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Germline mutations in cellular-energy associated genes have been shown to lead to
various monogenic disorders. Notably, mitochondrial disorders often impact skeletal
muscle, brain, liver, heart, and kidneys, which are the body’s top energy-consuming
organs. However, energy-related dysfunctions have not been widely seen as causes
of common diseases, although evidence points to such a link for certain disorders.
During acute energy consumption, like extreme exercise, cells increase the favorability
of the adenylate kinase reaction 2-ADP -> ATP+AMP by AMP deaminase degrading
AMP to IMP, which further degrades to inosine and then to purines hypoxanthine
-> xanthine -> urate. Thus, increased blood urate levels may act as a barometer
of extreme energy consumption. AMP deaminase deficient subjects experience some
negative effects like decreased muscle power output, but also positive effects such
as decreased diabetes and improved prognosis for chronic heart failure patients. That
may reflect decreased energy consumption from maintaining the pool of IMP for
salvage to AMP and then ATP, since de novo IMP synthesis requires burning seven
ATPs. Similarly, beneficial effects have been seen in heart, skeletal muscle, or brain
after treatment with allopurinol or febuxostat to inhibit xanthine oxidoreductase, which
catalyzes hypoxanthine -> xanthine and xanthine -> urate reactions. Some disorders
of those organs may reflect dysfunction in energy-consumption/production, and the
observed beneficial effects related to reinforcement of ATP re-synthesis due to increased
hypoxanthine levels in the blood and tissues. Recent clinical studies indicated that
treatment with xanthine oxidoreductase inhibitors plus inosine had the strongest impact
for increasing the pool of salvageable purines and leading to increased ATP levels in
humans, thereby suggesting that this combination is more beneficial than a xanthine
oxidoreductase inhibitor alone to treat disorders with ATP deficiency.

Keywords: adenosine triphosphate, cellular energetics, hypoxanthine (PubChem COD: 790), inosine (PubChem
CID: 6021), purines, xanthine oxidoreductase inhibitors, cardiovascular diseases, CNS diseases

INTRODUCTION

In society and industry, three categories are important: things, information, and energy. Similarly,
those three should also be important in biology at the cellular level. Since many diseases are
caused by cellular shortages of chemicals (things) and DNA (information), there should also
be diseases caused by a shortage of cellular ATP (energy). Based on the June 2018 Integrated
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Mitochondrial Protein Index from MitoMiner (Smith and
Robinson, 2016), over 1,600 proteins coded by chromosomal
genes are known to be associated with mitochondria. Since
humans have about 20,000 genes (Harrow et al., 2012), that means
that about 8% of all genes are associated with mitochondria and
with energy. It is of interest that at a societal scale, about 8% of
world-wide economic activity is also energy-related (Institute for
Energy Research [IER], 2010).

Mitochondria and the glycolytic pathway are responsible
for cellular energy production, and germline mutations in the
genes associated with them have been shown to lead to various
monogenic disorders. Of note, mitochondrial disorders often
result in dysfunctions or symptoms involving one or more of
the top energy consuming organs (Wallace, 1999), which are
skeletal muscle, brain, liver, heart, and kidneys (349.7, 316.8,
278, 136.4, and 129 kcal/day, respectively) (Wang et al., 2010).
Especially, heart, skeletal muscle, and the brain are often observed
as targets of mitochondrial disorders, but dysfunction has also
been observed in the other high-energy utilizing organs such
as the liver (Lee and Sokol, 2007) and kidneys (Rahman and
Hall, 2013; Che et al., 2014; Emma et al., 2016; Emma and
Salviati, 2017). Additionally, mutations in genes related to
mitochondrial function sometimes lead to pathology in other
small organs/tissues that utilize large amounts of energy relative
to their size or weight such as inner-ear hair cells (Hinson et al.,
2007; Tiede et al., 2009; Yan et al., 2017) or structures of the eye
such as retina, optic nerves, and extraocular muscles (Barot et al.,
2011; Schrier and Falk, 2011).

Although rare genetic diseases such as mitochondrial diseases
are known to be associated with energy, for common diseases,
energy shortage has not been studied as extensively as other
potential causes. For example, titles/abstracts in PubMed
that mentioned etiology/causes and Alzheimer’s disease (AD;
n = 6318), Parkinson’s disease (PD; n = 4602), heart disease
(heart or cardiac disease/failure, heart; n = 20643), or diabetes
(n = 22698) only included energy related terms (cellular
energy, energetics, bioenergetics, energy and mitochondria,
mitochondrial function, mitochondrial dysfunction) for a small
percentage of papers (AD = 3.7%, PD = 7.9%, heart = 0.6%,
diabetes = 1.3%). Notably, for years, amyloid, tau, and alpha-
synuclein hypotheses have dominated AD and PD research
(Zhang et al., 1989; Stefanis, 2012; Ozansoy and Başak, 2013),
but recently, researchers have suggested that mitochondrial or
bioenergetic dysfunction may be related to etiology of AD or
PD (Winklhofer and Haass, 2010; Wellstead and Cloutier, 2011;
Desler et al., 2017; Onyango et al., 2017; Swerdlow et al., 2017).

CELLULAR ENERGY-CHARGE AND ATP
TURNOVER

Adenosine triphosphate (ATP) is known as the “energy currency”
of the cell, and central to use of that currency is the
system’s ability to generate and maintain levels of what is
known as the “energy charge,” the ratio of the concentrations
[ATP+0.5∗ADP]/[ATP+ADP+AMP] (Chapman and Atkinson,
1973). Although mitochondrial and glycolytic pathways are used

to produce energy from molecules such as sugars, proteins,
and fatty acids, instantaneous energy needs are satisfied first
through the phosphocreatine (PCr) shuttle (Guimarães-Ferreira,
2014) and then through the combined efforts of AMP deaminase
(AMPD), AMP-activated protein kinase (AMPK), and adenylate
kinase (AK) (Panayiotou et al., 2014). AMPK acts as a form of
energy charge sensor (Hardie et al., 2016), which regulates AMPD
activity, while AMPD deaminates AMP to IMP to maintain
higher values of the energy charge (Lanaspa et al., 2012; Plaideau
et al., 2014; Lanaspa et al., 2015) and favor the forward AK
reaction that produces ATP and AMP from two ADP molecules
(Figure 1; Saks et al., 2014). IMP may then be degraded to
inosine via 5′-nucleotidase and then to hypoxanthine (Hx) by
purine nucleotide phosphorylase (PNP) and potentially further
degraded to xanthine (X) and uric acid (UA) through xanthine
oxidoreductase (XOR) (Figure 1; Maiuolo et al., 2016). Thus,
such purine molecules form the scaffold of the key molecule for
storing cellular energy.

Considering Differences Between
Humans and Animal Models
When comparing and interpreting results from studies based on
animal-models versus those from human subjects, researchers
should consider both differences in metabolic rates and
biochemical pathways that exist between species. While safety is
of paramount importance, not accounting for such differences
may also potentially lead one not to consider developing a drug
based on phenomena observed in animal models that do not
apply to humans.

One notable difference relates to Kleiber’s Law, which states
that an organism’s resting energy expenditure (REE) relates to
its mass (M) as REE∝M3/4 (Kleiber, 1932; Brody, 1945). Thus,
REE per-unit-mass (REE/M) for small animals is much greater
than that of large animals; REE/M is about eight times greater
in mice (196 kcal/kg per day) than in humans (24.8 kcal/kg per
day) (Wang et al., 2012). Commensurate with a smaller animal’s
need to generate energy and therefore resynthesize ATP at a
much faster rate, other studies found that excretion of purine
degradation products was about seven-times higher in dogs and
40-times higher in rats than in humans (Hitchings, 1966).

Another notable difference in purine metabolism relates to
the different end-products of purine degradation. Guanosine
and adenosine nucleotide degradation pathways converge on X,
which is then degraded in most mammals to slightly soluble
UA by XOR and readily soluble allantoin by urate oxidase
(UOX) (Johnson et al., 2009). However, a string of UOX genetic
mutations in the ape-lineage finally led to its pseudogenization
in humans (Kratzer et al., 2014), meaning that the terminal
end-product of purine degradation is different in humans (UA)
and typical animal models (allantoin). At least partly due to
their increased metabolic rate, UOX knockout in mice results
in extreme hyperuricemia and is highly lethal (Wu et al.,
1994), while it is generally benign in humans (who are all
UOX knockouts). In real-world terms, this is an example of
the importance of considering human/animal-model differences,
because drugs used to treat hyperuricemia such as allopurinol
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FIGURE 1 | Pathway related to ATP synthesis and degradation. Adapted from Kamatani et al. (2017) with permission of the journal.

and febuxostat resulted in renal calculi formation in mice and
rats but were not expected to cause such problems in humans
(Horiuchi et al., 1999).

Taken together, these observations and results suggest
that both similarities and differences between biochemical
and metabolic pathways need to be considered when using
animal models to extrapolate about biologic and clinical
phenomena in humans.

Xanthine Oxidoreductase (XOR): A Key
Enzyme in Purine Salvage
Xanthine oxidoreductase is a homodimeric metallo-flavoprotein
that has in its N-terminal region two iron-sulfur redox centers, at
its C-terminal domain a catalytic center with the molybdenum
cofactor molybdopterin (Moco), and the intervening region a
flavin-adenine dinucleotide (FAD) binding domain (Battelli et al.,
2014). Research almost 100 years ago measured XOR activity in
cow milk, and showed in various rat tissues that it had highest
activity in liver and spleen, intermediate activity in kidney and
lungs, and little to no activity in muscle (Morgan et al., 1922;
Massey and Harris, 1997).

Localization of XOR in Human Tissues, Cell-Types,
and Blood
Several lines of evidence can be used to understand the
presence/absence of XOR in various human tissues and

cell types. First, we examined results from several human
immunohistochemistry (IHC) studies that investigated XOR
protein localization using anti-XOR antibodies (Abs) (Hellsten-
Westing, 1993; Moriwaki et al., 1996; Linder et al., 1999, 2005;
Martin et al., 2004). Second, we analyzed gene expression data
for XDH from the GTEx Portal browser1 (Supplementary Table
S1; n = 53; GTEx Consortium, 2017) and the FANTOM5
human Phase 1and 2 promoterome2 (Supplementary Table S2;
n = 1829; Hon et al., 2017; Lizio et al., 2015, 2017), and
for comparison with a commonly analyzed model species, for
mouse Xdh data from the Comprehensive Mouse Transcriptomic
BodyMap3 (Supplementary Table S3; n = 17; Li et al., 2017)
and the FANTOM5 mouse promoterome4 (Supplementary
Table S4; n = 1195; Abugessaisa et al., 2017; Noguchi et al.,
2017). Examination of the human and mouse FANTOM5
datasets, which assayed large numbers of tissues and cell-
types, suggested that expression within a species can vary by

1Downloaded on 9/25/2018 from: https://gtexportal.org/home/gene/XDH
2Downloaded on 1/7/2019 from the track “FANTOM5 CAGE phase 1and2 human
tracks pooled filtered with 3 or more tags per library and rle normalized” for
the human XDH promoter region from: http://fantom.gsc.riken.jp/zenbu/gLyphs/
#config=ZCsN4JmAA9wiyJYsBEdfeC;loc=hg19::chr2:31637532..31637635+
3Li et al. (2017) Supplementary Table S6.
4Downloaded on 1/7/2019 from the track “FANTOM5 CAGE Phase 1 and 2 mouse
tracks pooled filtered with 3 or more tags per library and rule normalized” for
the mouse Xdh promoter region from: http://fantom.gsc.riken.jp/zenbu/gLyphs/
#config=DmO_zYuHPxvu83HbOzew1C;loc=mm9::chr17:74299467..74299576+
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FIGURE 2 | Expression of XDH in various human tissues.(A) Distribution of log10 (TPM) of XDH RNA-seq expression levels in 53 human tissues; produced 9/25/2018
on the GTEx Portal5. (B) Relative XDH protein expression levels in human tissues and cell-lines; produced 10/11/2018 on the Human Proteome Map web-site6.

tissue sub-location and also across cell-types within a tissue.
Finally, data from the Human Proteome Map provides additional
evidence for XOR protein in various tissues (Kim et al., 2014).
Human tissue expression levels from GTEx Portal RNA-seq
data (Figure 2A) closely mirrored those observed in protein
expression data from the Human Proteome Map (Figure 2B;
Kim et al., 2014).

Among multi-tissue IHC analyses, Linder et al. (1999)
found the highest XOR staining in liver periportal hepatocytes
and Kupffer cells, various proximal intestine enterocytes and
goblet cells, and lactating mammary gland ductal epithelium.
FANTOM5 data agreed with those findings, with liver, small-
intestine/intestine, and mammary gland tissues or cell-types
among high expressing samples in both human and mouse
adult datasets. While small-intestine was top ranked in
human FANTOM5, in the mouse, intestinal mucosa had
six times the relative expression levels compared to whole
adult intestine, suggesting that expression is greater in
certain intestinal cell subsets. Moriwaki et al. (1996) found
moderate to high levels of XOR in epithelium from various
tissues including small and large intestine, trachea, bile duct,

5 https://gtexportal.org/home/gene/XDH
6 http://www.humanproteomemap.org

esophagus, tongue, breast mammary tissue, and lung bronchi.
In human FANTOM5, 41% of human epithelial samples (30/73)
expressed XDH, including a majority of bronchial (4/7) and all
small-airway (3/3) epithelial samples.

Both Moriwaki et al. (1996) and Linder et al. (1999) found that
brain tissues were negative for XOR expression. In agreement,
FANTOM5 human data showed no XDH expression in human
brain samples (brain, adult samples: 0/2; Astrocyte-cerebellum:
0/3; Astrocyte-cerebral cortex: 0/3; cerebellum, adult 0/3; cerebral
meninges: 0/1; hippocampus: 0/4; substantia nigra: 0/4), and all
thirteen of GTEx Portal brain tissues had median TPM values of
0 or if expressed, were less than 0.5% that of liver.

In skeletal muscle, Hellsten-Westing (1993) and Linder et al.
(1999) did not detect XOR in myocytes, and in human gene
expression data, human skeletal muscle samples displayed no or
low XDH expression, with no expression in adult FANTOM5
samples (0/6) and GTEx samples having a very low median
TPM of 0.08 (0.31% of liver). In contrast to human data, the
FANTOM5 mouse biceps femoris muscle sample showed strong
expression, with a relative-log expression (RLE) of 52.0 (19.6%
of that in liver). In heart, Linder et al. (1999) found no staining
for XOR across all cell-types, Hellsten-Westing (1993) found no
staining of myocytes, while Moriwaki et al. (1996) reported weak
staining of cardiac myocytes. Both GTEx heart tissues (Atrial
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appendage; Left ventricle) showed a very low median TPM of
0.01 (0.04% of liver), and FANTOM5 human heart samples and
cardiac-related cell-types showed no XDH expression (heart,
adult diseased: 0/2; heart, adult, pool: 0/1; heart, fetal, pool: 0/1;
Cardiac myocytes: 0/3; Fibroblast-Cardiac: 0/6; mesenchymal
precursor cell-cardiac: 0/4). In contrast, mouse BodyMap heart
tissue and FANTOM5 cardiac myocytes displayed high Xdh
expression (BodyMap: mean FPKM 18.47 or 18.8% of small
intestine; FANTOM5: 45.6-181.4 RLE or 17–68% of liver).

In both skeletal muscle and heart, Hellsten-Westing (1993)
identified capillary endothelium as weakly positive and smooth
muscle cells of arterioles and venules as strongly positive for
XOR, respectively. Linder et al. (1999) and Moriwaki et al.
(1996) also made the general observation that XOR stained
capillary endothelium, but Linder et al. (1999) did not observe
staining of heart blood vessels, and the authors pointed to
a lack of knowledge as to whether vascular endothelial cells
expressed XDH mRNA, or rather, if XOR from the blood was
bound to sulfated glycosaminoglycans on the endothelial cell
membrane (Adachi et al., 1993; Radi et al., 1997). To answer
that question, we examined mouse and human FANTOM5, and
while the mouse data provided some support for localized XOR
expression, with the single mouse endothelial sample (hepatic
Sinusoidal Endothelial Cells) displaying very strong Xdh levels
(89.6% of liver), no human vascular endothelial cell samples
expressed XDH (Aortic:0/3; Artery 0/3; Microvascular 0/3; Vein
0/3; Umbilical vein: 0/3; Vein: 0/3). Similarly, Xdh was strongly
expressed in the single mouse aortic smooth muscle cells sample,
but human vascular smooth muscle samples overall lacked XDH
expression (Aortic: 1/4; Brachiocephalic: 0/3; Brain vascular
0/3; Carotid: 0/3; Coronary artery: 0/3; Pulmonary artery: 0/3;
Subclavian artery: 0/3; Umbilical artery: 0/4; Umbilical vein: 0/3).

Similar to our findings for endothelial and vascular smooth
muscle cells, previous reports described XOR as a regulator of
adipose tissue differentiation and found that mouse white adipose
tissue (WAT) had ∼30% higher expression levels compared to
liver (Cheung et al., 2007; Murakami et al., 2014). In contrast,
GTEx human subcutaneous and visceral fat tissue had low
median expression of 0.03 TPM and 0.14 TPM, respectively,
(0.12 and 0.55%, of liver) and none of FANTOM5 adult
adipose tissue samples or mesenchymal adipose related cells
(precursors, stem cells, and during adipogenic induction) showed
detectable XDH expression.

Circulating XOR as a Source of Endothelial
Protein-Binding/Activity
Since liver is one of the top sites of XOR activity in humans,
damage to the liver has been suspected to allow XOR to enter
the circulation (Tan et al., 1993; Martin et al., 2004). In tests
of hepatotoxic agents in animal models, it was shown that
XOR is released into the blood (Giler et al., 1976, 1977; Zima
et al., 1993; Zima et al., 2001). Additionally, since ischemia-
reperfusion (I-R) can result in injury to organs, researchers
investigated I-R induced in animal models as well as I-R in
human subjects undergoing surgery. In rabbits, occlusion of the
thoracic aorta resulted in four-fold increases in plasma levels
of liver enzymes (AST, LDH) and XOR during post-ischemia

reperfusion, suggesting that ischemia caused liver damage and
leakage of various cellular enzymes, including active XOR,
accompanied restored blood flow (Nielsen et al., 1994). In similar
human surgeries, circulating XOR was increased (∼two-fold
increase), likely from damaged liver and intestine due to the
aortic cross-clamp procedure, and was suggested as a source of
ROS activity that could cause damage in downstream organs in
the circulation that normally lack XOR expression such as the
heart or lungs (Tan et al., 1995).

However, within normal human plasma, XOR levels
have historically been described as undetectable or very-
low (Fried and Fried, 1974). Using a new more sensitive
assay (Murase et al., 2016), a recent study found XOR
activity in plasma from 282 Japanese subjects of 32 (19–
58) pmol/h/ml (median and interquartile range) (Furuhashi
et al., 2018). However, our calculations show that plasma
XOR at those concentrations would only account for
a negligible amount: about 0.09% of daily production
[(32 × 10−12 moles/h/ml∗5000 ml∗24 h/day∗168.1103 g/mole)/
0.7 g/day]. Thus, under certain pathologic conditions, XOR
levels may substantially increase and lead to downstream effects
(Battelli et al., 2014), but under normal physiologic conditions,
the amount of circulating XOR is notably low and unlikely to
elicit local pathology.

Xanthine Dehydrogenase Is the Predominant Form of
XOR
Depending on the species, the XOR enzyme may degrade Hx
to X through either xanthine dehydrogenase (XDH) or xanthine
oxidase (XO) enzymatic activities (Stirpe and Della Corte, 1969):

XDH:

Hx + H2O + NAD+→ X + NADH + H+

X + H2O + NAD+→ UA + NADH + H+

XO:

Hx + H2O + O2→ X + H2O2

X + H2O + O2→ UA + H2O2

The mechanism of transition between XDH and XO activities
has been described as dependent on either proteolytic nicking
or disulfide bonds formed between cysteine residues in two
parts of the enzyme structure (amino acids residues: Cys535-
Cys992 and the C-terminal Cys1316-Cys1324) (Della Corte and
Stirpe, 1968; Corte and Stirpe, 1972). Oxidation of Cys535-
Cys992 to form a disulfide bond occurs at a fast pace, while that
of the C-terminal residues occurs much more slowly (Nishino
et al., 2015). A clearer picture of the conversion mechanism was
identified by Nishino and collegues using X-ray crystallography
of modified versions of the enzyme that lock one or the other
activities in place (Nishino et al., 2008b) or that removed the
C-terminal peptide of the enzyme (Nishino and Okamoto, 2015).
Those experiments showed that the C-terminal peptide in the
structure undergoes insertion into the FAD cavity, and that
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that conformation maintains XDH activity. From that, it was
proposed that interactions with cell membranes, such as in
capillary endothelium, by the C-terminal peptide may facilitate
conversion to the XO form. Although the analyses of various
O2 levels and cultured human bronchial epithelial cells showed
that XOR activity increased with decreasing O2 levels, XO as a
percent of total XOR activity (XO/XOR) was reported to remain
unchanged, and XO/XOR was about 20% at each oxygen level
(Linder et al., 2003).

Early studies that examined XDH to XO conversion did so
using tissue homogenates (Corte and Stirpe, 1968; Stirpe and
Della Corte, 1969; Engerson et al., 1987; McKelvey et al., 1988),
and one of the more comprehensive reports found that in rat
lung, kidney, liver, and heart, XO/XOR was between 10 and 40%
if homogenates were processed and assayed quickly (Engerson
et al., 1987). However, it was noted that prolonged time in
culture, especially under conditions simulating ischemia, resulted
in XO/XOR between 50 and 100%. In human normal liver
homogenates, XO/XOR of about 20–25% was observed, while in
patients with liver cirrhosis, it increased to between 35 and 45%
(Stirpe et al., 2002).

Since the XO/XOR ratio increased with longer incubation
times of the tissue homogenate, one study tried to obtain
true in situ values by examining XDH and XO activities via
histochemical analysis of rat liver sections and found that XO
activity only represented about 4% of total activity, which
suggested that XDH represented the physiologically predominant
XOR form (Frederiks and Bosch, 1996). In addition, they
found that under ischemic conditions, XO/XOR did not
increase, but rather, that it slightly decreased (Frederiks et al.,
1993; Frederiks and Bosch, 1996). To understand whether a
“xanthine oxidase activating factor” was present in homogenized
versus intact tissue, another report found that freeze-thaw
cycling of tissue samples released a mitochondrial protease
that caused irreversible XO conversion (Saksela et al., 1999).
Taken together, such past reports suggest that XDH represents
the physiologically normal activity of XOR, even under certain
pathologic conditions.

Purine Salvage and the “Circulating
Hypoxanthine Pool”
Purine molecules form the scaffold for the high-energy
phosphates such as ATP and GTP, and they can be either
produced de novo or salvaged from nucleobases or nucleosides
that have either been previously synthesized and undergone
partial degradation or obtained from the diet (Ipata et al.,
2011). However, since de novo synthesis expends energy
in the form of 7 high-energy phosphate bonds from 6
ATP molecules to regenerate IMP (Figure 1; Garrett and
Grisham, 2016), energy-intensive tissues such as skeletal muscle,
heart muscle cells, and brain neurons extensively use salvage
pathways to maintain their purine levels (Manfredi and Holmes,
1985; Ipata, 2011). In that process, three purine nucleobases
can be salvaged by two different enzymes, with adenine
phosphoribosyltransferase (APRT) converting adenine (Ade)
to AMP, or hypoxanthine-guanine phosphoribosyltransferase

(HGPRT; gene HPRT1) converting Guanine (Gua) and Hx to
GMP and IMP, respectively. After the salvage of Hx, IMP may
then be converted by Adenylosuccinate synthetase (ADSS; genes
ADSS and ADSSL1) to S-AMP (adenylosuccinate) which is then
converted by Adenylosuccinate lyase (ADSL) to AMP.

That process of purine salvage and its importance was
proposed over 40 years ago, and analyses at the time showed
that a substantial fraction (∼95%) of the body’s production and
intake of purines is salvaged and recycled from Hx back into
nucleotides (Murray et al., 1970; Murray, 1971). Analyses of
purine metabolism showed that plasma and urine purine levels
varied with different levels of physical activity, and Harkness
et al. (1983) observed that acute muscular exercise resulted in
dramatically increased plasma Hx levels, and from that, they
proposed that the release of Hx and its transport between
tissues could be considered as a “circulating hypoxanthine pool”
(Harkness et al., 1983). Later, analyses indicated that the total
purine loss (i.e., excreted in 24 h urine samples) increased with
the number of severe acute exercise sessions (Stathis et al., 1999),
and Hellsten et al. (1998) showed that after intense exercise,
Hx and UA in the blood increased during recovery, and that
while salvage pathways recovered IMP still present in the muscle
into ATP, Hx that had been released into the blood appeared
not to be salvaged, but rather, Hx was degraded into UA by
the liver, returned to the circulation, and then taken up by the
muscle tissue. A later study by Stathis et al. (2005) investigated
whether treatment with an XOR inhibitor (allopurinol) would
attenuate total purine output and allow for greater Hx salvage by
the muscle after intense exercise, but allopurinol administration
was found to actually increase total purine loss. That study
also illustrated that Ino and its metabolite Hx can be readily
transported out of muscle cells once IMP is de-phosphorylated
by 5′-nucleotidase, and that the increased concentrations of Ino
and Hx in the blood may then be readily removed into the
urine by the kidneys. The high-transfer potential of Ino and Hx
out of exercised muscle likely reflects the action of equilibrative
nucleoside transporters ENT1 (SLC29A1) and ENT2 (SLC29A2)
that passively move nucleosides and nucleobases out of cellular
compartments with high metabolite concentrations (Boswell-
Casteel and Hays, 2017).

Much of our early knowledge on the existence of purine
salvage originated from research on patients with Lesch-Nyhan’s
Disease (LND), which results in “mental retardation, spastic
cerebral palsy, choreoathetosis, uric acid urinary stones, and self-
destructive biting of fingers and lips” (Hamosh, 2017). LND
is caused by genetic mutations in the HPRT1 gene that result
in a deficiency in HGPRT enzyme function (Seegmiller et al.,
1967; Nguyen and Nyhan, 2016). Thus, LND patients are not
able to salvage Gua and Hx to GMP and IMP, respectively,
and they display increased levels of purine metabolites including
Hx, UA, X, and Ino in the blood (Jiménez et al., 1989a).
Analysis of the distribution of purine metabolites in the plasma
and urine through use of radioactive tracers suggested that
purine salvage was a normal mechanism for Hx reutilization in
humans (Edwards et al., 1979), and other researchers showed
that purines produced in the liver were taken up by erythrocytes
and transported to other tissues (Pritchard et al., 1975). Such
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results, taken together with the severe neurological symptoms
that accompany the disease played a key role in showing the
importance of purine salvage pathways in normal functioning
of the brain.

Although ENT1 and ENT2 have been proposed as the
transporters for Hx salvage, their respective Km values for Hx are
quite high (ENT1 Km = 6.0± 0.5 mM; ENT2 Km = 1.5± 0.2 mM)
compared to typical plasma Hx concentrations (∼0.46 µM; see
Section 2.8, below) (Yao et al., 2011), suggesting that some
other more efficient mechanism existed for the transport of Hx
across membranes. Thus, Bone et al. (2010, 2015) identified
the existence of a nucleobase transporter in studies of Hx
transport in cardiac microvascular endothelial cells (MVEC)
(Bone and Hammond, 2007) and in MVEC from ENT1-/-
mice). Although unable to identify the actual gene or protein
involved, they termed the putative transporter as equilibrative
nucleobase transporter 1 (ENBT1). That name was later used
by Furukawa et al. (2015) who identified solute carrier family
43 member 3 (SLC43A3) as able to uptake nucleobases such
as adenine, guanine, and hypoxanthine, but not nucleosides.
Interestingly, they also showed that nucleobase import was
greater when cells expressed both SLC43A3 and APRT (for
adenine import) or HGPRT (for guanine import), suggesting that
the nucleobase transporter and salvage enzyme work together
in a cooperative fashion, with the final imported product being
the nucleotides.

Interestingly, an earlier study by Wallgard et al. (2008)
had looked for genes that were differentially expressed in
microvascular endothelial cells, and they found SLC43A3
differentially enriched in brain microvessels versus rest-of-brain
tissue. In a review of FANTOM5, we found that all of twenty-
one human endothelial cell samples expressed SLC43A3. As
Furukawa had found that the Km for Hx was 1.32 µM, which
is close to reported normal Hx plasma concentrations, these
results suggest that SLC43A3 functions in the microvasculature
of various tissues to facilitate purine uptake and salvage.
Interestingly, all FANTOM5 skeletal muscle samples also
expressed the gene, suggesting a role for nucleobase import and
salvage despite the contradictory results from research involving
intense muscular exercise.

Serum Urate Is a Biomarker of ATP
Consumption
If that purine salvage process fails to salvage Hx back
into high-energy phosphate molecules, and instead, XOR
degrades it to X, then X can only be further degraded
by XOR to UA (Figure 1). The degradation process may
take place within cells if they express XOR or following
excretion of Hx from a cell when it traverses organs with
XOR activity such as the liver or endothelium. Consequently,
processes maintaining cellular energy charge may degrade the
molecular scaffold for ATP into a form (UA) that cannot
be salvaged back into energy storing molecules. As described
above, after degradation to UA, new purine molecules would
need to be salvaged from dietary intake or resynthesized
de novo at an energy expense of 7 high-energy phosphate

bonds from 6 ATP molecules to regenerate IMP (Figure 1;
Garrett and Grisham, 2016).

Previous results suggest that serum UA is a biomarker of
ATP consumption, since rapid ATP consumption can lead to
purine degradation and an increased rate of UA production
in humans. For example, intense muscular exercise (Hellsten
et al., 1999; Stathis et al., 1994, 1999), fructose challenge
(Budillon et al., 1992; Donderski et al., 2015), alcohol intake
(Lieber, 1965; Schmidt et al., 2013), and high brain activity
(Salvadore et al., 2010; Goodman et al., 2016) can lead
to energy crisis and resultant hyperuricemia. In addition,
vascular regions undergoing ischemia-reperfusion may produce
increased purine degradation products; a sign that a local
energy crisis has occurred. For example, one study investigated
the difference in the concentrations of adenine nucleotide
degradation products between the aortic root (Ao) and the
coronary sinus (Cs), before, during, and after cross-clamping
of the aorta during cardiopulmonary bypass (Lazzarino et al.,
1994). The authors found that pre-clamping Cs blood was slightly
increased for Ado, Ino, Hx,and X (< 1 µmol/L), while UA
was increased > 10 µmol/L, showing that XOR was present
within the coronary vasculature. The Cs-Ao difference for purine
degradation products increased 2–3 fold during the ischemic
period, and decreased afterward. In addition, malondialdehyde,
a marker of oxidative stress, significantly increased while the
aorta was clamped, but there was no apparent correlation
with post-operative outcomes, suggesting that oxidative stress
in such pathologic situations may not be as important as is
often thought.

In contrast, UA production is low in infirm aged people
(Beberashvili et al., 2015, 2016), those with low nutrition
(Beberashvili et al., 2016), and patients with certain
neurodegenerative disorders (Rinaldi et al., 2003; de Lau et al.,
2005). For multiple sclerosis (MS), decreased plasma/serum UA
levels were observed in multiple studies (Druloviæ et al., 2001;
Sotgiu et al., 2002; Liu et al., 2012; Moccia et al., 2015), but
some studies have also observed that UA levels were increased
compared to control subjects (Amorini et al., 2009; Tavazzi
et al., 2011). Tavazzi et al. (2011) identified relapsing-remitting
MS patients as having lower UA levels compared to secondary
progressive or primary progressive MS patients, and the authors
have described serum purine metabolite concentrations as related
to an imbalance in energy production (Lazzarino et al., 2017).

Inhibited Purine Degradation Maintains
ATP Levels
Evidence suggests that inhibition of purine degradation leads
to alterations of bioenergetic pathways and conserved ATP
levels. Data that supports this conclusion is found in genetic
deficiencies of the AMPD gene family, as well as from
clinical and experimental analyses in various organ systems.
AMPD enzymes catalyze the conversion of AMP to IMP
(Figure 1), and expression of the three AMPD genes, AMPD1,
AMPD2, and AMPD3, are differently expressed in various
organs and in various types of cells (Morisaki et al., 1990;
Mahnke-Zizelman and Sabina, 1992).
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AMPD1 is very strongly expressed in skeletal muscle and
diaphragm (Morisaki et al., 1990), and it has been examined
extensively for the impact of a non-sense mutation that is
common in European ancestry populations but rare in most other
world-wide population samples (rs17602729; Gln45Ter; C34T;
AFT−EUR = 0.123 in 1000 Genomes)7. Originally, deficiency in
AMPD1 due to rs17602729 homozygosity (TT) was identified as
a putative cause of myopathy (Fishbein et al., 1978). However,
greater than 1% of European ancestry populations are AMPD1
deficient, and many of those subjects are asymptomatic, which
suggests a heterogeneity of its effects or that other factors might
be involved (Verzijl et al., 1998; Sabina and Holmes, 2001;
Hanisch et al., 2008). Studies of elite athletes found significantly
less C34T carriers compared to controls, with more skewed
genotype frequencies in sprint/power athletes versus endurance
and mixed-event athletes, and there appeared to be a deficit
of TT individuals (Rubio et al., 2005; Muniesa et al., 2010;
Tsianos et al., 2010; Ciȩszczyk et al., 2011, 2012; Ginevičienė
et al., 2014; Grealy et al., 2015). However, endurance athletes who
had reached the elite level who were heterozygous appeared to
generally perform comparably to CC individuals (Rubio et al.,
2005; Tsianos et al., 2010). Among various exercise studies of
normal and AMPD1 deficient subjects (Norman et al., 2001;
Tarnopolsky et al., 2001; De Ruiter et al., 2002; Fischer et al.,
2007; Norman et al., 2008), the study with the largest sample-
size (nCC = 89; nCT = 38; nTT = 12) (Fischer et al., 2007),
which performed a short-term high-intensity Wingate cycling
test, found that TT subjects exhibited decreased mean-power
output and increased fatigue. However, compared to CC and CT
individuals, they did not experience depletion of ATP at the end
of the test (Norman et al., 2001). In heart failure patients, genetic
AMPD1 deficient subjects exhibited decreased systolic blood
pressure (de Groote et al., 2006; Safranow et al., 2009; Tousoulis
et al., 2014; Feng et al., 2017), an increase in cardiac output (left
ventricular ejection fraction) (Gastmann et al., 2004; Collins et al.,
2006; Safranow et al., 2009; Feng et al., 2017), and improved
heart failure prognosis (Loh et al., 1999; Gastmann et al., 2004).
Interestingly, AMPD1 was also reported as a putative target of
the diabetes drug metformin (Cheng et al., 2014), and AMPD1
deficient individuals have been reported to have decreased rates
of diabetes (Safranow et al., 2009).

AMPD2 is most prominently expressed in non-skeletal muscle
tissues, including brain, liver, and thymus (Morisaki et al.,
1990). Genetic AMPD2 deficiency leads to increased ATP but
a decrease of GTP and has been reported to lead to rare
central nervous system (CNS) disorders (Akizu et al., 2013;
Novarino et al., 2014).

AMPD3 is most strongly expressed in erythrocytes but is also
found in other tissues, including skeletal muscle. Genetic AMPD3
deficiency has been observed, and it has been reported to lead
to a 1.5 fold increase of ATP in erythrocytes without any health
problem (Ogasawara et al., 1987; Yamada et al., 1994). Studies of
AMPD3 deficient mice have also reported increased ATP levels
(Cheng et al., 2012; Daniels et al., 2013; O’Brien et al., 2015).

7https://www.ensembl.org/Homo_sapiens/Variation/Population?db=core;r=1:
114692936-114693936;v=rs17602729;vdb=variation;vf=502602520

In addition to genetic deficiencies of the AMPD isozymes,
experimental studies have shown that perturbation of certain
pathways can modulate cellular energy through AMPD. For
instance, under conditions that mimic oxidative stress in studies
of erythrocyte energy metabolism, Tavazzi et al. (2000, 2001)
found that AMPD activity increased when incubated with H2O2
or NaNO2). Those studies suggest that changes to the local
erythrocyte environment may result in deficient energy states due
to purine loss. Another study by the same group investigated
the effect of angiotensin II (AII) on matrix metalloproteinase
activity (MMP) in the canine heart. AII administration increased
MMP activity, as well as chamber diastolic stiffening and MMP
activity, and decreased tissue bioenergetics, while treatment with
an MMP inhibitor was shown to decrease the effects of AII and
reduce purine loss, likely through inhibition of AMPD activity
(Paolocci et al., 2006).

XOR Inhibitor Is Beneficial for Diseases
of Heart, Skeletal Muscle and Brain
As noted above, heart, skeletal muscle, and brain are among
the organs requiring the largest amounts of energy and that are
typical targets of mitochondrial diseases, and interestingly, recent
human and animal studies have shown that XOR inhibitors
(XOIs) such as allopurinol and febuxostat are useful for the
treatment of disorders of heart, skeletal muscle and brain.

XOR Inhibitor Alone Is Good for the Heart
In animals, at least 11 papers reported that heart failure and
ischemic heart disease were improved by the administration of
allopurinol or febuxostat (DeWall et al., 1971; Arnold et al., 1980;
Hopson et al., 1995; Pérez et al., 1998; Ekelund et al., 1999;
Khatib et al., 2001; Ukai et al., 2001; Stull et al., 2004; Hou et al.,
2006; Xu et al., 2008; Zhao et al., 2008; Yao and Seko, 2017; El-
Bassossy et al., 2018). In humans, at least 20 papers, including
randomized controlled trials (RCTs) and meta-analyses, reported
that heart failure and ischemic heart disease were improved by
the administration of allopurinol or febuxostat (Saugstad, 1996;
Cappola et al., 2001; Gavin and Struthers, 2005; Pacher et al.,
2006; Noman et al., 2010; Rentoukas et al., 2010; Thanassoulis
et al., 2010; Kelkar et al., 2011; Gotsman et al., 2012; Hirsch et al.,
2012; Agarwal and Messerli, 2013; Agarwal et al., 2013; Larsen
et al., 2016; MacIsaac et al., 2016; Singh and Yu, 2016, 2017;
Ansari-Ramandi et al., 2017; Foody et al., 2017; Singh et al., 2017;
Bredemeier et al., 2018). Because of febuxostat’s more recent
approval, most reports analyzed only allopurinol.

XOR Inhibitor Alone Is Good for Skeletal Muscle
Administration of allopurinol was reported to improve the effect
of rehabilitation in the elderly (Beveridge et al., 2013), prevent
muscle damage due to intense exercise such as playing soccer
(Sanchis-Gomar et al., 2015) or crewing on an America’s Cup
yacht (Barrios et al., 2011), and reduce muscle atrophy due
to disuse (Ferrando et al., 2018). The Ferrando et al. (2018)
study also confirmed an inhibitory effect of allopurinol on disuse
muscle atrophy in experiments using mice. In addition to those
studies, allopurinol has also been shown to reduce muscle fiber
damage in a mouse model of chemically induced rhabdomyolysis
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(de Bragança et al., 2017) and increase maximal isometric force
produced by muscles in aged mice (Ryan et al., 2011).

XOR Inhibitor Alone Is Good for the Brain
One hypothesis regarding the etiology of neurodegenerative
disorders has been that UA has a protective effect. That was
based on studies that showed that subjects with higher serum
UA levels had lower hazard ratios (HR) or inverse correlation
for PD (Alonso et al., 2007; Schwarzschild et al., 2008; Ascherio
et al., 2009; Johansen et al., 2009; McFarland et al., 2013),
AD (Maesaka et al., 1993; McFarland et al., 2013; Al-khateeb
et al., 2015; Lu et al., 2016), amyotrophic lateral sclerosis (ALS)
(Abraham and Drory, 2014), and multiple-sclerosis (MS) (Liu
et al., 2012). Based on those observations, several clinical trials
have been designed to test the effect of Ino supplementation in
neurodegenerative disorders, with the expectation being that Ino
degradation in the body would increase blood and cerebrospinal
fluid (CSF) levels of UA to presumably more protective levels.
Three trials examined its use in MS patients, and while one
suggested some effect (Markowitz et al., 2009), the other two
that had larger sample-sizes showed no benefit of the Ino
treatment (Gonsette et al., 2010; Muñoz García et al., 2015). More
recently, the SURE-PD study was initiated to investigate Ino
treatment in PD patients (The Parkinson Study Group SURE-PD
Investigators et al., 2014). SURE-PD has released a proof-of-
principal report that shows that Ino increases UA levels and
that it is generally tolerated, but the study showed contradictory
efficacy results depending on the PD measure examined, and
additionally, the study was not powered to determine efficacy of
the treatment.

In contradiction to those studies, recent analyses of large
clinical databases suggest that the hypothesis that UA exerts
a protective effect against neurodegenerative disorders is mis-
directed. First, a 2015 Taiwanese study by Hong et al. (2015)
reported that gout patients have lower risk of dementia than
controls. At first glance, that would agree with the concept
that UA exerts a protective effect. However, their results also
indicated that gout patients treated with UA lowering drugs
had lower risks of both vascular and non-vascular dementias.
Second, a more recent report by Singh and Cleveland (2018a)
analyzed United States Medicare data to examine the incidence
of dementia with respect to use of XOIs and reported a lower
occurrence of dementia in individuals receiving either high-
dose allopurinol or 40 mg/day febuxostat. That is, compared
with allopurinol less than 200 mg/day, higher allopurinol
doses (200 to 299 and at least 300 mg/day) and febuxostat
40 mg/day dose were each associated with lower HRs for
dementia: 0.80 (95% CI 0.64, 0.98), 0.59 (95% CI 0.50, 0.71),
and 0.64 (95% CI 0.47, 0.86), respectively. In a companion
study, Singh and Cleveland (2018b) also reported that use
of UA lowering drugs was not associated with an increase
in the rate of dementia in older adults. which suggests that
UA itself does not have a protective effect against dementia.
In addition, experimental animal studies have also shown the
beneficial effects of XOIs on neurodegenerative disorders. Kato
et al. (2016) demonstrated that XOIs delayed the pathological
process of ALS in model mice (Nishino et al., 2008a), and

the same authors have also reported that XOIs delayed the
pathological process of AD in model mice and inhibited
development of senile plaques and neurofibrillary tangles
(Nishino et al., 2016).

Mechanism of the Beneficial Effects of
XOR Inhibitors on Heart, Skeletal
Muscle, and Brain
Within the various reports on XOIs′ beneficial effects, several
hypotheses have been raised. Namely, the mechanism of action
is likely related to: (1) UA reduction, (2) reactive oxygen species
(ROS) suppression, or (3) ATP enhancement.

Evidence suggests that XOIs′ UA lowering effect is unlikely
to be the mechanism of those beneficial effects. In animals
such as mice and rats, serum UA levels are very low even
without XOI treatment (Watanabe et al., 2014), and therefore,
the benefits of XOR inhibition that were observed in animal
models are unlikely to be due to its further lowering. Also, of
importance to brain-related studies, CSF UA concentrations are
very low compared to those in blood, with human CSF levels
about 5% of those seen in plasma samples ([UACSF]∼12.8 µM;
[UAPlasma]∼250 µM) (Harkness, 1988; Jiménez et al., 1989b).
Those low levels are related to two things. First, as introduced
above, XOR expression in brain tissue is very low, with human
and mice brains having 0.8% and 0.44% of levels seen in the
highest XOR expressing tissues (Supplementary Tables S1–S4).
Second, the blood-brain barrier (BBB) and blood-cerebral spinal
fluid barrier have been reported to be only weakly permeable
to UA (Jiménez et al., 1989a; Redzic et al., 2001). Considering
that evidence, UA reduction in serum is unlikely to affect
the brain.

Although many reports hypothesized that the suppression
of ROS is the mechanism of the beneficial effects of XOIs,
that possibility also appears quite unlikely, since while heart,
skeletal muscle and brain are among the organs that consume
the largest amounts of energy, they are also among those
with the lowest amounts of XOR in humans (Figure 2A;
Linder et al., 1999), with XOR activity mostly limited to the
vascular endothelium of those tissues (Kelley, 2015). Also, recent
reports have shown that inhibition of ROS by scavengers is
often harmful because minimal levels of ROS are useful for
signal transduction and cancer inhibition (Diebold and Chandel,
2016; Scialò et al., 2016; Quijano et al., 2016). The high ATP
consumption that occurs in those organs should also coincide
with high ROS production, since ROS is produced along with the
consumption of oxygen. However, ROS are produced mostly in
mitochondria, and based on a rough calculation of the daily ratio
of moles UA excreted to moles O2 consumed (UAg.excr = 0.75 g,
UAmole.excr∼2.97 × 10−3 moles; 22 moles O2 per day) (Ng et al.,
1984; Engelberg, 1996), oxygen consumption by mitochondria is
at least 5,000 fold higher than that consumed by XOR. Thus, ROS
related damage is more likely to stem from mitochondria than
from XOR.

Therefore, most of the ROS produced would stem from
mitochondria and thereby can never be suppressed by XOIs.
Of course, this may suggest that mitochondria may be damaged
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by ROS and that that damage leads to ATP depletion. In
fact, the association of ROS with various diseases including
neurodegenerative disorders may be through the damage of
mitochondria by excessive ROS. However, that does not
support inhibition of ROS production as the reason for the
beneficial effects of XOR inhibition that has been observed in
previous studies.

Based on those observations, it is unlikely that ROS
inhibition is the reason for XOIs′ beneficial effects. Rather, ATP
enhancement through enhanced purine salvage is the more likely
mechanism. Support for ATP enhancement as the mechanism
can be found in experimental studies using in vitro and animal
models as well as human clinical studies.

One such study in the early 2000s of allopurinol’s impact
on mitochondrial function examined rat livers under
ischemic/hypoxic conditions and found that decreases in
ATP levels after ischemia/reperfusion were attenuated with
allopurinol treatment (Jeon et al., 2001). Another study around
the same time-period examined prepared rat hearts under
hypoxic conditions, and the authors reported that both ATP and
total adenine nucleotide pools were enhanced after allopurinol
administration (Khatib et al., 2001). Later, a report on canines
examined the impact of XOIs on cardiac bioenergetics under
conditions simulating myocardial ischemia, with subjects
examined at rest and then with/without XOI under either
basal cardiac work (BCW) or high cardiac work (HCW) after
catecholamine administration (Lee et al., 2011). Without XOI,
the ratio of PCr/ATP and ADP levels were unchanged at BCW,
but the PCr/ATP ratio decreased and levels of ADP increased
at HCW. In contrast, with XOI administration, the ratio of
PCr/ATP increased and levels of ADP decreased at BCW, while
at HCW the increase in ADP levels was attenuated compared
to no XOI. Similarly, a study of non-ischemic cardiomyopathy
patients showed using 31P magnetic resonance spectroscopy
(31P-MRS) that allopurinol increased the flux through creatine
kinase (CK) and increased the rate of ATP synthesis as well as
decreased ADP levels (Hirsch et al., 2012). In a neurological study
of hypoxia/ischemia in piglets, authors reported that allopurinol
pre-treatment attenuated a decrease in the PCr/Pi ratio, which
is another measure of cellular energy status (Peeters-Scholte
et al., 2003). Further, a study of potential causes of MS that used
a mouse model of experimental autoimmune encephalomyelitis
(EAE) reported that XO played a role in mechanisms leading to
demyelination, and that EAE progression was reduced with XOI
treatment (Honorat et al., 2013). A follow-up study examined
NeuroA2 cells treated with rotenone, which causes dysfunction
of mitochondrial electron transport and reduces ATP levels,
and found that XOI administration to rotenone treated in vitro
culture increased cellular ATP levels (Honorat et al., 2017).

Hypoxanthine Is Important in
Neurodegenerative Disorders
It has been reported that serum UA is reduced in patients
with neurodegenerative disorders such as PD (Havelund et al.,
2017; Sakuta et al., 2017; Wen et al., 2017), ALS (Abraham and
Drory, 2014; Paganoni et al., 2018; Zhang et al., 2018), and AD

(Euser et al., 2009; Lu et al., 2016), and as mentioned above,
many researchers consider that these observations represent a
direct protective role of UA suppressing ROS in the brain (Kori
et al., 2016). However, since XOR is not expressed in the brain,
and UA levels in the brain are naturally very low, it is more
likely that low UA in neurodegenerative disorder patients reflects
physiologic and biochemical changes that result in decreased
energy production and low ATP consumption.

Such a hypothesis is supported by FDG-PET studies of the
brain, which use the glucose analog FDG (fluoro-deoxy glucose)
to assay metabolic activity through regional glucose uptake. That
glucose uptake represents some glycolytic but predominantly
mitochondrial activity in the brain for production of ATP
(Mosconi, 2013). FDG-PET studies have identified increased
regions of hypometabolism, and thus reduced ATP consumption,
in the brains of patients with certain neurodegenerative diseases
such as AD (Johnson et al., 2012; Lin and Rothman, 2014).
Recently, a European task-force recommended use of FDG-
PET in answering a number of clinical questions including the
differential diagnosis of AD and PD from similar pathologies
(Nobili et al., 2018).

If ATP consumption in the brain is reduced in such diseases,
the UA precursor Hx should also be low. In line with that, a recent
meta-analysis found that a number of metabolomic studies of
PD patients identified decreases of compounds either related to
energy production or purine-related pathways (Havelund et al.,
2017). Among the latter, one report found that Hx levels in PD
patients’ plasma were decreased by 41% while UA was decreased
by 14% (Johansen et al., 2009). In addition to that data, a
proteomics study targeting hundreds of proteins for incidental
AD in the longitudinal Framingham Offspring Cohort identified
elevations of anthranic acid and glutamic acid and reductions
of Hx and taurine (Chouraki et al., 2017), and a MALDI-
MSI analysis targeted at hundreds of proteins in Alzheimer’s
model mice detected elevations of Hx and taurine (Esteve et al.,
2017). Although those results are suggestive of a relationship
between purine metabolism and the neurological diseases, we
should also note that another potential cause of reduced Hx
levels could be decreased physical activity that might accompany
PD and AD.

It is of interest that both Hx and taurine were found
among hundreds of compounds whose concentrations were
different between disease and control subjects. However, in
the mouse model, both Hx and taurine were increased,
while they were decreased in human AD patients. This may
reflect a difference as to the pathogenic mechanisms for AD
between mice and humans, with a common facet of both
being that unfolding and degradation of mis-folded/abnormal
proteins such as amyloid or tau by proteasomes carries a
high energy cost (Benaroudj et al., 2003; Peth et al., 2013).
In the case of the mouse model, excessive production of
misfolded proteins requires the expenditure of large amounts
of ATP in order to degrade them, which is evidenced by
increased purine degradation products such as Hx. In contrast,
in humans the decreased levels of degradation products
from energy production and purine pathways reflect energy
production dysfunctions that result in a reduced capacity to
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degrade abnormal proteins. Thus, the elevation of Hx in the
model mice and its reduction in the human patients can
be explained by the different mechanisms by which amyloid
beta and tau accumulation occur between model mice and
human disease.

The mechanism by which we propose that XOIs enhance
ATP is illustrated in Figure 3, which suggests that the blood
concentration of Hx plays an important role. Since XOR exists
mostly in liver in humans, the inhibition of XOR leads to the
elevation of Hx in the liver, and eventually in the blood. As
noted above, for each molecule of purine that is lost, seven high-
energy phosphate bonds are needed for the de novo synthesis of
IMP. Since elevated Hx saves purines for salvage, XOI should
lead to the enhancement of ATP. Support for that was seen in
animal models, such that when a XOI alone was administered to
mice or rats, marked elevation of Hx occurred (Schmidt et al.,
2009; Szasz et al., 2013; Kato et al., 2016). Similarly, in humans,
allopurinol treatment of cancer patients before chemotherapy
treatment was shown to increase Hx levels by about 1.5-fold
(Wung and Howell, 1984).

With respect to brain levels of Hx, under normal physiologic
conditions the mean concentration of Hx in CSF was between
1.8 and 2.0 µM from two reports (Harkness and Lund, 1983;
Amorini et al., 2009). In blood, reported mean plasma/serum
levels for Hx have varied widely as 0.46 µM (Wung and Howell,
1980), 1.5µM (Harkness and Lund, 1983), 4 µM (Amorini et al.,
2009), and 32.4 µM (Psychogios et al., 2011), with the most
representative value coming from the Wung and Howell (1980)
report, which showed clearly that measured Hx concentrations
in plasma/serum increases with time between blood draw and
isolation of the plasma/serum. Based on those values, CSF in
non-diseased individuals appears to be about three to 4-fold
enriched for Hx compared to plasma. That enrichment within
CSF (Harkness and Lund, 1983) presumably relates to the lack
of XOR in brain. Since Hx is known to cross the BBB (Jiménez
et al., 1989a), excess Hx produced in the CNS would be expected
to move to the blood. However, with XOI treatment, blood levels
of Hx should become elevated, and the BBB’s permeability to
Hx should allow it to move into the CNS. Alternatively, the
less favorable transport kinetics should reduce its movement

from the CNS to the main circulation. An analogous situation
was observed in a previous study of LND patients who are
deficient for HGPRT, the enzyme that salvages Hx to IMP, and
thus lack a key node of the purine salvage pathway (Figure 1;
Jiménez et al., 1989a). Hx in HGPRT(-) patients was elevated
3.9-times and 6.4-times compared to their reported normal
plasma and CSF, respectively, and Hx in HGPRT(-) patients’ CSF
was 2.3-times more than in plasma ([HxNormal−CSF]∼2.7 µM,
[HxNormal−plasma]∼1.9 µM; [HxHGPRT(−)−CSF]∼17.2 µM;
[HxHGPRT(−)−plasma]∼7.3 µM). Interestingly, treatment with
an XOI (Allopurinol) increased Hx in the plasma and CSF
to roughly equal levels ([HxHGPRT(−)−Allop−CSF]∼35.0 µM;
[HxHGPRT(−)−Allop−plasma]∼38.62 µM), suggesting that as Hx
could not be degraded by the liver due to XOR inhibition,
its levels built-up in the blood and finally equilibrated with
those in CSF.

Provision of a Hypoxanthine Source in
Addition to an XOR Inhibitor May Further
Enhance ATP
The reports described above have shown that XOIs can have
a beneficial effect on various diseases, but it may be possible
to enhance the effect by simultaneous administration of a Hx
source. As noted above, when a XOI alone was administered to
mice or rats, a marked elevation of Hx occurred, but mice and
rats produce over 25 times more UA per unit body weight as
compared to humans (Horiuchi et al., 1999; Hosoyamada et al.,
2016). Those higher rates of UA production occur because of
the higher rate of energy generation and ATP consumption in
small versus large mammals. Due to the difference in purine flux
within the body, the substantial elevation of Hx in humans that
would be needed to increase purine salvage may not be achieved
by only inhibiting XOR. Similarly, provision of additional
purines alone would not be beneficial, since oral purines will be
substantially broken down to UA in the digestive tract or during
absorption. Therefore, treatment using a combination of an XOI
with additional purines would be expected to increase purine
salvage, decrease energy expenditures by reducing de novo purine
synthesis, and achieve better enhancement of cellular ATP.

FIGURE 3 | Mechanism of ATP enhancement by XOI or XOI+ inosine.
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Combination Treatment With
Administration of an XOR Inhibitor and
Inosine
To examine that last question, clinical studies were performed
using healthy human subjects. Treatment with high-dose XOI
alone produced only a slight increase in levels of Hx and ATP,
while treatment with Ino alone did not increase Hx or ATP
(Kamatani et al., 2017). In contrast, only the combination of an
XOI and Ino was observed to substantially increase blood levels
of Hx and ATP in the human subjects. In an additional study,
it was observed that Ino alone could enhance ATP in human
erythrocytes incubated in saline, likely due to the lack of XOR
in erythrocytes (Kamatani et al., 2018).

Based on those results, Kamatani et al. (2019) performed a
small clinical study of the combined use of an XOI and Ino
was performed in two mitochondrial disease patients. After
treatment, brain natriuretic peptide decreased by 31% for one
patient with mitochondrial myopathy, and for the other patient,
who had mitochondrial diabetes, insulinogenic index was raised
3.1-fold. In addition to that small study, the combination
therapy is currently under evaluation in a mid-sized study of
30 PD patients.

Therapy combining an XOI and Ino is similar to the treatment
of deficiency for carbamoyl-phosphate synthetase 2 (CAD).
Through treatment with oral uridine, CNS symptoms were
dramatically improved (Koch et al., 2017).

CONCLUSION

Over many years of research, a number of different groups have
examined the effects of XOI treatment on disorders of various

organ systems, especially of the heart, skeletal muscles, and
brain. With the combination drug, it is possible that the disease
status of patients with many such disorders will be improved
in the future.
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