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Electroencephalograms (EEG) are one of the most commonly used measures to study
brain functioning at a macroscopic level. The structure of the EEG time series is
composed of many neural rhythms interacting at different spatiotemporal scales. This
interaction is often named as cross frequency coupling, and consists of transient
couplings between various parameters of different rhythms. This coupling has been
hypothesized to be a basic mechanism involved in cognitive functions. There are several
methods to measure cross frequency coupling between two rhythms but no single
method has been selected as the gold standard. Current methods only serve to explore
two rhythms at a time, are computationally demanding, and impose assumptions about
the nature of the signal. Here we present a new approach based on Information Theory
in which we can characterize the interaction of more than two rhythms in a given EEG
time series. It estimates the mutual information of multiple rhythms (MIMR) extracted
from the original signal. We tested this measure using simulated and real empirical data.
We simulated signals composed of three frequencies and background noise. When the
coupling between each frequency component was manipulated, we found a significant
variation in the MIMR. In addition, we found that MIMR was sensitive to real EEG time
series collected with open vs. closed eyes, and intra-cortical recordings from epileptic
and non-epileptic signals registered at different regions of the brain. MIMR is presented
as a tool to explore multiple rhythms, easy to compute and without a priori assumptions.

Keywords: cross-frequency coupling, mutual information, EEG rhythms, multiscale interactions, neural
oscillations

INTRODUCTION

Rhythmical activity in the waking brain is organized in space and time at different scales. It
is widely accepted that coupling at multiple oscillatory frequencies allows flexible coordination
between neural assemblies (e.g., Canolty and Knight, 2010). This multiscale nature of neural
circuits is captured in the structure of neurophysiological measures as EEGs. The EEG consists
of scalp recordings of voltage variations in microvolts from large cortical areas, with frequencies
traditionally ranging from 0.1 to about 100 Hz. It is noteworthy that the relationship between
voltage amplitude and frequency follows a 1/f α distribution, which means that the relationship
between the frequency of oscillations and the amplitude of the signal follows an inverse power
law (Buzsáki et al., 2013). Therefore, while fast oscillations show small amplitudes, slow ones
exhibit large amplitudes (frequencies around 10 Hz are the exception to this rule). An important
feature of these oscillations is that different frequencies interact to facilitate cortical communication
and integration (Fell and Axmacher, 2011; Lisman and Jensen, 2013; Knyazev et al., 2019). This
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phenomenon is called cross frequency coupling (CFC) and can
be empirically explored with the study of signals dependencies at
different frequencies (note that in this research work, we will use
rhythms and frequencies as synonyms).

Experimental work on CFC has been mainly focused on
three types of coupling: amplitude-amplitude coupling, phase-
phase coupling, and phase-amplitude coupling (PAC), the latter
being the one that has generated the most fruitful research. For
example, Axmacher et al. (2010) explored the role of theta-
gamma PAC in working memory. They presented participants
with trials with 2, 3, or 4 pictures of faces that they needed
to remember after a short time interval. The intracranial EEG
was bilaterally recorded from the hippocampus during the
maintenance interval. They found higher theta-gamma PAC
during WM retention than in a baseline condition. Furthermore,
they showed that the average frequency in theta in the PAC
was faster during maintenance of one face as compared to
maintenance of four faces. This result suggests that PAC is
sensitive to working memory load in a very specific way,
namely that hippocampal oscillations in theta range adapt its
speed to regulate the gamma amplitude at different memory
load conditions.

PAC has been measured in other cognitive domains as
sensory signal detection (Handel and Haarmeier, 2009), or
attentional selection (Schroeder and Lakatos, 2009), among
others. In addition, evidence of this phase-amplitude interaction
has been found in other species apart from humans (Axmacher
et al., 2010), such as in mice (Wulff et al., 2009) or monkeys
(Lakatos et al., 2005), a finding that stresses the relevance of this
mechanism for general cognition.

The attempt to measure the PAC has generated different
empirical indicators, but the three main measures are: the Mean
Vector Length Modulation Index (Canolty et al., 2006), the
Kullback-Leibler Modulation Index (Tort et al., 2010), and the
General Linear Model Modulation Index (Penny et al., 2008).
These indicators have shown promising results in different
cognitive domains, such as attention (Szczepanski et al., 2014),
perception (Voytek et al., 2010), learning (Tort et al., 2008),
or spontaneous activity (Cheng et al., 2016), among others.
However, most of these methods have important drawbacks.
First, a high number of points is needed in order to provide
robust estimates of PAC; in general, the number of points is
determined by the frequency of the slowest wave of interest.
In addition, since these indicators are sensitive to the noise
in the signal, and the amount of noise may vary among
different data sets, some authors (Tort et al., 2010) have
proposed that the number of cycles needed to compute a
reliable PAC estimate may be more than 200. Another caveat
is that the researcher must specify a priori the frequency bands
at which synchronization will be assessed (Cohen, 2008), and
when attempts have been made to overcome this limitation,
as with the Mean Vector Length Modulation Index (Canolty
et al., 2006), the temporal dynamics of cross-frequency coupling
have been lost. Most of these methods, moreover, only allow
the study of the PAC between two variables as, for example,
in the aforementioned studies that address the relationship
between theta phase and gamma amplitude, thus excluding more

complex interaction patterns, which would involve more than
two frequency bands.

In this research work, we propose a new measure, based
on a different perspective of CFC, in order to avoid these
limitations. Our approach has its roots in previous research
works on symbolic time-series analysis. Symbolic analysis is an
empirical approach to characterize complex data by discretizing
it and obtaining a new data set that represents the underlying
dynamics of the generating process. The common feature of this
analysis is the transformation of the original data into sequences
of a few symbols, followed by the analysis of the structure
of the obtained symbolic sequences (Alcaraz, 2018). Although
it involves some loss of information, in symbolic analysis the
efficiency of numerical computation is greatly increased over
the analyses on the original signal (Piccardi, 2004). Symbolic
data analysis, on the other hand, appears to be less sensitive
to the presence of noise (Cuéllar and Binder, 2001; Graben,
2001; Daw et al., 2003). Although symbolic analysis has had
previous applications in the context of EEG signal analysis (see
for example, Wendling et al., 1996; Graben et al., 2000; Hively
et al., 2000; García-Martínez et al., 2017), to our knowledge this is
the first study employing a symbolic analysis on EEG that allows
a multi-scale approach.

Recently, Martínez-Cancino et al. (2019) have developed
a measure that used mutual information to estimate CFC.
In general, they followed the same procedure of classical
CFC to obtain phases and amplitudes of the signal. The
main difference with previous measures is that they calculated
the mutual information of the phase-amplitude as the main
indicator of PAC (for further details see Martínez-Cancino et al.,
2019). Importantly, mutual information of phase-amplitude is a
mathematical estimation of the dependence between the phase
of the slow rhythm and the amplitude of the rapid rhythm.
These authors showed that this strategy is adequate and can be
easily adapted to ERPs experiments, but it maintains the main
limitations of classical CFC mentioned above.

Our proposal in this work, for the analysis of the symbolic
sequences, is also based on mutual information (for a complete
review on the application of information theory in the field of
Neuroscience we recommend the excellent work of Timme and
Lapish, 2018). However, the rationale is quite different because
we obtained CFC without any calculation of phase or amplitude
at a particular frequency band. The main idea is to obtain series
of binary sequences based on the original EEG series, in such
a way that each of them includes information from a particular
rhythm or oscillatory activity. We then combine the information
from all the series into a new symbolic series. Later, we calculated
the delayed mutual information of these symbolic sequences as
an estimation of dependence between them. For example, if we
aim to investigate the interaction between the theta, beta and
gamma oscillations, we could first obtain one binary series for
each frequency band; second, we would obtain a symbolic series,
constructed with integers, that collected for each time step the
information contained in the binary series; and finally, we would
calculate the mutual delayed information of this symbolic series
to estimate the dependence between the three rhythms. If the
activity from these three rhythms is independent, the delayed
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mutual information would be low; but if the rhythms are coupled,
our estimator would be high. Because the mutual information
covers the relations across all frequencies implicitly, the solution
space is reduced compared to CFC based techniques.

Hence, the proposed measure is an estimator of the
dependence between activity at n different oscillatory rhythms
or scales. We called this measure MIMR, an acronym of Mutual
Information of Multiple Rhythms. The main advantage of this
approach is that it is possible to explore the coupling of more than
two rhythms for a given function. We will describe the measure
in detail in the next section.

MATERIALS AND METHODS

Mutual Information of Multiscale
Rhythms
From the original signal, we obtained multiple binary sequences
capturing different time scales. These binary sequences were
obtained using smoothed versions of the original signal as
thresholds. The smoothed procedure was implemented with
median moving windows of different length. The process goes
as follows: First, the original signal was smoothed (filtered)
using different window sizes. The resulting signals would show
more rapid activity (high frequency) depending on the size of
the window. Second, a binary sequence on a particular scale
was obtained by subtracting all data points from two smoothed
versions using successive window sizes. Negative values in the
subtraction were assigned to 0 and positive values to 1. For
example, if the original series are smoothed using a window
of 201 points, and these values are compared with another
smoothed version with a window of 101 points, the obtained
binary sequence would reflect the differential activity between
both scales. It is also possible to relate the window size with
a particular frequency by knowing the AD rate of the signal.
For example, for an AD rate of 1,000 Hz a window size of 201
would correspond with a frequency of 1,000/201 ˜5 Hz and a
window size of 101 would be more sensitive to 1,000/101 ˜10
Hz. In this particular example, the binary sequence obtained
with the subtraction of both smoothed signals would contain
the activity between 5 and 10 Hz. Once we have built the set
of binary sequences with the same length, we transform them
into a single signal. This new signal is a symbolic sequence
composed of integers, each of them representing the binary
values at each scale. Each integer in the sequence was assigned
by taking together all binary values at that time step as a
single integer in a base of 2. Then, for simplicity, these binary
numbers were transformed into integers in a base of 10 (see
Figure 1 for a graphical description of the entire procedure).
For example, if we obtained three binary sequences, and in time
step 1 the values of each one were 1, 0 and 1; we took the
number 101 as a number in a base of 2, and transformed it to
5 in a base of 10.

Formally, each signal {x(n)} was smoothed using a median
moving window withmwindow sizes {wk,. . ., wm} for k = 1,. . . ,m.
We obtained the binary sequences using the following expression

Hk[xk(n)] = H[median (xk−1(n− (wk−1 − 1)/2), ..., xk−1(n),

..., xk−1(n+ (wk−1 − 1)/2))− median (xk(n− (wk − 1)/2),

..., xk(n), ..., xk(n+ (wk − 1)/2))] (1)

where (wm − 1)/2 are the total points from the sides that are not
included in the smoothing; w0 corresponds to the original signal
x(n); and H[n] is the discrete Heaviside function:

H [n] =
{

1 if n > 1
0 if n ≤ 0

(2)

All binary sequences were made with the same length (N-wm -
1); and therefore, for each time point we had a vector with m
binary values. Each of these vectors were transformed into an
integer so we could have single values to identify all possible
multiscale states. With these values we constructed the new signal
{Y(n)} in which we assigned numbers by considering all values
in the vectors as a single number in a base of 2. After that, we
simply changed this number to a base of 10. Hence, the number
of possible integers in {Y(n)} was 2m (see Figure 1).

Finally, the MIMR was obtained as the delayed mutual
information of integers in {Y(n)} using the delayed mutual
information:

MIMR = I(Y(n− τ),Y(n)) =

∑
n

P(Y(n− τ),Y(n)) log2
P(Y(n− τ),Y(n))

P(Y(n− τ)) P(Y(n))
(3)

which is a measure that gives the average bits predicted in
Y(n) given the state Y(n-τ). It evaluates, therefore, the linear
and non-linear dependencies between two time series, so it
has been used to quantify the linear and non-linear statistical
coupling between biomedical signals (Escudero et al., 2009). The
algorithm to obtain mutual information needs the calculation of
probabilities and joint probabilities at all estates Y(n) and Y(n-
τ). The parameter τcan be estimated using the first value that is
closer to zero in the autocorrelation function of Y(n).

Validation of MIMR With Signal
Simulations
In order to validate the new measure it was necessary to
demonstrate that it is sensitive to the degree of coupling between
rhythms at different frequencies, which are part of the signal. To
this end, we designed two different sets of simulations. In the
first set, we manipulated the coupling between added wavelets
in a signal. In the second set, we manipulated the PAC of two
sinusoidal signals at 8 and 60 Hz. The data corresponding to these
synthetic signals are stored in Synapse, the repository of Sage
bionetworks, with identification number syn22914762. The data
are available on request.

Simulations Based on Wavelets
We constructed signals by means of the addition of three wavelets
at different oscillatory frequencies. The coupling between the
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FIGURE 1 | Graphical description of the method to obtain MIMR from three scales or rhythms. In the first step, the original time series, in blue, are transformed into
multiple binary series. Binary series are represented in a matrix in which the rows are the series at each scale and the columns represent the state of all scales at a
given time step. To construct these new binary series, smoothed versions of the signal, here in red, are subtracted one to each other. In a second step, each column
of the matrix is considered a single integer and the Y (n) series is created. The last step consists of the calculation of time delayed mutual information to Y (n).

wavelets was manipulated by changing the degree of time locking
between them. Each signal, then, was constructed using a base of
300 wavelets distributed along the signal. There were 100 wavelets
per rhythm or frequency. The coupling was manipulated with
the variability in time coupling between the wavelets at different
frequencies. When these wavelets were time locked, we would
expect high values of MIMR. However, if wavelets at different
frequencies were distributed using a random delay, MIMR was
expected to be lower.

The signal x(t) was constructed using three frequencies ×100
wavelets of the type (see Figure 2 for a graphical description of
the signal)

zn(t) = An · e−t
2/2
· cos(2πfnt), (4)

where An and fnare the amplitude and frequency of the
wavelets at frequency n. The separation in points between each
zn(t)at the same frequency n was calculated with a random
number between 100 and 190 points. Time locking between
znsat different frequencies was manipulated using random
numbers between 1 and 90 points. Hence, we included random
delays across wavelets at the same frequency and wavelets
at different frequencies being the former the key parameter
to manipulate time locking. The parameters we used for the
wavelets were: A1 = 4;A2 = 2; A3 = 1; f1 = 1; f2 = 3; f3 =

FIGURE 2 | Graphical description of the process to obtain the signals with
three wavelets and 1/f noise. Note that, for simplicity, in this picture we
included only a single wavelet.

5; time step = 0.01; wavelet duration = 601 points; Finally,
we added noise to the entire signal. We selected a noise with 1/f
power distribution (pink noise) which produces a EEG-like signal
(Novikov et al., 1997).

In our study we manipulated the level of noise in the signal and
the degree of coupling between three frequencies (see Figure 3).
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FIGURE 3 | Coupling of rhythms. (A) Shows three coupled rhythms. They are coupled because the wavelets at different frequencies (in different colors) are time
locked between them. On the contrary. (B) Shows the case in which the wavelets at different frequencies are not coupled. In this case, it can be observed that the
appearance of a wavelet at a particular time is independent of the appearance of the other two wavelets.

The mean signal-to-noise ratios used in the simulations were
1.8, 7.6, and 18.2 dB. The goal was to assess to what extent our
measure was sensitive to frequencies with different couplings in
the presence of added noise. To obtain the binary sequences,
we used windows sizes of (WS: 21, 33, 103) and a time delay
parameter τ with a value of 40.

Simulations Based on PAC
Another set of simulations were constructed to test if MIMR
could capture PAC between different frequencies in a signal. We
simply added two sinusoidal signals at f 1 = 8 Hz, and f 2 = 60 Hz
and modulated the amplitude of the rapid wave with the phase
of the slow one. As in previous simulations, we added 1/f with
signal-to-noise-ratio of 1.8 dB. In this case, the time step was set
to 0.001. The signal was generated as

x (t) = bcos
(
2πf1t + ζ

)
+ A(t)cos(2πf2t) (5)

where A (t) = cos
(
2πf1t

)
+ 1 is the amplitude of the sinusoidal

component with f 2.
The parameter b was introduced to increase the amplitude of

the slow frequency f 1 with respect to the fast frequency f 2. This
parameter b was set to 4 in our simulations.

We manipulated PAC by introducing ζ as a random value in
the phase of the slow signal. In the PAC condition, ζ was set to
zero, but in the No-PAC condition, ζ ranged on the interval± 0.5.
Because ζ does not have an effect on the amplitude of the fast
component, PAC would be lower when ζ 6= 0, and we expected
lower values of MIMR as well. Window lengths used in the
moving medians for the calculation of MIMR were (WS: 19, 127)
and the time delay parameter τ was set to 40.

Validation of MIMR With Empirical Data
We also tested MIMR in two sets of empirical data: from patients
with epilepsy, and individuals with closed and open eyes. We
used data from patients with epilepsy because research has shown
that during ictal episodes there is highly synchronized activity in
large areas of the cortex. This synchronization reflects transient
couplings between neural activity at several frequencies (e.g.,
Lehnertz et al., 2014), and these couplings should be captured
with a measure sensitive to CFC. If MIMR is able to capture
changes in frequency coupling, it should vary with signals from
patients with epilepsy. Our hypothesis is that intracraneal signals
registered during epileptic seizures should exhibit higher MIMR
than intracraneal signals registered during non-epileptic seizures.
In addition, EEG activity is more synchronized across areas
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FIGURE 4 | Graphical samples of the empirical signals used in the study. (A) Shows intracranial recordings from non-epileptic zone (N), Epileptic zone with non-ictal
activity (F), and epileptic zone with ictal activity (S). (B) Shows EEG recordings from healthy participants from open eyes (Z) and closed eyes (O) conditions.
Amplitudes of signals ranged from more than a hundred microvolts in intracranial recordings to a few microvolts in EEG signals.

during eyes closed than eyes open (e.g., Tan et al., 2013). Although
there are not many studies comparing eyes closed and eyes
open conditions in simultaneous frequencies or rhythms, it has
been reported the CFC is higher in eyes closed than eyes open
condition (Jirsa and Müller, 2013). Then, our hypothesis would
be a higher value of MIMR in the eyes-closed than in the eyes-
open condition.

We used two sets of data with 100 EEG segments each.
These segments were collected from a database provided by
Andrzejak et al. (2001). The first set of data was registered from
5 epilepsy patients using intracranial hippocampal recordings
in three different conditions: Epileptic zone with non-ictal
activity; Epileptic zone with non-ictal activity; and non-
epileptic zone (see Figure 4 for a graphical sample). The
length of each individual segment for all conditions (EEG
and intracranial recordings) was 23.6 s, and it was digitized
at A/D rate of 173.61 Hz and filtered with a band-pass of
0.53–40 Hz.

The second set was recorded from healthy participants resting
in conditions of eyes open and eyes closed (see Figure 4 for a
graphical sample). All EEG recordings were artifact free from 5
participants at scalp sites FP1, FP2, F7, F3, Fz, F4, F8, T3, C3,
Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2 (according with the
10–20 system).

In the process of MIMR calculation, we used window sizes of
(WS: 9, 19, 27, 175) to obtain the binary sequences necessary for
Y(n). These window sizes were selected to approximately capture
classical rhythms of beta (˜20 Hz), alpha (˜10 Hz), theta (˜6 Hz)

and delta (≈1 Hz). The parameter τ was set to 15 in MIMR
calculations for all empirical data.

Statistical Analysis Description
As stated in the previous section, in order to validate MIMR,
we compared different simulated signals at different time locking
conditions, and empirical electric activity from the brain. After
checking compliance with the parametric assumptions, we
conducted mixed effects model ANOVAs. Random intercepts
were included for participants. Analyses were performed in R
(R Core Team, 2019) using the lmer() function of the lme4
package (Bates et al., 2014). When more than two conditions
were involved in the comparison, pairwise comparisons were
performed controlling for type I error increase with FDR
algorithm (Benjamini and Hochberg, 1995) (all p–values were
under 0.01). Regarding the simulated signals, we first compared
signals with different time locking (see a summary of the results
in Figure 5A), then we compared simulated signals with different
noise levels (see a summary of the results in Figure 5B), and
we manipulated the coupling of the wavelets in the signal (see a
summary of the results in Figure 5C). Finally, we also generated
synthetic signals in which we manipulated whether or not there
was phase coupling (see a summary of the results in Figure 5D).

Regarding the empirical data, we first compared intracranial
signals from the brain of patients with epilepsy. Then, we
compared EEG signals from participants with their eyes open
and closed. Due to the non-compliance of the parametric
assumptions, we ran non-parametric ANOVAs (Friedman test).
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FIGURE 5 | (A) Notched box plot of MIMR for different coupling conditions (Yes vs. No). (B) Notched box plot of MIMR for different noise levels (Low, Medium, and
High). (C) Notched box plot of MIMR for different experimental conditions depending on the frequency of the rhythms that were coupled (All, Slow or Fast).
(D) Notched box plot of MIMR for PAC and No PAC conditions of a signal with 8 and 60 Hz sinusoidal components.

When significant differences were found and there were more
than two conditions, we performed non-parametric pairwise
comparisons (Wilcoxon test). The FDR procedure (Benjamini
and Hochberg, 1995) was used to control the increase in type I
errors due to the number of comparisons. Obtained results for
empirical data are summarized in Figure 6.

RESULTS

Results of Simulations
In the first instance we compared mean MIMR values when
wavelet pulses were coupled or not coupled. We obtained three
binary sequences from the simulated signal using window sizes
for each frequency of the wavelets. As a result, each binary
sequence reflected the activity at the scale of each wavelet. The
window size for a particular frequency can be selected by taking
into consideration the wavelength of the wavelet. This wavelength
can be calculated by dividing the sample rate with the main

frequency. In the calculation of MIMR for the simulated data,
we used window sizes of (WS: 21, 33, 103) which were calculated
to capture frequencies f 1, f 2, and f 3, respectively. The time delay
parameter τ we used in the estimation was set to 40; this value was
approximated to the mean length at which the autocorrelation
function showed the first minimum. Obtained results of coupling
conditions (see Figure 5A) showed a significant effect of coupling
on MIMR [F(1, 98.99) = 1177.4, p < 0.01].

We then added three noise levels to the original signal (High,
Medium and Low noise level). We applied MIMR to these
compound signals and compared the mean results for each
condition. Obtained results (see Figure 5B) showed significant
differences between MIMR means [F(2, 198) = 1444.9, p < 0.01].

We also manipulated the frequency of the rhythms that were
coupled (All, only Slowest or only Fastest rhythms) (see section
“Materials and Methods”). We then applied the MIMR on these
signals and compared the obtained mean values. Obtained results
(see Figure 5C) showed significant differences between means in
both conditions [F(2, 198) = 484.4, p < 0.01].
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FIGURE 6 | (A) Notched box plot of different areas (F, epileptic non-ictal, S: epileptic and N: non-epileptic) for each Window Size combination (WS). (B) Notched box
plot of different conditions (O: closed eyes, Z: open eyes) for each WS. Note that WS (9, 19, 27, 175) approximately corresponds to frequencies of 19, 9, 6, and
1 Hz, respectively.

Finally, we compared signals composed of two frequencies
(60 and 8 Hz), in which the amplitude of the fast component
was totally determined by the phase of the slow one -condition:
PAC-, with other signals, also composed of two frequencies (60
and 8 Hz), in which the amplitude of the fast component was
modulated by a random factor condition: No PAC. Results (see
Figure 5D) showed significant differences between means in both
conditions [F(1, 14) = 27.63, p < 0.01].

Results of Empirical Data
Empirical Data From Patients With Epilepsy
We calculated the MIMR from different combinations of window
sizes in the process of binarization (WS) applied to the original
signals. The time delay parameter τ necessary for the calculation
of MIMR was set to 15 (approximation of length in the series for
a minimum in the autocorrelation function at all segments). We
adjusted a linear model to the data with MIMR as the dependent
variable and Area (F: epileptic, S: epileptic non-ictal and N: non-
epileptic) as the within-participants factor. The results obtained
with Friedman test indicated significant differences in MIMR
between Areas for almost all window size combinations. See
Figure 6 for a summary of the data and significant differences.
Detailed quantitative information (statistics and p-values) can be
found in Supplementary Table 1.

Regarding Pairwise comparisons, as can be seen (Figure 6A),
MIMR discriminates well between different conditions, this
discrimination being optimal for the most complex signal (WS:
9, 19, 27, 175). The only condition in which MIMR does not

seem to show any difference was in the presence of the slowest
rhythms (WS 27 175).

Open-Closed Eyes Empirical Conditions
We adjusted a linear model to the data with MIMR as the
dependent variable and Condition (Z: Eyes open vs. O: eyes
closed) as the between groups factor from different combinations
of window size applied to the original signal. Obtained results for
Wilcoxon test are summarized in Figure 6B and Supplementary
Table 2. In general, the ability of MIMR to discriminate between
conditions is very good, we did not find differences for some
conditions that included slow rhythms (see Figure 6).

DISCUSSION

There is considerable experimental evidence showing that
the coupling across neural oscillations may reflect integration
processes within and across populations of neurons (Canolty
and Knight, 2010; Fell and Axmacher, 2011; Xu et al.,
2013). Several methods have been used to measure PAC.
Although these methods have had some success, they have
also faced numerous methodological challenges (Aru et al.,
2015; van Wijk et al., 2015), such as the impact of the
choice of bandwidth for band-pass filters, the consequences
of the application of the Hilbert transformation on signals
with closely spaced frequency components, short-time and
weak disturbances, and the difficulty to detect cross-frequency
coupling (Dupré la Tour et al., 2017).
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In this paper we have presented and tested a novel strategy
rooted in research on symbolic time-series analysis and based on
Information Theory. We start from the idea of obtaining series of
binary sequences based on the original EEG series in such a way
that each of them includes information on a particular oscillatory
activity. From these sequences, we have calculated the mutual
delayed information and used it as an estimate of the dependence
between them. This strategy has the advantage of not requiring
phase or power calculation, and being applied to explore the
coupling among several frequencies or oscillatory components.

In order to study the new measure, we applied it to simulated
data and empirical EEG data. We carried out simulations in
which we manipulated whether three wavelets were coupled
or not. We found that the MIMR algorithm discriminated
between both types of signals. In addition, the highest MIMR
values were obtained for the complete coupling condition, where
mutual information between the three wavelets was maximal.
Furthermore, we have studied the robustness of the algorithm
in the presence of 1/f noise. To do that, we generated three
noise conditions (high, medium and low) and found significant
differences in MIMR between the conditions. In addition, and
consistent with predictions, in the high noise condition we
obtained the smallest MIMR values while in the low noise
condition we found the highest MIMR values. It is known that
1/f structure is not enough to simulate EEG series, there are
specific temporal structures associated with oscillatory rhythms
(He, 2014) present in this scale-free structure. The results we
found using levels of 1/f noise indicated that MIMR is able to
capture multiscale components coupled inside a general structure
of 1/f noise. In addition, we also reinforced the validity of MIMR
by including a set of simulations to test if MIMR was able to
capture changes in PAC. In this case, we found that, when the
coupling between the phase of a 8 Hz component was completely
coupled with the amplitude of a 60 Hz component, MIMR
exhibited lower values than when PAC was modulated by a small
random component. Taken together, these simulations provide
evidence indicating that MIMR might be useful to measure CFC
of diverse nature.

Regarding MIMR behavior with the epilepsy empirical data,
we found significant differences between experimental conditions
(epileptic non-ictal, epileptic and non-epileptic) for most
combinations of frequency bands. These results are consistent
with current evidence about CFC in epilepsy. CFC has been
used for example for seizure prediction (e.g., Alvarado-Rojas
et al., 2014), and detection (Malladi et al., 2018). Edakawa et al.
(2016) used PAC of intracranial EEG in 7 patients with temporal
lobe epilepsy, and found high coupling between beta phase and
gamma power during the ictal phase. Interestingly, the PAC
measure was a better detector for ictal phases than gamma
power alone (see also Weiss et al., 2013). But more importantly,
we obtained higher MIMR values for those combinations that
included more frequency bands. These results may indicate that
during ictal conditions there is multifrequency coupling reflected
in the statistical dependence between binary sequences from at
least four rhythms.

A similar pattern of results was obtained for the open
eye - closed-eye datasets. MIMR discriminated between the

two conditions in almost all frequency band combinations.
One study conducted by Barry et al. (2007) indicated that
all frequency bands exhibited increased power values in the
closed eye when compared with the open eye condition. In a
different study, Gao et al. (2008), using non-linear detrended
fluctuation analysis, found complexity changes at multiple scales.
Taken together these results, they suggested that open eye vs.
closed eye rhythms change at all scales and it could be a
reflection of CFC. In this line, Jirsa and Müller (2013) found
higher CFC in eyes closed than in eyes open conditions using
CFC measures of power to power and power to frequency.
Consistent with these results, we found that MIMR was, in
general, reduced in the eyes open condition. However, we could
not find statistical differences in conditions (WS 19 27 175)
and (WS 9 19 27 175) which included slow rhythms. These
results may indicate that slow rhythms are coupled in the
same way in both conditions and, therefore, cortical long range
patterns should be similar. Interestingly, this is also consistent
with one of the findings from the study by Jirsa and Muller,
in which they found different topographical patterns of CFC
in eyes closed and eyes open conditions only at well localized
cortical activity.

MIMR is a new measure that gives an additional perspective
to the study of multiscale interactions in EEG signals; and
because of that, we believe that it may be a good complement
to other existing measures. For example, the advantage of
PAC measures is that they explore an specific phase-amplitude
relationship between two given frequencies. Although MIMR
can be easily applied to two frequency bands by constructing
two binary signals using the appropriate window sizes, the
results are not so specific since they would reflect if the series
from both frequencies show statistical time dependencies or
couplings of any nature. This lack of specificity can be a
limitation that needs to be taken into account. However, from
our point of view, MIMR has two features that could make it
a good candidate measure to explore the structure of EEG (or
other physiological signals). The first one is that it does not
need any assumption about the structure of the signal. This
methodology can be applied to any linear or non-linear signal.
Although the methodology provided by Martínez-Cancino et al.
(2019) is also based in the calculation of mutual information,
it requires phase-amplitude decomposition using the Hilbert
transform and therefore it works on classical assumptions of
linearity. In this context, our measure benefits to a greater
extent from the use of information based methodology. The
second advantage we would like to highlight is the possibility
to explore various scales at the same time. This is a very
important feature because it would be possible to explore if
a given psychological function is better explained with the
interaction of two specific rhythms or, on the contrary, can
be explained as a result of the interactions between three
or more rhythms. Furthermore, since mutual information is
calculated on the symbolic series instead of the original series,
as in symbolic analysis, efficiency of numerical computation is
greatly increased (Piccardi, 2004). This is particularly interesting
for all those applications that intend to use real-time MIMR
(e.g., neurofeedback).
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We are aware that, in this study, we present some data to
validate a totally novel measure. More validation experiments
are necessary and other variations of the same approach could
be tested to improve the measure. Future work could aim to
study more specific cognitive processes through EEGs, or to apply
different methods of signal decomposition at different scales for
a better understanding of the nature of the CFC in a given
signal. In short, MIMR is a new measure that can be easily
applied to neurophysiological signals, it does not take any a priori
assumptions, and gives information about CFC by calculation of
statistical dependence in time between two or more scales.
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