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Abstract: Pseudomonas aeruginosa is an opportunistic, Gram-negative pathogen and an important
cause of hospital acquired infections, especially in immunocompromised patients. Highly virulent P.
aeruginosa strains use a type III secretion system (T3SS) to inject exoenzyme effectors directly into the
cytoplasm of a target host cell. P. aeruginosa strains that express the T3SS effector, ExoU, associate
with adverse outcomes in critically ill patients with pneumonia, owing to the ability of ExoU to
rapidly damage host cell membranes and subvert the innate immune response to infection. Herein,
we review the structure, function, regulation, and virulence characteristics of the T3SS effector ExoU,
a highly cytotoxic phospholipase A2 enzyme.

Keywords: Pseudomonas aeruginosa; ExoU; phospholipase A2; pneumonia; innate immunity; amy-
loids; inflammasomes

Key Contribution: This article is a high-level review of the relationships between structure, function,
and virulence capacity of the P. aeruginosa type III secretion system effector, ExoU. It is well-established
that ExoU is a cytotoxic phospholipase A2, which subverts the host innate immune response to
infection and associates with poor patient outcomes. Therefore, ExoU is a potential target for the
development of novel antimicrobial therapeutics.

1. Introduction

Pseudomonas aeruginosa is a Gram-negative, rod-shaped bacterium found in soil and
water. Similar to other pseudomonads and mucosal pathogens, P. aeruginosa possesses
a single polar flagellum for motility [1]. Due to its biosynthetic capacity, P. aeruginosa
thrives in environments with minimal nutrients and under diverse physical conditions,
allowing persistence in hospital and community settings [2]. As an important cause of
nosocomial pneumonia globally, P. aeruginosa is classified as an ESKAPE (Enterococcus
faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa, and Enterobacter species) pathogen listed as critical priority for new research
and drug development by the World Health Organization [3–5]. Healthcare infections
associated with P. aeruginosa exceed 51,000 cases annually in the United States and are re-
sponsible for 40% of deaths of patients with ventilator-associated pneumonia (VAP) [6–10].
P. aeruginosa causes both acute and chronic infections. Severe burn, mechanically ventilated,
and immunocompromised patients are particularly susceptible to acute P. aeruginosa infec-
tions [11,12]. Patients with pre-existing lung disease, such as cystic fibrosis, are susceptible
to chronic P. aeruginosa infections [11,12].
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P. aeruginosa is a pathogen commonly isolated from patients with acute respiratory in-
fections, which result from airway epithelial damage due to mechanical ventilation [13,14].
Despite improvements in mechanical ventilation strategies, such as reduced tidal volumes,
patients often suffer injury to their innate lung barriers due to the endotracheal tubing,
allowing the pathogen to attach and colonize mucous membranes [13,15]. Epithelial and
alveolar macrophages become activated and damaged upon P. aeruginosa colonization of
the airways [16,17]. Neutrophils and phagocytic-mediated clearance mechanisms are also
impaired by a diverse array of pathogen-encoded virulence factors [18,19]. P. aeruginosa
uses a wide array of virulence mechanisms to cause disease in humans (for excellent
reviews see [20,21]). The P. aeruginosa type III secretion system (T3SS) is one of the most
notorious of these virulence mechanisms, and aids in colonization of the airway and in
immune avoidance [22]. To date, there are at least four well-characterized effector proteins
referred to as Exoenzymes: ExoU, S, T, and Y [13]. Once delivered into the host cell cyto-
plasm, these effector proteins become activated through interactions with their cognate
eukaryotic cofactors (Figure 1). Interestingly, P. aeruginosa clinical and environment strains
vary in the cadre of T3 effectors encoded, which defines the pathophysiology of a given
strain/isolate [8,23,24]. The relative distribution of T3 effectors is: ~35% ExoU, ~65% ExoS,
~100% ExoT, and ~90% ExoY [25]. ExoS and ExoT were the first P. aeruginosa T3 effectors
identified and are bifunctional enzymes possessing GTPase activating protein (GAP) and
ADP-ribosyltransferase activities that trigger pathological rearrangements in the host cell
cytoskeleton [26]. These activities lead to cytotoxicity (ExoS) or host cell cytoskeletal rear-
rangements that limit phagocytosis (ExoT). Intoxication of cells by ExoS is characterized by
cell death that takes several hours to manifest and results ultimately in apoptosis [27]. ExoY
is a promiscuous nucleotidylyl cyclase [28,29] that disrupts inter-endothelial gap junctions
and promotes hyperphosphorylation and release of tau and amyloid-β [30–33]. ExoU was
identified based on the observation that several clinical isolates possessed a rapid or acute
cytotoxic response when co-cultivated with epithelial cells, which was distinct from the
pattern of cell death induced by ExoS [34]. P. aeruginosa ExoU has been associated with
severe disease outcomes in humans and in animal infection models [10,35]. The goal of
this review is to provide an update on the role of ExoU in pathogenesis in the context of
structure, function, and virulence relationships.
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Figure 1. The P. aeruginosa T3SS effectors, their activators, and host cell effects (Created with
BioRender.com).

2. ExoU

Of the four effector proteins, ExoU is the most acutely cytotoxic. ExoU was identified
in 1997 as an effector secreted by P. aeruginosa strain PA103 [34,36]. The gene encoding ExoU
was identified as part of a mutant library screen and verified by peptide sequence analyses.
ExoU is a 74-kDa (686 amino acid) protein that has a 5-residue amino-terminal sequence
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similar to ExoS and ExoT, which may be important for targeting to the T3SS [34]. Unlike the
other effectors, exoU and its chaperone, spcU, are thought to have been acquired through
horizontal gene transfer and reside on an 81-kb pathogenicity island [37]. In support of
this hypothesis, yeast recombinational cloning and sequence analysis revealed exoU has a
lower G + C content (59%) compared to exoS encoded by strain PAO1 (67%) and flanking
elements homologous to IS407 [37]. In epithelial cells, ExoU expression is associated with
rapid cellular lysis that occurs within 3 h of co-culture with P. aeruginosa. Cytotoxicity was
so rapid that to mechanistically understand how ExoU functioned intracellularly, a system
using Saccharomyces cerevisiae as a surrogate expression host was developed. ExoU synthesis
could be controlled in yeast experimental model and the yeast cell wall protected the cell
long enough to facilitate visualization of ExoU-induced damage to intracellular membranes
and vacuolar fragmentation [38]. The addition of phospholipase inhibitors such as methyl
arachidonyl fluorophosphonate (MAFP) significantly decreased ExoU cytotoxicity in yeast
and mammalian cells. Combined with the nucleotide alignment analyses revealing a
PLA domain similar to patatin, cPLA2, and iPLA2 [38], ExoU was postulated to function
as a phospholipase hydrolyzing neutral lipids and phospholipids [38–40]. This model
reconciled the rapid cytotoxicity in vitro and significant tissue destruction mediated by
ExoU producing strains in animal models of infection.

2.1. Structure-Activity Relationships of ExoU

ExoU is a relativity large protein (686 amino acids, 74 kDa) making domain mapping
somewhat complex. It was known that the protein likely possessed multiple functional
domains even before crystal structures were available. Early studies of truncated proteins
transfected into Chinese Hamster Ovary cells suggested that N- and C-terminal regions
were necessary but not sufficient for toxicity [41]. Sato et al. and Philips et al. indepen-
dently identified and verified, by site-specific mutagenesis studies, that ExoU was, indeed,
part of the patatin family of phospholipases [38,39]. Patatin is a major storage protein
in potatoes and other tubers that hydrolyzes phospholipids, p-nitro-phenyl esters, and
monoacylglycerols [40,42]. Environmental stress or pathogenic infection results in patatin
enzyme activation [40,42]. The patatin family of enzymes share functional similarity to
eukaryotic cPLA2 and iPLA2, and possess PLA2 activity that hydrolyzes the acyl group at
the sn-2 position of phospholipids, resulting in release of free fatty acids, such as lysophos-
pholipids and arachidonic acid. There are three major conserved regions between ExoU,
patatin, cPLA2, and iPLA2: a glycine-rich motif (oxyanion hole, G-G-X-R/K), a hydroxylase
motif with a catalytic serine (G-X-S-X-G) and a catalytic aspartate motif (D-X-G/A). The
latter two are commonly referred to as a serine-aspartate catalytic dyad, S142, and D344 for
ExoU [38,43,44]. The catalytic aspartate is postulated to remove a proton from the catalytic
serine, which allows the serine nucleophile to attack the carbonyl group of the ester located
in the sn-2 position on the sn-glycerol-3-phosphate backbone of the phospholipid. The
glycine-rich motif stabilizes the transition state. This stabilized state precedes collapse
of the tetrahedral intermediate and release of lysophospholipid, leaving a serine-acyl in-
termediate. A similar mechanism is thought to apply to the hydrolysis of the serine-acyl
intermediate. In this case, the catalytic aspartate activates water for a nucleophilic attack
of the carbonyl carbon of the ester. Alanine substitutions at S142 or D334 render ExoU
non-toxic and unable to cleave phospholipids. These and earlier studies identifying the
binding domain for the ExoU chaperone, SpcU [45], indicated that the amino-terminal half
of ExoU was required for T3SS secretion and contained the catalytic domain.

Functional mapping studies have identified several important regions within the
ExoU C-terminus and downstream of the catalytic domain (positions past D344). Rabin
et al. utilized peptide fusions to green fluorescent protein to map a plasma membrane
localization domain (MLD) that resides between residues 550–687 [46]. Analysis of linker-
insertions suggested that C-terminal residues were somehow associated with recognition
of the eukaryotic co-factor protein required for activity [47]. Error-prone mutagenesis
studies identified specific amino acid residues I609, Q623, N627, I654, R661, and A678 that
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appeared to play roles in both membrane localization and catalysis. Additionally, these
studies indicated that a non-proteinaceous co-factor may contribute to ExoU phospholipase
activity [48]. Stirling et al. demonstrated that a small C-terminal region (679–683) controls
both membrane localization and the addition of diubiquitin at lysine 178 [49]. Covalent
modification of ExoU was not required for toxicity, however. Overall, the C-terminal region
of ExoU is important for both activity and the co-factor interactions that are postulated to
facilitate conformational changes from an apoenzyme (inactive) to a holoenzyme (active)
state [50].

2.2. Crystal Structure of ExoU

The functional mapping data and domain structure of ExoU was resolved when two
independent groups published crystal structures of ExoU in complex with its chaperone,
SpcU [51,52]. The structures are in good agreement with each other and show a complex
multidomain organization. Figure 2 shows a structural diagram and ribbon models of ExoU
based on the published structural solution data discussed herein. Domain 1 consists of a
SpcU chaperone-binding motif located at the N-terminus comprising residues 55–101 [52].
Binding of SpcU to ExoU keeps the protein in an inactive state in the bacterial cytosol [52].
In addition, SpcU guides ExoU to the T3SS where it unfolds and is secreted through the
injectisome into the host cell cytosol [53]. Following the chaperone-binding domain is
the patatin-like domain which encodes the PLA2, residues 106–471. Within this region
is the serine-aspartate catalytic dyad that is required for ExoU cytotoxicity [52]. At the
C-terminus is a bridging domain, residues 480–580, and a membrane localization domain
(MLD) comprising domains 3 and 4, residues 588–687 [51,52]. The MLD is a 4-helix bundle
connected by several loop regions. Approximately 25% of the amino acid residues cannot
be localized from the electron density map, including the catalytic aspartate at position 344,
suggesting a fair amount of structural flexibility.
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the same colors as A with the addition of ubiquitin (transparent purple). The catalytic serine is
marked as a black sphere and the catalytic aspartate is not modeled. Adjacent to the sphere is the
conserved G-G-X-R/K motif shown in orange. The membrane interacting loop 3 of the C-terminal
4-helix bundle is highlighted in yellow. Loops missing from the crystal structures were modeled as
previously described [54].

2.3. ExoU PLA2 Activity and Regulation by Eukaryotic Co-factors

Eukaryotic cell models and in vitro biochemistry techniques have been useful tools
to characterize the regulation of ExoU PLA2 activation. Cloning and expression of ExoU
as a recombinant protein revealed that the predicted PLA2 activity was readily detectable
in vivo and in cell culture models. However, in vitro assays showed that the predicted
PLA2 activity was only detectable when extracts of a eukaryotic cell (e.g., mammalian cells
or yeast) were added to reactions containing phospholipid substrates. These experiments
suggested that a eukaryotic factor was needed for ExoU activation, a regulatory feature
that has also been described for ExoS, ExoT, and ExoY. To identify the eukaryotic activator
of ExoU, Sato et al. performed biochemical enrichment experiments using cell extracts and
selecting fractions that activated ExoU. These studies led to the discovery that SOD1 from
either bovine or yeast sources activated ExoU in a dose-dependent manner [55]. However,
SOD1 was not saturable in kinetic assays, suggesting that only part of the enriched fraction
could activate ExoU [56,57]. Further analyses demonstrated that activation of ExoU by
SOD1 was due a small subpopulation of molecules that was modified or contaminated
with ubiquitin. Anderson et al. demonstrated that ubiquitin itself is a potent activator of
ExoU PLA2 activity. Polyubiquitin and ubiquitinylated proteins also activate ExoU [57].
Ubiquitin is an abundant protein in all eukaryotic cells (up to 5% of total protein) but is
absent in prokaryotes [58], making it an ideal activator of a protein with lethal activity. With
crystal structures in hand, Tessmer et al. used computational, biophysical and biochemical
approaches to map the ubiquitin interface to alpha helix 18 of ExoU and the hydrophobic
face of ubiquitin [59,60]. Key residues of ExoU include T519, T522, V523, and S527 within
the bridging domain [61].

Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] has also been identified as both an
activator and substrate for ExoU [51,62–64]. PI(4,5)P2 is also only present in eukaryotes
and makes up approximately 1% of the total phospholipid content [65]. PI(4,5)P2 is
associated with the inner leaflet of the cellular plasma membrane and participates in a
variety of membrane-associated functions including motility, trafficking, signaling, and
phagocytosis [65]. ExoU binds to liposomes containing 0.5% PI(4,5)P2 with an affinity
of approximately 182 µM whereas liposomes lacking PI(4,5)P2 displayed a dissociation
constant of 1.1 mM [66]. A PI(4,5)P2 binding motif is located within loop 3 of the C-
terminal 4 helix bundle. Residue R661 serves as a key positively charged amino acid
that interacts the negatively charged phosphate moieties of PI(4,5)P2 [62]. Using site-
directed spin-labeling electron paramagnetic resonance spectroscopy, sites consisting of a
basic-hydrophobic motif (residues 660–670, ARGFLRFGKPL) were found to be motionally
dynamic when ExoU was analyzed with buffer alone (apo state), but transitioned to a more
restricted state when ExoU was incubated with liposomes and diubiquitin (holo state, [60]).
Accessibility to NiEDDA relaxation reagents further suggest that the loop inserts into the
phospholipid bilayer, effectively anchoring ExoU to substrate [60]. PI(4,5)P2 may also serve
to oligomerize ExoU to mediate optimal enzymatic activity [64]. In terms of regulating
biochemical function, high affinity binding of ExoU to PI(4,5)P2 is important for plasma
membrane targeting and maximal enzyme activity. Biologically, this interaction is likely
linked to cleavage, disassembly of membrane focal adhesion complexes and cytoskeletal
collapse associated with the early stages of ExoU intoxication [67].

Structural biology and biochemical studies of ExoU activation serve as a scaffold
for the rational design of inhibitors aimed at reducing ExoU-mediated cytotoxicity in
cells. Strategies to develop novel therapeutics are critical to combating infections with
P. aeruginosa; a multi-drug resistant ESKAPE pathogen. Lee and colleagues utilized a
high-throughput cell-based assay to screen chemical compounds and identified an ExoU
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PLA2 activity specific inhibitor named Pseudolipasin A [68]. Pseudolipasin A (PsA) did
not affect bacterial growth or ExoU secretion through the T3SS, but it specifically targeted
the enzymatic activity of ExoU, reducing the virulence of P. aeruginosa strains encoding
ExoU. Treatment with PsA provided yeast, amoeba, and mammalian cells protection from
ExoU-mediated killing [68]. It will be important for future studies to test PsA in pre-clinical
animal infection models to determine any potential therapeutic utility in vivo. In 2014, a
group of researchers identified a small series of arylsulfonamide compounds that inhibit
ExoU cytotoxicity in a yeast-based screening assay [69]. S. cerevisiae was transformed with
an ExoU expressing plasmid regulated by a copper-inducible expression system (pDH105).
Cell viability measured 48 h post treatment with 5 µM of the different compounds iden-
tified arylsulfonamide [69]. Coupling amines with sulfonyl chlorides produced several
compounds that inhibited ExoU-mediated cytotoxicity in yeast and mammalian cells with
inhibitory activity similar to PsA [69]. Whether these arylsulfonamide compounds inhibit
ExoU PLA2 activity, cofactor binding, or alter ExoU conformational state remains to be
determined [70]. Furthermore, two potential ExoU inhibitors have been identified, PsA
and arylsulfonamide; in-depth analyses of structure-activity relationships are pertinent to
further characterize these inhibitors or to generate new inhibitors targeting ExoU.

2.4. ExoU Orthologues

Ubiquitin-mediated activation of patatin-like enzymes was postulated to be a con-
served process in bacteria. Anderson et al. performed an in silico bioinformatics survey of
bacterial genomic sequences to identify patatin-like enzymes [66]. The number of candi-
dates were narrowed with additional search criteria that included possession of a T3 or
T4SS for cytoplasmic delivery of the enzyme and a size exceeding 500 residues. Enzymes
from bacteria with different lifestyles were purified, tested biochemically, or analyzed in
prokaryotic and eukaryotic toxicity assays. Common properties included the requirement
of ubiquitin to detect enzymatic activity in vitro, toxicity for bacterial cells when ubiquitin
was provided by a compatible, inducible expression construct, and the ability to cause
membrane damage or to be expressed in eukaryotic host cells. Activity enhancement
by or binding to liposomes containing PI(4,5)P2 was a variable property suggesting that
subfamilies of ExoU-orthologs exist. When enzymes encoded by potential pathogens
(Achromobacter, Aeromonas, Legionella, Rickettsia, or Vibrio genera) were biochemically and
biologically queried, several were classified as ubiquitin-activated, including enzymes from
Achromobacter xylosoxidans and Aeromonas diversa. Based on modeling studies, the ExoU
orthologue from A. diversa is structurally and functionally similar to ExoU. In contrast, the
enzyme encoded by A. xylosoxidans, AxoU, maintains structural similarity only with the
ExoU patatin domain. A. xylosoxidans is an emerging pathogen in cystic fibrosis patients
and an opportunistic pathogen in immunocompromised individuals. Pathogenesis of
this organism has been associated with a T3SS but the role of AxoU or other effectors is
unclear [71].

2.5. ExoU PLA Activity and Pathogenesis

Besides several Pseudomonas species, other bacterial genera utilize PLA activity for
pathogenesis. Rickettsia prowazekii protein, RP534, is an ExoU orthologue that possesses
PLA1, PLA2, and Lyso-PLA2 activity [40,72–74]. R. prowazekii is an obligate intracellular
bacterium that causes typhus fever in humans and functions to lyse red blood cells and cell
membranes in a PLA-dependent manner [73,74]. Interestingly, the rickettsial ExoU RP534
orthologue only appears to be present in the typhus group of rickettsia. The remainder
of the genus encodes another patatin-family PLA enzyme that has also been reported to
possess an ExoU-like biochemical regulatory profile [75]. Whether rickettsial patatin-like
PLAs are needed for bacterial phagocytosis into the host cell or for phagosome escape and
pathogenesis has not been fully elucidated. As a second example, the complete genome
sequencing of Bacillus anthracis (Ames strain) revealed three conserved regions that align
with the glycine rich motif and serine-aspartate catalytic dyad of ExoU [40,76]. B. anthracis
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is a spore-forming Gram-positive bacterium and causative agent of anthrax [77]. The
major virulence factors of Bacillus anthracis reside on two plasmids, pXO1 and pXO2 [77].
These plasmids encode the secreted exotoxins lethal toxin, protective antigen, and edema
factor. Interestingly, the addition of PLA2 inhibitors (e.g., quinacrine) to mouse peritoneal
macrophages reduces lethal toxin-mediated cytotoxicity [78]. Well studied PLA2 inhibitors,
AACOCF3 (arachidonyl trifluoromethyl ketone, a selective inhibitor of cPLA2) and HELSS
([E]-6-[bromomethylene] tetrahydro-3-[1-naphthalenyl]-2H-pyran-2-one, an irreversible
inhibitor of iPLA2), were no more or less potent at reducing cytotoxicity compared to
quinacrine [78]. These results suggest that eukaryotic host cPLA2 and iPLA2 are not
involved in lethal toxin cytotoxicity. Thus, further studies are needed to fully define the
potential regulatory relationship between the B. anthracis ExoU PLA2 orthologue and lethal
toxin activity.

2.6. ExoU Subverts the Host Innate Immune Response to Infection

P. aeruginosa ExoU has been associated with severe disease outcomes in animals and
humans [10,35]. Infection with an ExoU expressing strain of P. aeruginosa is associated with
poor patient outcomes and, in vitro, results in rapid cell death due to lysis. A pathogenic
role for ExoU during the initial phase of the pathogen-host interaction has been described.
Expression and secretion of ExoU early during the course of infection correlates with
increased bacterial burden in the lungs, increased bacterial dissemination, and increased
mortality [23,79,80]. Macrophages, neutrophils, epithelial, and endothelial cells are rapidly
killed, allowing persistence, proliferation, and dissemination of the bacteria, ultimately
contributing to sepsis [13,81]. By intoxicating and killing immune cells, ExoU dysregulates
the host innate inflammatory response. Diaz and colleagues demonstrated in a P. aeruginosa-
induced pneumonia mouse model that neutrophils are the primary immune cells recruited
to the lungs during infection, and these infiltrating neutrophils are intoxicated by ExoU
and killed within 90 min [82]. Macrophages are also recruited, injected with ExoU, and
killed [83]. In animal infection models, ExoU associates with acute lung epithelial injury,
often progressing to bacterial dissemination and septic shock [81,84]. Instillation of an
ExoU-encoding strain into rabbit lungs resulted in increased epithelial permeability and
leakage of pro-inflammatory mediators into the circulation, along with decreased mean
arterial pressure and cardiac output indicative of septic shock. Conversely, animals in-
stilled with a strain lacking ExoU did not exhibit signs of systemic inflammation and
septic shock [81]. Furthermore, introducing the gene encoding ExoU into noncytotoxic
P. aeruginosa strains expressing a functional T3SS, confers virulence in pneumonia animal
models, often resulting in bacterial dissemination [84]. After ExoU has intoxicated and
killed innate immune cells and epithelial cells, the last host defense before bacterial dissem-
ination are endothelial cells. Pulmonary endothelial cells are an integral part of the host
inflammatory response and function as a barrier between vessels and tissue restricting fluid
and protein leak. ExoU has been shown to cause pulmonary endothelial barrier disruption
and vasculitis in animal models of pneumonia and Acute Respiratory Distress Syndrome
(ARDS) [85,86]. Interactions of T3SS effector proteins with pulmonary endothelial cells
post dissemination into the pulmonary circulation are an emerging area of interest.

Recent evidence suggests the P. aeruginosa T3SS and ExoU also subvert a newly emerg-
ing facet of the innate immune response to infection. Amyloid-β is best known for its
role in the pathology of dementias and Alzheimer’s Disease (AD). Amyloid-β is formed
via sequential cleavage of the amyloid precursor protein (APP) by the β-secretase-1 and
γ-secretase protease complexes [87]. Depending on the nature of the processing event,
differently truncated forms of amyloid-β can be produced (e.g., amyloid-β1–40 or amyloid-
β1–42). Subsequent aggregation of amyloid-β leads to the formation of cytotoxic, prion-like
fibrils that self-propagate, are long-lived, and form plaques in the brains of Alzheimer’s pa-
tients [88–90]. Ultimately, cytotoxic amyloid-β aggregates cause neural inflammation and
brain endothelial cell (EC) death [91–93]. More recently, amyloid-β has been incriminated
as a potential contributor to lung pathology associated with pneumonia caused by the ES-
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KAPE pathogens P. aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae [94]. Indeed,
P. aeruginosa-induced pneumonia appears to trigger cytotoxic amyloid-β production in the
lung as a pathological mechanism that disrupts pulmonary endothelial cell barrier func-
tion [31,33,94–96]. However, not all forms of amyloid-β are cytotoxic. Amyloid-β is also an
antimicrobial peptide that kills a variety of pathogenic bacteria, viruses, and fungi [97–99].
Intriguingly, virulent P. aeruginosa strains expressing the T3SS and exoenzyme effectors
such as ExoU inhibit production of antimicrobial amyloid-β and promote formation of
cytotoxic amyloid-β as a novel mechanism to subvert the host innate immune response to
infection [33]. Current studies are focused on understanding the mechanisms by which
ExoU corrupts the production of antimicrobial amyloid-β.

2.7. ExoU Transiently Represses NLRC4 Inflammasome Activation

The innate immune response is a critical first line of defense to invading pathogens
or cellular stress. During infection, pathogen- and damage-associated molecular patterns
(PAMPs and DAMPs, respectively) are sensed by innate pattern recognition receptors
(PRRs), which then assemble with accessory proteins to form an inflammasome. Inflam-
masomes are multi-protein complexes of PRRs that sense PAMPs and DAMPs produced
during infection or other conditions of cellular stress [100]. The nucleotide-binding domain
containing leucine rich repeats-like receptor 4 (NLRC4) inflammasome has been shown
to recognize P. aeruginosa through interactions between NLR family apoptosis inhibitor
proteins (NAIP) receptors and bacterial ligands (e.g., NAIP1-T3SS needle, NAIP2-T3SS rod,
and NAIP5/6-flagellin) [101–104]. In turn, the activated NLRC4 inflammasome complex
assembles to subsequently convert pro-caspase-1 into its activated form. Caspase-1 activa-
tion results in maturation of IL-1β, IL-18, and the gasderminD executioner of pyroptotic
cell death. Activation of pyroptosis and cell death facilitates release of IL-1β, IL-18, and
pro-inflammatory DAMPs the extracellular milieu, which then triggers a feed-forward
inflammatory response.

A dysregulated host inflammatory response is a hallmark of poor patient outcome pro-
gressing to ARDS and sepsis [105,106]. Sutterwala and colleagues first demonstrated recog-
nition of P. aeruginosa by the NLRC4 inflammasome during infection [107]. Importantly,
ExoU transiently paralyzes caspase-1 driven NLRC4 inflammasome activation within the
first 2 h of P. aeruginosa infection [85,107]. However, the underlying mechanism by which
ExoU transiently paralyzes caspase-1 driven NLRC4 inflammasome activation has not been
defined. Previous studies have demonstrated a link between P. aeruginosa T3SS, NLRC4
inflammasome, and autophagy. During P. aeruginosa infection, mitochondria become dam-
aged activating the NLRC4 inflammasome. Mitochondria-specific autophagy (mitophagy)
is induced in response to mitochondrial damage, which, in turn, down-regulates NLRC4
inflammasome activation [108]. Future studies are required to fully elucidate a potentially
novel pathway through which ExoU dysregulates the host inflammatory response during
P. aeruginosa infection.

3. Perspectives

P. aeruginosa strains expressing the ExoU PLA2 exoenzyme effector are known to
associate with the most adverse patient outcomes, likely owing to the ability of ExoU to
subvert host innate immune responses and cause cellular damage. Virulence factors, such
as the T3SS and ExoU, represent the next frontier of precision medicine therapeutic targets
to combat the imminent threat of antibiotic resistant infectious agents such the ESKAPE
pathogens. ExoU is an especially attractive potential target, considering its contributions
to P. aeruginosa virulence and its requirement for a eukaryotic-specific protein, ubiquitin,
to fully hydrolyze membrane substrates. As the substrate specificity of ExoU is relatively
broad, the interaction between ExoU and SpcU, as well as the requirement for interaction
with ubiquitin for enzyme activation, are postulated to protect P. aeruginosa from the
membrane destructive effects of ExoU prior to its direct injection into host cells by the T3SS.
Thus, interventions that activate ExoU in the bacteria or inactivate ExoU in the host could
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mitigate P. aeruginosa infection. In addition, ExoU orthologs and related enzymes that also
require similar activation steps are encoded by a variety of Gram-negative bacteria that
are pathogenic for humans. Understanding the structural transitions between inactive and
active states of these proteins may provide a target for rationally designed ligands that can
prevent this conversion to a cell and tissue destructive virulence factor. The availability of
crystal structures and recent use of biophysical and computational modeling techniques [54]
open new horizons for understanding allosteric changes of dynamic enzymes in response
to both cofactors and substrates.
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