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Abstract
1. Conifers often occur along steep gradients of diverse climates throughout their 

natural ranges, which is expected to result in spatially varying selection to local cli-
mate conditions. However, signals of climatic adaptation can often be confounded, 
because unraveled clines covary with signals caused by neutral evolutionary pro-
cesses such as gene flow and genetic drift. Consequently, our understanding of 
how selection and gene flow have shaped phenotypic and genotypic differentia-
tion in trees is still limited.

2. A 40- year- old common garden experiment comprising 16 Douglas- fir (Pseudotsuga 
menziesii) provenances from a north- to- south gradient of approx. 1,000 km was 
analyzed, and genomic information was obtained from exome capture, which re-
sulted in an initial genomic dataset of >90,000 single nucleotide polymorphisms. 
We used a restrictive and conservative filtering approach, which permitted us to 
include only SNPs and individuals in environmental association analysis (EAA) that 
were free of potentially confounding effects (LD, relatedness among trees, het-
erozygosity deficiency, and deviations from Hardy– Weinberg proportions). We 
used four conceptually different genome scan methods based on FST outlier de-
tection and gene– environment association in order to disentangle truly adaptive 
SNPs from neutral SNPs.

3. We found that a relatively small proportion of the exome showed a truly adaptive 
signal (0.01%– 0.17%) when population substructuring and multiple testing was 
accounted for. Nevertheless, the unraveled SNP candidates showed significant re-
lationships with climate at provenance origins, which strongly suggests that they 
have featured adaptation in Douglas- fir along a climatic gradient. Two SNPs were 
independently found by three of the employed algorithms, and one of them is in 
close proximity to an annotated gene involved in circadian clock control and pho-
toperiodism as was similarly found in Populus balsamifera.
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1  | INTRODUC TION

Conifers have successfully occupied a large number of habitats 
and different climates during their past- glacial histories, which 
allowed them not only to survive and establish in harsh environ-
ments but also to colonize ecoregions with optimal growing con-
ditions (Farjon, 2010). As such, Douglas- fir (Pseudotsuga menziesii) 
constitutes one of the most widespread conifers in western North 
America with a distribution from Southern California up to the 
Northern British Columbia (Gugger et al., 2010). Within its current 
range of occurrence, two distinct varieties are known, which appear 
genetically and phenotypically different: the coastal variety (also 
called P. menziesii var. menziesii) and the interior variety (P. menzie-
sii var.glauca). While the coastal variety is mainly found from cen-
tral California to coastal British Columbia along the Pacific coast, 
the interior variety has its main south- to- north expansion from 
Wyoming/Montana over Alberta up to central British Columbia 
(Hermann & Lavender, 1990; Martinez, 1949). Both varieties hy-
bridize when in contact, resulting, for example, in a 450- km- wide 
hybrid zone in British Columbia (Gugger et al., 2010) where also 
populations represented by both varieties and introgressed trees 
predominantly from the interior into the coastal variety were de-
scribed (van Loo et al., 2015). The macrogeographic regions of both 
varieties differ substantially in climate with cool and moist climate 
conditions in the Pacific habitats toward more continental and dry 
growing conditions in the interior (Gugger et al., 2010). In addition, 
these habitats are also separated by the Great Basin and Columbia 
Plateau, respectively. Accordingly, several common garden ex-
periments found intraspecific trait differences among Douglas- fir 
provenances that were related to growth, physiology, and phenol-
ogy and that showed associations with differences in seed source 
climate among provenance locations (Anekonda et al., 2004; 
Bansal et al., 2016; De La Torre et al., 2021; Kleiber et al., 2017; 
Malmqvist et al., 2017; Vangestel et al., 2018). While such trait– 
climate associations can indeed suggest patterns of local adapta-
tion due to spatially varying selection (Leinonen et al., 2013), their 
interpretation can still be doubtful, because the climatic clines at 
which provenances occur often show parallelism with recoloniza-
tion routes after population contraction and expansion (Nadeau 
et al., 2016). Consequently, the putative adaptive signal obtained 
from such trait analyses can be confounded by those that were left 
behind by neutral processes such as genetic drift and demographic 

processes, which have often formed genotypic clines as well (Caye 
et al., 2019; Günther & Coop, 2013).

Incorporating information from genetic markers has signifi-
cantly improved our understanding of the role of neutral processes 
in population structuring of many plant species and has shed light 
into their postglacial migration histories (Hewitt, 1999). The main 
challenge, however, still remained, which is to distinguish truly adap-
tive regions in the genome from those that show strong divergence 
due to neutral genetic processes. Identifying true environmental 
associations and adaptive regions in the genome (e.g., from single 
nucleotide polymorphisms, SNPs) is of utmost importance, since 
only adaptive markers have the potential to assist tree breeding of 
more resistent genotypes and selection of climatically adapted gen-
otypes for forest management under climate change (Grattapaglia 
et al., 2018; Harfouche et al., 2012; Neale & Kremer, 2011). Yet, one 
of the strongest limitations in disentangling adaptive from neutral 
genomic locations is acquiring a marker set, which is large and dense 
enough to cover the genome in a representative and unbiased fash-
ion. This is particularly difficult in conifers such as Douglas- fir with 
large genomes in the magnitude of several gigabases (De La Torre 
et al., 2014; Neale et al., 2017; Nystedt et al., 2013). Nevertheless, 
recent improvement in massive parallel sequencing and bioinformat-
ics has made it possible to reduce the complexity of such genomes 
by reducing them to the protein coding region, which is called the 
exome (e.g., Neves et al., 2013). Exome capture in conifers results in 
massive reduction in genome complexity allowing to rapidly gener-
ate markers at high number and relatively low costs for a thorough 
study of genomic regions of interest (see, for instance, Capblancq 
et al., 2020; Suren et al., 2016; Thistlethwaite et al., 2017, for ex-
amples on conifers). Even though the exome represents only a small 
fraction of the total genome, these data are particularly suited for 
environmental association analyses (EAA), since adaptive candidate 
SNPs can be further examined when a gene model or annotated ref-
erence genome is available. Moreover, by using a subset of SNPs that 
show no significant deviation from neutrality expectation (as, e.g., 
examined with FST statistics), neutral population substructuring can 
be estimated as well.

In this study, we investigate a 40- year- old common garden ex-
periment with 16 Douglas- fir provenances from across its distri-
bution by combining dendroclimatological methods with modern 
sequencing technique, which allowed us to generate a dense set of 
SNPs throughout the entire exome. Based on the first finding that 

Synthesis. We conclude that despite neutral evolutionary processes, phenotypic 
and genomic signals of adaptation to climate are responsible for differentiation, which 
in particular explain disparity between the well- known coastal and interior varieties 
of Douglas- fir.
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provenances showed a strong association between growth traits 
(response of annual increment to summer temperature) and seed 
source climate, we used classical FST outlier approaches, Bayesian 
inference methods, and latent factor mixed modeling (LFMM) 
in order to identify SNPs with a truly adaptive signal for climate 
adaptation. We hypothesize that spatially varying selection has 
shaped the actual pattern of trait differentiation in Douglas- fir de-
spite a high amount of neutral covariance caused by genetic drift 
and gene flow.

2  | MATERIAL S AND METHODS

2.1 | Common garden experiment

The analyzed trees originate from a block- replicated common gar-
den experiment established in 1976 in eastern Austria with a total 
of 49 native Douglas- fir seed sources (provenances). The mean an-
nual temperature of the trial site is 7.4°C, and mean annual pre-
cipitation is 650 mm (average over the period from 1961 to 1990; 
source: Austrian Central Station for Meteorology). Trees have 
been planted as two- year- old plants in a 2 × 2 m spacing, and each 
provenance was replicated three times in a random fashion within 
the trial. In 2012, two cores per tree were taken from a subset of 
16 provenances originating from a wide part of the natural distri-
bution encompassing Oregon, Washington, and British Columbia 
(see Figure 1, Table 1, and more information below). In brief, tree 
cores were taken at breast height for a total of 178 trees (9– 15 
per provenance and evenly sampled across the three blocks) and 
stored in plastic tubes until further processing in the laboratory. 
Cores were then cut into approx. 1.4- mm- wide cross sections with 
a double- blade circular saw, placed on microfilms, and exposed 

to a 10 kV (24 mA) X- ray source for 25 min. Thereafter, the ob-
tained microfilms were analyzed using the software WinDENDRO 
2009 (Regent Instrument, Quebec, Canada) by measuring annual 
increments to the nearest 0.001 mm for early-  and latewood, re-
spectively (see also George et al., 2019, 2017, 2015, for more in-
formation on the methodology). The 50% percentile of the density 
distribution between minimum and maximum density of each ring 
was used for the identification of earlywood– latewood bounda-
ries (Fries & Ericsson, 2009; illustrated in Figure S1). The radial 
increment data from this common garden experiment, which is in 
detail described in George et al. (2019), were reanalyzed for this 
study, and therefore, additional needle samples for DNA analyses 
were taken from the same 178 trees in May 2019. Needles were 
shot from the lower part of the tree crowns by using a shot gun 
and stored in silica gel until DNA extraction.

2.2 | DNA analysis, probe design, and SNP calling

For each sample, genomic DNA was extracted from lyophilized 
needle tissue using a CTAB protocol (van der Beek et al., 1992) 
with minor modifications made for the processing of 96- well 
plates. DNA concentration and quality were assessed with Qubit® 
Quant- iT dsDNA BR Assay kit and a Qubit 1 Fluorometer (Thermo 
Fisher). A total volume of 50 µl genomic DNA for each sample 
(average concentration: 24 ng/µl) was sent to the genotyping 
service provider RAPiD Genomics LLC (Gainesville, FL, USA) for 
sequencing.

Exome capture probes were designed as described in Neves 
et al. (2013): Briefly, DNA was sheared to a mean fragment length of 
400bp, and fragments were end- repaired, followed by incorporation 
of unique dual- indexed Illumina adapters and PCR enrichment.

F I G U R E  1   Geographic origin and genetic clusters of provenances (a), location of trial site (a small window), and climate clusters of 
provenances (b). Genetic clusters were colored by results of genomic PCA based on 1,500 randomly chosen markers
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Intron– exon boundaries were designed by mapping tran-
scripts from the published Douglas- fir reference transcriptome 
from Howe et al. (2013) (https://www.ncbi.nlm.nih.gov/Trace s/
wgs/?val=GAEK01) to the Douglas- fir reference genome assembly 
Dougfir 1.0 (https://www.ncbi.nlm.nih.gov/assem bly/GCA_00151 
7045.1/#/st) from Neale et al. (2017). Only probes that hit once 
to the genome and that showed sufficient GC content were in-
cluded. This resulted in 20 K probes that were found in 12,272 
scaffolds with an average number of 1.6 probes per scaffold and 
a maximum number of 18 probes per scaffold. Sequence capture 
was performed using RAPiD Genomics proprietary chemistry and 
workflows. Samples were pooled equimolar and sequenced using 
a HiSeq 2x150.

After sequencing, Trimmomatic (Bolger et al., 2014) was used to 
remove sequencing adapters and the trimmed reads were mapped 
with BWA (Li & Durbin, 2009) using the default settings to the 
Douglas- fir reference genome. SNPs within probes were identified 
with FreeBayes (Garrison & Marth, 2012, available at https://github.
com/ekg/freeb ayes). VCFtools (Danecek et al., 2011) was used to 
store the identified SNPs for further downstream analysis in VCF 
format by applying the following filter: accepted mean depth across 
all individuals = 750, minimum total depth per individual = 3, percent 
of individuals allowed missing to retain a site = 0.4, minimum SNP 
quality = 10.

2.3 | Consecutive SNP filtering and exclusion of 
trees with confounding effects

In order to create a genomic dataset that is free of sources, which 
could potentially affect the false- positive discovery rate of adap-
tive SNPs, we used a restrictive and conservative filtering approach: 
As such, we removed all SNPs with a minor allele frequency < 0.05 
and those SNPs that showed significant deviation from the Hardy– 
Weinberg expectation (threshold: 10– 6). Furthermore, we performed 
pairwise linkage disequilibrium (LD) pruning between markers with a 
LD threshold of 0.2 in order to retain only unlinked SNPs for environ-
mental association analysis. For this, we used the snpgdsLDpruning 
function implemented in the SNPrelate package in R (R Development 
Core Team, 2003).

Furthermore, kinship among individuals was estimated by 
calculating the identity- by- descent (IBD) methods of moments 
between all pairs of individuals using a subset of SNPs that 
was already corrected for LD (see section above). We retained 
only those trees that showed a kinship coefficient <0.25 to any 
other tree in the dataset. Trees that showed signals of hetero-
zygote deficit (calculated as 1 − (Hetobs/HetExp) over all loci) 
were removed prior to analysis with a threshold of 0.1. Finally, 
we included only trees with an overall SNP call rate of 0.95 for 
subsequent analyses. All filtering steps were performed in R by 

TA B L E  1   Overview of provenance origin and climate

Provenance ID Name Region Latitude Longitude Altitude MAT MAP N

AB Alberni British Columbia 
coastal

49.325 −124.85 150 9.2 2,161 10

NS Nelson British Columbia 
inland

49.5 −117.2667 750– 900 6.5 941 13

FJ Fort St. James British Columbia 
inland

54.4833 −124.25 850 2 590 10

CM Clemina British Columbia 
inland

52.5833 −119.3167 900 3.9 854 9

AL Adams Lake British Columbia 
inland

50.9651 −119.7056 450– 600 6.5 528 11

DA D'Arcy British Columbia 
transition

50.5567 −122.5 250 8.3 516 13

PG Pine Grove Oregon coastal 45.1 −121.3833 750 8.5 453 10

AQ Abiqua Basin Oregon coastal 44.8802 −122.506 600– 750 8.3 2,191 11

CC Cascadia Oregon coastal 44.439 −122.41 600– 750 10.2 1,947 10

ML Matlock Washington coastal 47.25 −123.4167 100 10.1 2,353 11

CE Cle Elum Washington coastal 47.2167 −121.1167 650 7 992 9

RD Randle Washington coastal 46.4847 −121.9491 300– 450 9.3 1,604 13

DR Darrington Washington coastal 48.1601 −121.4968 900– 1050 6 3,623 15

SP Snoqualmie Pass Washington coastal 47.4129 −121.4411 600– 750 6.1 2,551 12

NP Newport Washington inland 48.2 −117.05 750 7.3 736 11

SK Spokane Washington inland 47.7833 −117.2 550– 650 8.4 518 10

Total 178

https://www.ncbi.nlm.nih.gov/Traces/wgs/?val=GAEK01
https://www.ncbi.nlm.nih.gov/Traces/wgs/?val=GAEK01
https://www.ncbi.nlm.nih.gov/assembly/GCA_001517045.1/#/st
https://www.ncbi.nlm.nih.gov/assembly/GCA_001517045.1/#/st
https://github.com/ekg/freebayes
https://github.com/ekg/freebayes
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using the packages gdsfmt, SNPrelate (Zheng et al., 2012), and vcfR 
(Knaus & Grünwald, 2017).

2.4 | Climate data and trait analyses

2.4.1 | Climate data

Information on provenance climate was obtained from the 
ClimateNA database (Wang et al., 2016) under http://www.clima 
tewna.com/. Latitude/longitude and elevation information for prov-
enance origins was used to retrieve a total of 247 annual, seasonal, 
and monthly climate variables (reference period: 1961– 1990). The 
full list of climate variables can be found in Appendix S1. In order to 
reduce the complexity of these data, the 247 variables were trans-
formed into principal components and the first four PCs were stand-
ardized (i.e., expressed as standard deviations from the mean). These 
standardized climate PCs (hereafter called environmental PCs) were 
used for subsequent analyses of environmental association analysis 
(see Section 2.5 below).

2.4.2 | Phenotypic data

Growth traits for this dataset were derived from the study of George 
et al. (2019). Briefly, tree- ring series were standardized using a 15- 
year cubic smoothing spline in order to remove the biological age 
trend. The standardized series were aggregated to chronologies for 
each provenance by calculating the year- to- year biweight robust 
mean among trees in each provenance (Bunn, 2008). For the pur-
poses of this study, we used the bootstrapped response functions 
that were applied to ring width chronologies of the same Douglas- fir 
provenances in George et al. (2019). Response functions and in par-
ticular response coefficients between a growth trait (in our case, ring 
width) and trial site climate provide insights of the relative impor-
tance of an environmental variable for a trait (Lévesque et al., 2014; 
Zang & Biondi, 2013). However, when calculated at provenance 
level, bootstrapped response coefficients can be related to prov-
enance source climate in order to unravel genecological clines (i.e., 
some provenances may react more sensitive to an environmental 
factor than others as a result of local adaptation). In this study, we 
used the response of earlywood increment to July temperature at 
trial site as trait of interest because of two reasons: First, the data 
in George et al. (2019) unraveled significant differentiation among 
Douglas- fir provenances for this trait; and second, growth response 
in earlywood has been shown to be significantly involved in drought 
response and subsequent survival in Douglas- fir (Martinez- Meier 
et al., 2008), which suggests that this trait most likely harbors sig-
nals of spatially varying selection among provenances. Multiyear 
correlations between standardized earlywood time series and July 
temperature at trial site between 1979 and 2011 were bootstrapped 
by using the R packages bootRes (Zang & Biondi, 2013) and dplR 
(Bunn, 2008).

2.5 | Outlier detection and environmental 
association analysis (EAA)

To distinguish SNP markers throughout the exome that have a puta-
tive adaptive signal for an environmental factor from nonadaptive 
(neutral) SNPs, we used four different algorithms. These are based 
either on FST outlier detection methods (Arlequin & BayScEnv) or on 
correlations between allele frequencies and environmental variables 
(BayEnv2 and LFMM2). Regardless of the algorithm that is applied, 
controlling for variation in allele frequencies that is simply caused 
by neutral evolutionary processes such as genetic drift or gene flow 
is a crucial step for identifying adaptive candidate SNPs (Rellstab 
et al., 2015). Since the fraction of adaptive SNPs is usually small 
compared with all analyzed SNPs, adjusting the results carefully 
for false- positive discovery rates is of utmost importance. For that 
reason, we selected four population genomic programs (Arlequin, 
BayScEnv, BayEnv2, and LFMM2), which have implemented various 
testing strategies in order to control for confounding effects and 
false- positive errors.

The coalescent approach implemented in Arlequin 3.5 (Excoffier 
& Lischer, 2010) compares locus- specific patterns of population dif-
ferentiation with a null distribution, which is simulated under the 
assumption of a hierarchical island model (Excoffier et al., 2009). 
p- Values are estimated locus- wise from the joint distribution of 
heterozygosity and FST. If the locus- specific FST exceeds the confi-
dence boundaries of the global observed FST, the respective locus 
is considered to be an outlier and likely to be under selection. Since 
we observed significant population substructure (see Section 3) in 
our dataset, we chose the hierarchical island model instead of the 
finite island model in order to reduce the number of false- positive 
candidate SNPs, since the confidence intervals around a given FST 
value become narrower, the more the populations are sampled (see 
Excoffier et al., 2009). Groups for the hierarchical island models 
were defined based on the first two principal components obtained 
from 1,500 randomly chosen neutral SNPs with the snpgdsPCA 
function in the SNPRelate package in R. We used 200,000 simula-
tions in Arlequin vers. 3.5 with 10 simulated groups and 100 demes 
in each group. SNPs were considered to be under selection when 
their observed FST exceeded the 5% upper quantile of the simulated 
null distribution.

BayScEnv (Villemereuil & Gaggiotti, 2015) is a FST- based ge-
nome scan method that incorporates also environmental differ-
entiation. The algorithm tests a model of local adaptation with 
environmental differentiation (i.e., the parameter g in Villemereuil & 
Gaggiotti, 2015) against two alternative models: (a) the neutral model 
consisting largely of demographic effects and (b) the locus- specific 
model that includes locus- specific effects other than selection due 
to environmental differentiation. Posterior error probabilities for 
choosing the model of local adaptation in favor of the two alterna-
tive models are calculated by means of MCMC simulations, and re-
sults are also adjusted for false discovery rates by providing q- values 
for each locus. We used 20 pilot runs each with a length of 2000 
and a burn- in of 50,000 with a thinning interval of 10. Furthermore, 

http://www.climatewna.com/
http://www.climatewna.com/
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a prior probability of 0.1 was used for the parameter pi (assuming 
every 10th locus harbors a non- neutral signal), while a prior proba-
bility of 0.5 was used for the parameter p (assuming around 50% of 
all loci are associated with an environmental variable). Acceptance 
rates and convergence of the MCMC chain were inspected after 
each model run and for each of the four environmental PCs by using 
the coda package in R.

In contrast to the FST- based outlier detection method, Bayenv2.0 
(Günther & Coop, 2013) calculates standardized allele frequencies 
and tests for correlations between environmental variables and 
those frequencies. Neutral and spurious correlations arising from 
shared population history and gene flow are controlled for by in-
cluding a covariance matrix obtained from a subset of unlinked and 
putatively neutral SNPs. We used a subset of 1,500 randomly cho-
sen unlinked SNPs for matrix estimation and ran Bayenv2.0 with 
100,000 iterations. Subsequently, all identified SNPs for each of 
the four environmental PCs with a Bayes factor >30 (Jeffreys, 1961) 
were considered as candidates for environmental association analy-
sis. Since the algorithm in Bayenv2.0 is based on MCMC simulations, 
each run was repeated three times in order to ensure that results 
remain robust. We additionally calculated spearman rank correlation 
coefficients in addition to Bayes factors for each SNP in order to 
ensure that detected candidates were correctly identified and not 
confounded by outliers (see Table 2 and recommendation in Günther 
& Coop, 2013).

Finally, we used a regression model combining fixed (i.e., envi-
ronmental) and latent model effects (i.e., neutral population struc-
ture). The model has the form:

with Y being the response genotype matrix, XBT the matrix of fixed 
effects (climate PCs), E the matrix of residual errors, and W the latent 
matrix (see Caye et al., 2019). W determines the confounding effect 
of neutral population structure and is determined by k latent factors, 
where k defines the number of ancestral populations as obtained from 
a subset of putative neutral loci. As an approximation of k, we used the 
scree plot obtained from principal component analysis performed on 
the 1,500 randomly chosen SNPs described above. Calculations were 
carried out using the lfmm2 function in the LEA package in R (Frichot 
& François, 2015).

2.6 | Adaptive signal of outlier SNPs and functional 
interrogation

In order to further interrogate the identified candidate SNPs, we 
first defined a set of consensus variants. Consensus SNPs were de-
fined as those SNPs that were independently detected by at least 
two of the four chosen methods according to thresholds in Table 2. 
Subsequently, we functionally interrogated these SNPs with the help 
of the annotated Douglas- fir reference genome (Psme.1_0) avail-
able under https://treeg enesdb.org/FTP/Genom es/Psme/v1.0/. We 
used the integrative genomics viewer (Robinson et al., 2011) and ex-
plored scaffold- wise whether consensus SNPs were located within 
known genes or situated nearby to genes. Finally and in order to 
prove whether the unraveled consensus SNPs have the ability to dis-
criminate between provenances adapted to different climates, the 
first and second eigenvectors for each tree were calculated based on 
consensus SNPs and, for comparison, based on an equal number of 
randomly chosen neutral SNPs, respectively. For this, the snpgdsPCA 
function from the SNPRelate package in R was employed.

2.7 | Isolation by climate versus isolation by 
distance and isolation by colonization

In order to disentangle the various sources that could have caused 
genomic and phenotypic differentiation among Douglas- fir popula-
tions, we performed redundancy analysis (RDA). RDA uses a mul-
tiple linear regression method in order to model allele frequencies 
as a function of independent explanatory matrices. As independent 
matrices, we included five different predictors: the first two climate 
PCs, geographic information (Lat, long), and information on shared 
colonization history. For the latter, we used the STRUCTURE algo-
rithm (Pritchard et al., 2000) and estimated ancestry proportions 
(Q- values) for each tree testing different scenarios of putative an-
cestral populations (K: 1– 8) for the neutral subset of 1,500 SNPs, 
which was described above. The most likely number of ancestral 
populations was chosen based on the minimum cross- entropy cri-
terion (Alexander & Lange, 2011). For this, we visually inspected 
the cross- entropy plot and determined the number of populations 
where the cross- entropy reached a plateau. This revealed a most 
likely K- value of two, and populations were divided into a western 

(1)Y = XB
T
+W + E

TA B L E  2   Utilized algorithms and chosen thresholds for SNP identification

Algorithm
Method for accounting for 
neutral processes

Climate data included 
in calculations Threshold

Total number 
of outlier SNPs

Climate 
PC1

Climate 
PC2

Arlequin FST hierarchical island model No −log10 (1−FST 
quantile) > 1.3

1,148 (29)

BayScEnv FST null model Yes −log10 (Q- value) > 1.3 4 4 0

BayEnv2 Matrix estimation from neutral 
SNPs

Yes BF > 30; |rho| > 0.4 28 10 18

LFMM2 K latent factors from PCA Yes −log10 (p- value) > 1.3 1,921 (4) 1,082 (2) 908 (2)

https://treegenesdb.org/FTP/Genomes/Psme/v1.0/
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and eastern cluster (see Section 3 and Figure S2). Latitude, longi-
tude, and Q- values were z- transformed prior to analyses as was 
done for the climate PCs. We performed different sets of RDAs 
on the complete SNP dataset (17,489 SNPs) and subsequently for 
the consensus outlier SNP set described in Section 2.6: Combined 
models included either both climate PCs, geographic information 
(latitude and longitude), or Q- values, respectively. In individual 
models, we also tested for the effect of every single predictor sepa-
rately (i.e., either climate PC1, climate PC2, latitude, longitude, or 
Q- value). For this analysis, the vegan package in R was employed 
(Oksanen et al., 2020).

3  | RESULTS

3.1 | SNP dataset

Within the 20K probes that were designed for exome capture, a total 
of 90,979 SNPs were successfully called with Freebayes and passed 
the applied quality filter as described in Section 2.2. Since a large 
proportion of these 90,979 SNPs had either a minor allele frequency 
<0.05 or a call rate <0.95, 41,009 SNPs were consequently removed 
and not considered for downstream analysis. 4,269 markers showed 
significant deviations from the Hardy– Weinberg proportion and 
were excluded from analyses accordingly. Finally, testing for linkage 
disequilibrium among markers revealed 17,489 SNPs, which were 
physically unlinked, and only these SNPs were included in all subse-
quent analysis steps.

From the 178 trees, 5 showed significant heterozygosity defi-
ciency probably as a result of inbreeding and were hence excluded 
from subsequent analyses. There was no significant family structure 
among trees within provenances as revealed by IBD methods of mo-
ments so that all remaining 173 trees were included in environmen-
tal association analysis.

3.2 | Climatic groups, population structure, and 
growth response functions

The first two principal components of the 250 long- term climatic 
variables together explained 79.9% of variation (Figure 1). The first 
principal component (hereafter called climate PC1) was strongly re-
lated to temperature variables (correlation with mean annual temp. 
−0.99 and with minimum temperature of coldest month: −0.97) 
and length of growing season (correlation with number of growing 
degree days > 5°C = 0.88). The second component (climate PC2) 
was strongly correlated with precipitation regime at seed origin 
(rMAP = 0.94; rsummer:heat mositure index = 0.81). The third and fourth PCs 
explained less variation and were related to solar radiation and an-
nual snow precipitation, respectively (Appendix S2). As expected, 
provenances could be roughly divided into two main groups when 
plotted against the first two climate PCs, that is inland and coastal 
provenances (Figure 1b). Based on the subset of 1,500 randomly 
chosen SNPs, five population clusters were unraveled: (a) prov-
enances from northern inland British Columbia (Fort St. James, 
Clemina, Adams Lake), (b) the three inland provenances from inte-
rior Washington and Southern British Columbia (Newport, Spokane 
(both WA) and Nelson (BC)), (c) coastal provenances from British 
Columbia, Washington, and Oregon (Alberni, Matlock, Cle Elum, 
Pine Grove, Randle, Darrington, Abiqua Basin, and Cascadia), (d) a 
single provenance cluster Snowqualmie Pass (WA), and (e) another 
single provenance cluster including provenance D'Arcy in the transi-
tion zone between coastal and inland British Columbia (Figure 1a).

Response of earlywood growth to July temperature at the trial 
site varied significantly among provenances. In general, inland prov-
enances from British Columbia and Washington had lower response 
coefficients than their coastal counterparts (Figure 2). Response co-
efficients varied between 0.17 (Newport, WA) and 0.42 (Cascadia, 
OR). Differences among provenances were statistically significant 
as suggested by 95% confidence intervals of the bootstrapped 

F I G U R E  2   Phenotypic differentiation among provenances and relationship between response of earlywood to summer temperature in 
the common garden (y- axis) and climate at seed origin (x- axis)
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coefficients. When regressed against climate PC1 and PC2, the 
relationship was significant with a stronger positive earlywood re-
sponse toward warmer provenance origins (r = .57; Figure 2a) and 
toward wetter provenance origins (r = .48; Figure 2b). There were 
no significant relationships to climate PC3 and climate PC4, and con-
sequently, only the first two climate PCs were considered for envi-
ronmental association analysis.

3.3 | Outlier SNPs and environmental associations

The total number of outlier SNPs and those associated with cli-
mate varied significantly among detection methods. Arlequin and 
LFMM2 found a total of 1,148 and 1,082 SNPs, which showed 
signals of selection and association with climate PC1, respectively. 
However, when corrected for multiple comparisons, only 29 and 2 
SNPS, respectively, passed the adjusted p- value threshold (−log10 
corrected = 5.54). BayEnv2 revealed a total of 10 SNPs associated 
with climate PC1 and BayScEnv exhibited 4 SNPs (Figures 3 and 4a, 
Table 2). 194 SNPs were commonly found by Arlequin and LFMM2, 2 
SNPs were found by LFMM2 and BayEnv2, each 1 between Arlequin 
and BayEnv2 and LFMM2 and BayScEnv, and all four SNPs detected 
with BayScEnv were also listed as outliers in Arlequin. As the most 
promising candidates, SNPs #15099 and #78509 appeared indepen-
dently as outliers associated with temperature in three of the four 
employed programs (Figure 5a).

For climate PC2, LFMM2 detected 908 SNPs (2 SNPs still sig-
nificant after Bonferroni correction), BayEnv2 detected 18 SNPS, 
while no significant SNPs were detected by BayScEnv. 46 SNPs that 
appeared as outliers in Arlequin were also shortlisted in LFMM2, and 
SNPs #51115 and #69292 were commonly detected by LFMM2 and 
BayEnv2. However, for climate PC2 no SNP appeared to be short-
listed more than twice.

3.4 | Interrogation of putative adaptive SNPs

A total of 18 consensus SNPs (11 for climate PC1 and 7 for climate 
PC2) were selected for functional interrogation and spatial fre-
quency analysis. All 18 SNPs were at least found independently by 
two or three of the used algorithms when the thresholds described 
in Table 2 were applied. However, since a large number of common 
SNPs were found between LFMM2 and Arlequin (194 and 46, re-
spectively), we selected only the top five candidates ranked by the 
- log10 LFMM p- value for both climate PCs, respectively.

Out of the 18 consensus SNPs, six were located directly within 
annotated genes, five were situated in close proximity to known 
genes (less than 1,000 bp up-  or downstream), and the remaining 
seven were located more distantly from annotated genes (>9 kb). 
Ten genes had known functions, and these encompassed mostly 
well- known proteins, enzymes, and transcription factors involved 
in signaling, DNA- binding, and methylation (Table 3). Most interest-
ingly, for SNP #78509 which was independently found by three of 
the four algorithms as outlier, a circadian clock protein involved in 
photoperiod sensing in Arabidopsis thaliana was found to be coded 
by Douglas- fir gene PSME_16548.

Finally, our two candidate SNPs #15099 and #78509, which 
were three times independently identified as truly adaptive outliers, 
showed at least by trend differentiation in space, since the alterna-
tive allele increased in frequency for both SNPs toward the inland 
and those toward colder provenance locations (Pearson's correlation 
coefficients between allele frequencies and mean warmest month 
temperature were −0.31 and −0.32, respectively; Figure 6).

When comparing the first two eigenvectors based on the 18 con-
sensus SNPs with eigenvectors obtained from an equal number of 
randomly chosen neutral SNPs, provenances could be clearly sep-
arated into inland and coastal provenances, whereas no clear dif-
ferentiation was observed for 18 randomly chosen SNPs (Figure 7).

3.5 | Isolation by climate versus isolation by 
distance and isolation by colonization

Redundancy analysis revealed no significant effect of the tested pre-
dictors for among- population differentiation regardless of whether 
the total set of SNPs was used or the 18 adaptive consensus SNPs 
(Table 4). The proportion of explained variance ranged between 
0.007 (east– west ancestry) and 0.013 (climate) in the combined 
models and between 0.002 (longitude) and 0.01 (climate PC1) in the 
individual models. Only climate PC1 (temperature) showed a mod-
erate significant effect for among- population differentiation when 
tested on the outlier SNP set (significant at α < 0.1).

4  | DISCUSSION

In this study, we combined observations from a common gar-
den experiment with genomic information in order to unravel 

F I G U R E  3   FST outliers according to the hierarchical island 
model implemented in Arlequin 3.5. Yellow points show SNPs 
outside the upper 5% quantile of FST distribution. Red dashed lines 
show p < .001 and p < 5.54e−06 thresholds, respectively. The 
latter represents the 5% significance threshold after Bonferroni 
adjustments for multiple testing
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polymorphisms, which could have caused the strong phenotypic 
cline provenances showed after 40 years of growing. While such 
old common garden experiments are rare for most tree species, 
their retrospective analysis using dendroclimatology among other 
approaches can shed light in evolutionary history and adaptation 
patterns, because a high number of repeated observations are 
naturally archived in tree cores. Although this study is not the first 
attempt that linked molecular genomics with tree- ring data (Heer 
et al., 2018; Housset et al., 2018; Trujillo- Moya et al., 2018), it is 
one of the very first environmental association analyses incorpo-
rating phenotypic data for the economically important Douglas- fir, 
which is recently attracting attention outside its natural range due 
to its ability to cope with climate warming and drought (Eilmann & 
Rigling, 2012). Hence, we will discuss our findings also in light of 
adaptive forest management.

4.1 | Growth response of trees after four decades 
in the common garden

The sixteen analyzed provenances showed a strong pheno-
typic cline with temperature and precipitation at seed origin. 
Provenances with earlywood growth strongly responding to 
July temperature at trial site originated mainly from the warmer 
and wetter coastal sites in British Columbia, Washington, and 
Oregon, whereas less responsive provenances came from colder 
and drier inland sites. Many other studies have revealed such a 
differentiation pattern between the coastal variety and interior 
variety in terms of either productivity (Eilmann et al., 2013), physi-
ology (Anekonda et al., 2004), or even stress response (Kleiber 
et al., 2017). Our findings could indeed add evidence that coastal 
varieties are generally more productive, since earlywood response 

F I G U R E  4   Manhattan plots for marker p- values as obtained from LFMM2. Black dots show markers with p < .05, blue dots with p < .001 
and red dots show all SNPs that were still significant after adjusting for multiple testing

F I G U R E  5   Venn diagrams for identified SNPs among the different algorithms. Numbers in red show SNPs that were discovered three 
times. Numbers in brackets indicate SNPs still significant after adjusting for multiple testing



     |  8247GEORGE Et al.

to summer temperature is a strong indicator for overall productiv-
ity. Earlywood cells in conifers mainly ensure that water demand 
in the crown will be sufficiently covered during phases of high 
evapotranspiration and trees with larger earlywood fractions can 
consequently allocate more carbon (Björklund et al., 2017). The 
climate at our trial site already represents the dry margin of the 
natural distribution of Douglas- fir and is prone to extreme sum-
mer droughts (George et al., 2019). Hence, we can assume that 
trees have been growing under stressful conditions in most of the 
years. The study by George et al. (2019) in which the same trees 
have been analyzed also demonstrated that provenances from 
warmer locations had less growth reductions during years with 
extreme water deficit, whereas colder inland provenances had the 
highest reductions in annual increment. However, it has yet to be 
confirmed whether the higher drought tolerance of coastal prov-
enances (expressed as ratio between growth during the drought 

year compared with a predrought period) really mirrors the ability 
of trees to withstand drought or simply mirrors adaptive growth 
patterns, which could come at the cost of lower recovery or higher 
mortality after drought periods (Montwé et al., 2015).

4.2 | Outlier SNPs and the role of selection across a 
steep environmental cline

One of the main goals of this study was to identify polymorphisms, 
which show true signals of adaptation to climate and which are 
not confounded by neutral processes such as gene flow, drift, 
and migration. The analyzed provenances showed strong genetic 
substructuring which partly coincided with phenotypic differen-
tiation (Figures 1 and 2). This makes disentangling adaptive from 
nonadaptive signals particularly challenging (Ahrens et al., 2018; 

TA B L E  3   Functional annotation and genomic position of outlier SNPs

SNP- ID FST

Environmental 
factor (Climate PC) Ref Alt Position Psme.1_0 ID Homolog

Functional 
annotation

13432 0.318517 Temperature G T Within PSME_50311 XP_010254239.1 Protein TIFY 8- like

30680 0.285955 Temperature C A Within PSME_15966 XP_021822298.1 Cysteine synthase, 
chloroplastic/
chromoplastic- like

70743 0.359548 Temperature A G Within PSME_12112 XP_006848390.2 hemK 
methyltransferase 
family member 2

69642 0.303341 Temperature T G Within PSME_27253 AbisacEGm005830t1 Unknown

58318 0.339572 Precipitation A G Within PSME_28492 XP_021641448.1 Transcription factor 
FAMA- like

31046 0.39123 Precipitation T C Within PSME_50228 MA_9245337g0020 Unknown

89806 0.30836 Temperature A T <1,000 bp PSME_21916 XP_022768877.1 40S ribosomal 
protein S2– 2- like

12985 0.364605 Temperature T C <1,000 bp PSME_36263 XP_020271476.1 60S ribosomal 
protein L31

78509 0.412301 Temperature T C <1,000 bp PSME_16548 XP_006844718.1 WD repeat- 
containing LWD1

60539 0.379081 Precipitation G C <1,000 bp PSME_08707 GACG01002090.1 Unknown

51115 0.205466 Precipitation C A <1,000 bp PSME_16051 XP_023549543.1 Bifunctional UDP- 
glucose 4- epimerase 
and UDP- xylose 
4- epimerase 1

15099 0.297343 Temperature T C >9,000 bp PSME_21319 AbisacEGm027507t1 Unknown

20020 0.311698 Temperature G T >9,000 bp PSME_13222 AbisacEGm021661t1 Unknown

71701 0.388778 Temperature C T >9,000 bp PSME_33882 XP_022769023.1 Inositol- 
pentakisphosphate 
2- kinase- like

69292 0.281179 Precipitation G C >9,000 bp PSME_27253 AbisacEGm005830t1 Unknown

57319 0.265295 Precipitation G A >9,000 bp PSME_43532 XP_006844754.1 Chaperone protein 
ClpD, chloroplastic

45651 0.176026 Temperature A T >9,000 bp NA

17435 0.261599 Precipitation T A >9,000 bp NA

Note: Functional annotation refers to functions obtained from NCBI gene database (https://www.ncbi.nlm.nih.gov/gene/). “NA” indicates that no 
annotated gene was located on the respective scaffold.

https://www.ncbi.nlm.nih.gov/gene/


8248  |     GEORGE Et al.

Nadeau et al., 2016; Rellstab et al., 2015). To solve this problem, 
we employed four conceptually different algorithms, which im-
plement various methodologies for taking neutral processes into 
account. Each of them identified a certain numbers of outliers or 
associations, respectively. The genome scan method in Arlequin 
identified the highest number of SNPs, which is not surprising, 

since Arlequin does neither specifically associate polymorphisms 
with climatic factors nor does it take environmental differentiation 
into account. Hence, the identified SNPs are probably loaded with 
adaptive signals from other environmental drivers than tempera-
ture and precipitation. Surprisingly, after correcting for multiple 
testing only a very small number of SNPs were still standing out as 

F I G U R E  6   Allele frequencies of the two triple- found SNPs #15099 (a– b) and #78509 (c– d). Graphs in (b) and (d) show simple regression 
of the alternative allele frequency against mean warmest month temperature at trial site

(a) (b)

(c)
(d)

F I G U R E  7   Clustering of populations according to (a) the 18 outlier SNPs shown in Table 3 and (b) 18 randomly chosen neutral SNPs. EV1 
and EV2 are eigenvectors obtained from snpgdsPCA function
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truly adaptive and represented only between 0.01% (LFMM) and 
0.17% (Arlequin) of the analyzed SNPs. Although direct compari-
son with other studies is complicated due to varying experimental 
settings and sample size (see, e.g., Ahrens et al., 2018), adaptive 
SNPs in other genera such as Fagus (Pluess et al., 2016), Populus 
(Fahrenkrog et al., 2017), Alnus (De Kort et al., 2014), and Pinus 
(Ruiz Daniels et al., 2019) comprised between 1.6% (Fahrenkrog 
et al., 2017) and 11% (Pluess et al., 2016) of all SNPs that were ana-
lyzed. Moreover, when the data were further aggregated to con-
sensus SNPs, which were found by more than one algorithm, only 
11 candidates out of 17,489 (0.06%) were detected for tempera-
ture and 7 (0.04%) for precipitation regimes. Since the analyzed 
provenances exhibit a strong pattern of population substructur-
ing into clearly delimited clusters, we strongly presume that this 
neutral variation is the most important cause for this finding. In 
particular, provenances D'Arcy (BC) and Snowqualmie Pass (WA) 
represented strongly isolated subpopulations based on their neu-
tral genetic pattern (Figure  1a), although their phenotypic signal 
fit well into the observed environmental cline for both climate 
PCs (Figure 2). Provenances Pine Grove (Oregon coastal) and Cle 
Elum (Washington coastal) are climatically more similar to inland 
provenances (cold and comparatively dry), but share demographic 
history clearly with the other coastal varieties (Table 1, Figure 1). 
Phenotypically, both provenances had indeed lower response coef-
ficients compared with the remaining coastal provenances, which 
demonstrates that local adaptation likely happened despite strong 
gene flow within clusters. However, this pattern can be confirmed 
only for the temperature gradient, because the cline was insignifi-
cant for precipitation (Figure 2b). The 18 consensus outlier SNPs 
that were either associated with temperature or precipitation were 
capable of discriminating between two clusters of provenances, 
which could be clearly assigned to one coastal and one inland group 
(Figure 7). This underpins that these SNPs have most likely featured 

phenotypic and genetic differentiation in Douglas- fir beyond neu-
tral processes such as isolation by distance. Interestingly, prove-
nances D'Arcy (BC) and Snowqualmie Pass (WA) appeared not any 
longer as single subpopulation clusters when the outlier dataset 
was used for clustering (compare with Figure 1a with the neutral 
dataset of 1,500 SNPs). One possible explanation could be that iso-
lation of these provenances occurred relatively late compared with 
climatic adaptation. This finding would be corroborated by the fact 
that both populations showed a rather expected phenotypic signal, 
which was similar as for the other coastal provenances (Figure 2). 
Coastal and interior Douglas- fir varieties have most likely diverged 
during orogeny of the Cascade range, which have led to xerification 
of the Great Basin during the Pliocene around 2 Ma ago (Brunsfeld 
et al., 2001; Gugger et al., 2010). However, population contraction 
and expansion around the last LGM 18 ka ago could have caused 
local spots with limited gene exchange, in particular in areas with 
high mountain barriers (Gugger & Sugita, 2010).

Nevertheless and despite the overall small number of adaptive 
SNPs that was found, we were able to extract two “hot candidate 
SNPs” associated with temperature regime at seed origin. Minor al-
lele frequencies of both SNPs showed significant correlation with 
mean warmest month temperature in space, which is highly cor-
related with the initial response climate variable from the common 
garden (correlation of July temperature and MWMT = 0.99). In 
both cases, the frequency of the minor C allele increased toward 
inland areas with lower temperature. In light of the strict filtering 
applied in this study and given the number of employed algorithms, 
the evidence strongly suggests that these SNPs could have featured 
adaptation to temperature regimes in Douglas- fir across the steep 
gradient that was analyzed here. Although the correlation between 
allele frequencies and temperature regime was moderate and char-
acterized by a few unexpected outliers, it is likely that the rather 
small sample size of analyzed trees within provenances can be re-
sponsible for that. We hence see this result as a starting point for 
further investigations including also landscape genomics in order to 
corroborate these findings with more data.

4.3 | Isolation by environment (IBE) versus isolation 
by distance (IBD) and isolation by colonization (IBC)

We used redundancy analysis in order to disentangle the various driv-
ers of among- population differentiation by including climate, geogra-
phy, and ancestry as predictors. While this approach has been shown 
to be very informative in two other conifers for identifying sources of 
differentiation (Nadeau et al., 2016), it yielded only very little insights 
in our study. Surprisingly, neither environment nor geography nor an-
cestry explained literally any variation when applied to the entire set 
of SNPs. Nadeau et al. (2016) argued that the high proportion of un-
explained variation in Pinus strobus and P. monticola could have been 
caused by environmental drivers that are usually too complex to be 
taken into account in such studies (e.g., soil or biotic environment). 
In addition, the environmental gradient and number of populations 

TA B L E  4   Summary statistics from redundancy analysis

All SNPs
18 consensus 
SNPs

R2 p- Value R2
p- 
Value

Combined model

Climate (PC1 + PC2) .01 .26 .01 .28

Geography (Lat + Lon) .01 .90 .01 .73

Ancestry (Q- values for 
K = 2)

.01 .25 .01 .26

Individual model

Climate PC1 .01 .10 .01 .091*

Climate PC2 .01 .91 .00 .83

Latitude .01 .42 .01 .39

Longitude .00 .98 .00 .91

Ancestry .01 .93 .00 .79

*Significant at α < 0.1.
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sampled across that gradient are probably still too narrow in our study 
to highlight such contrasts. Nevertheless, when applied to the subset 
of 18 outlier SNPs, climate PC1 that relates strongly to the tempera-
ture regime at seed origin was at least moderately significant at α < 0.1, 
and therefore, we presume that testing these SNPs in a larger number 
of populations in landscape genomic studies could shed more light into 
adaptive population differentiation in Douglas- fir.

4.4 | Putative biological functions of 
candidate SNPs

In total, 11 out of 18 SNPs were directly located either within 
known genes or in close proximity to those genes, which underline 
their biological importance. Although not all of these genes refer di-
rectly to biological functions related to climate, their further inter-
rogation could be nevertheless promising, since some of the found 
transcription factors and proteins are involved in carbohydrate 
metabolism and signaling pathways. For example, TIFY proteins 
(SNP#13432) are involved in regulation of jasmonic acid signaling 
pathways in Arabidopsis thaliana (Chung & Howe, 2009). Jasmonic 
acid, in turn, is an important driver of plant response to abiotic stress 
(e.g., Ruan et al., 2019). Bifunctional UDP- glucose 4- epimerase and 
UDP- xylose 4- epimerase 1 are important catalytic proteins in the 
pathway of cell wall polysaccharide biosynthesis and cell wall or-
ganization in stem tissue of higher plants (Rösti et al., 2007), which 
is an important trait in conifers conferring drought resistance 
(Isaac- Renton et al., 2018).

Most interestingly, the triple- found SNP #78509 is in very close 
proximity (<200 bp) to Douglas- fir gene PSME_16548, which codes 
for a WD repeat- containing LWD1 protein. This protein belongs to 
the circadian clock protein family and is regulating circadian pe-
riod length and photoperiodic flowering in Arabidopsis spec. (Wang 
et al., 2011; Wu et al., 2008). A closely related protein of this fam-
ily with similar gene ontology (Appendix S3), named GIGANTEA- 5, 
is involved in adaptation to temperature regimes (Cao et al., 2005) 
and was found to be under strong selection in Populus balsamif-
era (Fitzpatrick & Keller, 2015; Keller et al., 2012). In the study by 
Fitzpatrick and Keller (2015), turnover in frequency of SNPs located 
in this gene was best explained by differences in temperature re-
gimes among provenance origins, which strongly corroborates the 
findings of this study. Although the candidate SNP may not directly 
alter the protein itself, it seems plausible that it influences its ex-
pression given its close adjacency. We see this finding hence as a 
putative needle in the haystack, which could be the starting point for 
further investigations at landscape level.

4.5 | Douglas- fir genomic resources for adaptive 
forest management

Douglas- fir is currently discussed as a promising substitute 
species outside its natural range given its putatively higher 

drought tolerance and yield (Chakraborty et al., 2016; Eilmann & 
Rigling, 2012). Our results could be pertinent for future studies and 
applications, which are aiming at identifying adapted seed sources 
for Douglas- fir. For instance, SNP information can be used in order 
to genotype large arrays of trees from progeny trials or provenance 
tests in order to decide whether the selected material is generally 
site- adapted or likely to be maladapted to temperature and drought 
regime. Additionally, our dataset can be used as reference dataset 
for genomic assignment of individuals or stands given that many 
Douglas- fir seed stands in Europe are still without confirmed geo-
graphic origin. Therefore, we provide detailed SNP and phenotypic 
information such as genomic positions, flanking sequences, and 
rank scores for more than 17,000 SNPs obtained from the various 
programs in Appendix S4.

5  | CONCLUSIONS

Based on a steep phenotypic cline observed in a common garden 
experiment, we were able to disentangle adaptive signals in Douglas- 
fir from those that were simply caused by neutral demographic pro-
cesses. We showed that combining dendroclimatological data with 
genomic information can lead to valuable insights into the adapta-
tion history of a widespread conifer. Although a very small fraction 
of the analyzed polymorphisms stood out as adaptive candidates, 
their functional interrogation strongly suggests that SNPs could 
have indeed featured climatic adaptation in Douglas- fir. Therefore, 
we shed new light into the adaptive history of another conifer with 
high economic and ecological importance.
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