No 18, 19

Neurogenesis

SOX2a An transcriptional factor essential for neurogenesis Yes 9

SATB2a Essential for cognitive development and is involved in long-term plasticity processes Yes 20, 21

Glutamatergic neurotransmission and synaptic plasticity

GRIA1a An ionotropic glutamate receptor that mediates fast synaptic transmission No 22

GRIN2Aa A glutamate-gated ion channel protein and a key mediator of synaptic plasticity; also a target of 
miR-137

Yes 23, 24

GRM3a Encodes glutamate metabotropic receptor 3, one of the major excitatory neurotransmitters in central 
nervous system (CNS); has been extensively explored as a potential drug target in SCZ

Yes 25

GPM6Ab Involved in neuronal plasticity and probably synapse formation; has been previously shown 
associating with the severity of depression in SCZ patients

Yes 26

NLGN4Xb Involved in the formation and remodeling of CNS synapses; knockdown of it directly impacts 
neurodevelopment process indicating a role in the molecular pathophysiology of psychiatric 
diseases, including ASD and SCZ

Yes 27, 28

Targets of miR-137

TCF4a Encodes transcription factor 4 and involved in the initiation of neuronal differentiation Yes 29–31

ZNF804Aa A zinc finger binding protein implicated in SCZ previously Yes 32

RORAb Encodes a ligand-dependent transcriptional regulator; a potential ASD gene Yes 33, 34

CSMD1b A target of miR-137 and a potential SCZ gene Yes 35

a
Well-established SCZ genes.

b
Pontential SCZ genes of great interest predicted by iRIGS.

c
Nearest to the index SNPs or not.
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