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SUMMARY

The tumor stroma is believed to contribute to some of the most malignant characteristics of 

epithelial tumors. However, signaling between stromal and tumor cells is complex and remains 

poorly understood. Here we show that the genetic inactivation of Pten in stromal fibroblasts of 

mouse mammary glands accelerated the initiation, progression and malignant transformation of 

mammary epithelial tumors. This was associated with the massive remodeling of the extra-cellular 

matrix (ECM), innate immune cell infiltration and increased angiogenesis. Loss of Pten in stromal 

fibroblasts led to increased expression, phosphorylation (T72) and recruitment of Ets2 to target 

promoters known to be involved in these processes. Remarkably, Ets2 inactivation in Pten stroma-

deleted tumors ameliorated disruption of the tumor microenvironment and was sufficient to 

decrease tumor growth and progression. Global gene expression profiling of mammary stromal 

cells identified a Pten-specific signature that was highly represented in the tumor stroma of breast 

cancer patients. These findings identify the Pten-Ets2 axis as a critical stroma-specific signaling 

pathway that suppresses mammary epithelial tumors.

Coordinated signaling between different cell types of the ‘normal stroma’ is required during 

embryonic and adult development1. The stroma can be appropriately activated in response 

to extreme but normal physiological cues, such as wounding, inflammation or pregnancy2. 

The stroma can also be inappropriately activated in cancer3,4. In breast tumors, stromal 

fibroblasts are believed to adapt and continuously co-evolve along with tumor epithelial 

cells in order to foster transformation and tumor growth5. Fibroblasts are a principal 

constituent of the stroma responsible for the synthesis of growth and survival factors, 

angiogenic and immunological chemokines, and structural components of the ECM as well 

as enzymes that control its turnover6,7. Despite extensive evidence for a role of the tumor 

stroma in carcinogenesis, relatively little is known about the signaling pathways involved in 

the communication between the different cellular compartments of the microenvironment 

that contribute to the cancer phenotype.

Alterations in the phosphoinositide 3-kinase (PI3K) pathway are associated with the 

activation of tumor-associated stroma8, 9. One of the main regulators of PI3K signaling is 

the phosphatase and tensin homolog (PTEN), a tumor suppressor with lipid and protein 

phosphatase activity10, 11. PTEN inactivation disrupts multiple cellular processes 

associated with cell polarity, cell architecture, chromosomal integrity, cell cycle progression, 

cell growth and stem cell self–renewal12, 13. Germ-line inactivation of a single allele of 

PTEN in both humans and mice contributes to the genesis of a variety of tumor types of 

epithelial origin14. While tremendous progress in understanding PTEN function in tumor 

cells has been made since its discovery over a decade ago, relatively little is known about its 

potential role in the tumor stroma. Here, we show that Pten ablation in mammary stromal 

fibroblasts of mice results in massive remodeling of the ECM and tumor vasculature, 

recruitment of innate immune cells, and increased malignancy of mammary epithelial 
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tumors. Gene expression profiling of Pten-deleted stromal fibroblasts identified an Ets2–

specific transcription program associated with many of these aggressive tumor phenotypes. 

Remarkably, the concomitant inactivation of Ets2 in the mammary stroma reversed the 

increased malignancy caused by Pten deficiency. These findings expand Pten’s repertoire as 

a tumor suppressor by identifying the fibroblast as a key site from which it exerts its 

powerful tumor suppressive influence on the adjacent tumor epithelium.

RESULTS

Pten in stromal fibroblasts suppresses mammary tumors of epithelial origin

To rigorously evaluate the role of Pten in the tumor microenvironment of breast cancer we 

generated mice containing a mesenchymal-specific Fsp-cre transgene15 and conditional 

alleles of Pten (PtenloxP; Supplementary Fig. 1). Cell type-marker analysis using a β-

galactosidase Rosa26LoxP reporter allele showed specific Fsp-cre expression in stromal 

fibroblasts surrounding the mammary epithelial ducts, with no expression in cytokeratin-

positive epithelial cells, F4/80-positive macrophages and CD31-positive endothelial cells 

(Fig. 1a, Supplementary Fig. 2a, 2b). Western blot and PCR assays demonstrated efficient 

cre-mediated deletion of PtenloxP in stromal fibroblasts isolated from Fsp-cre;PtenloxP/loxP 

mammary glands (Fig. 1b, Supplementary Fig. 3a). Examination of mammary sections by 

immunohistochemistry (IHC) and immunofluorescence (IF) showed deletion of PtenloxP that 

was confined to stromal fibroblasts, with no collateral deletion in epithelial ducts or the 

adjacent myoepithelium (Fig. 1c, Supplementary Fig. 3b, 3c). Interestingly, this resulted in 

the expansion of the ECM, but did not lead to the transformation of the mammary 

epithelium (Fig 1c, 1e).

We then examined the role of stromal Pten on mammary tumorigenesis using an established 

mouse model of breast cancer, MMTV-ErbB2/neu (ErbB2)16. To avoid possible 

confounding effects caused by Pten deletion in mesenchymal cells of other organs, 

mammary glands from Fsp-cre;PtenloxP/loxP, ErbB2;PtenloxP/loxP and ErbB2;Fsp-

cre;PtenloxP/loxP donors were transplanted into syngeneic wild-type recipients17 and tumor 

development was monitored over the course of several months. By genetically marking the 

stroma with the Rosa26LoxP reporter allele, we demonstrated that both the epithelium and its 

associated stroma were effectively transplanted into host female mice (Supplementary Fig. 

4). Loss of Pten in stromal fibroblasts dramatically increased the incidence of ErbB2-driven 

mammary tumors (Fig. 1d–f). By 16 weeks post-transplantation, these lesions progressed to 

adenoma, carcinoma in situ and invasive carcinoma (Fig. 1g) and by 26 weeks most females 

met the criteria for early removal due to excessive tumor burden (Fig. 1e). Histological 

examination showed that ErbB2-tumor cells in Pten stromal-deleted tumors retained their 

typical oncogene-specific morphology, with small nuclei, fine chromatin and abundant 

eosinophilic cytoplasm18. In contrast to non-deleted tumors 18,19, Pten stromal-deleted 

tumors had a significant amount of stroma surrounding and infiltrating the epithelial masses 

(Fig. 1g). PCR-based and immunohistochemical assays confirmed that tumors had intact 

PtenloxP alleles in the epithelial compartment (Supplementary Fig. 5a, 5b and data not 

shown). Moreover, we used the Rosa26loxP reporter allele to genetically mark early EMT 

events15 and found no evidence of EMT in tumors that either contained or lacked Pten in 

Trimboli et al. Page 3

Nature. Author manuscript; available in PMC 2010 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stromal fibroblasts (data not shown). Thus, the analysis of the ErbB2 breast cancer tumor 

model identified a potent tumor suppressor role for Pten in stromal fibroblasts of the 

mammary gland.

Pten in stromal fibroblasts controls ECM and innate immune functions

To investigate the tumor suppressive mechanism of Pten action in stromal fibroblasts, we 

profiled the transcriptome of mammary stromal fibroblasts isolated from PtenloxP/loxP and 

Fsp-cre;PtenloxP/loxP females. Details of sample collection, processing of Affymetrix oligo-

arrays and expression data are available in the Methods and Supplementary Methods 

sections. Briefly, we implemented class comparison analyses of all probe sets on the 

Affymetrix mouse genome 430 2.0 array to identify genes differentially expressed between 

the two genetic groups. We also used an unbiased approach similar to Gene Set Enrichment 

Analysis20 to identify a priori defined groups of genes that were significantly differentially 

expressed. The analysis of over 14,000 mouse genes identified 129 upregulated and 21 

downregulated unique genes in response to Pten deletion (Supplementary Fig. 6a, 6b; >4-

fold at p <0.001; Supplementary Tables 1 and 2). Quantitative RT-PCR assays on a subset of 

genes confirmed >85% of these expression changes using independent fibroblast samples 

(Supplementary Fig. 6c, and Supplementary Table 3). Fibroblast samples used to probe the 

oligo-arrays lacked expression of macrophage-, endothelial- and epithelial-specific genes, 

confirming the purity of these fibroblast preparations (Supplementary Fig. 6d). Functional 

annotation21,22 (GO) of Pten-responsive targets revealed a remarkable bias toward genes 

encoding proteins involved in ECM remodeling, wound healing and chronic 

inflammation21,22 (Fig. 2a; Supplementary Tables 1 and 2). Given this unexpected 

convergence of function, we performed a more thorough cellular and molecular analysis of 

Pten-deleted stroma. Staining of consecutive mammary gland sections with H&E and 

Mason’s trichrome stains indicated enhanced deposition of collagen in Pten-deleted stroma, 

which was independent of ErbB2-oncogene expression (Fig. 2b, 2c, and Supplementary Fig. 

7a). IHC and Western blot assays using collagen type-specific antibodies showed that the 

non-cellular material consisted mostly of type-I collagen and not the basement membrane 

type-IV collagen (Fig. 2b, 2c, and Supplementary Fig. 7b, 7c). There was significant 

infiltration of F4/80-positive macrophages into stromal Pten-deleted mammary glands (Fig. 

2d, 2e), and this was also independent of ErbB2 expression (Supplementary Fig. 8a). The 

abundance of B- and T- cells did not change in response to stromal deletion of Pten (data not 

shown). From these experiments we conclude that ablation of Pten in stromal fibroblasts 

recapitulates two key events associated with tumor malignancy: increased ECM deposition 

and innate immune cell infiltration.

Loss of stromal Pten activates an Ets2-dependent transcriptional program

Along with the remarkable remodeling of the tumor microenvironment, loss of Pten in 

stromal fibroblasts resulted in activation of the Ras, JNK and Akt pathways. Western blot 

analysis using protein lysates derived from Pten-deleted stromal fibroblasts demonstrated an 

increase in the phospho-specific forms of Akt (T308 and S473) and JNK (T183 and Y185) 

(Fig. 2f; Supplementary Fig. 8b). Immunohistochemical assays confirmed the activation of 

Akt and JNK in stromal fibroblasts, and interestingly, also revealed a profound activation of 

these two pathways in ductal epithelial cells adjacent to the Pten-deleted stroma (Fig. 2g; 
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Supplementary Fig. 8b). This analysis also showed increased levels of phospho-Erk1/2 in 

Pten-deleted stromal fibroblasts, however, this increase could not be detected in primary 

cultured fibroblasts (Fig. 2f, 2g), presumably due to the constitutive Pten-independent 

activation of Erk1/2 by serum-stimulation23.

Among the many expression changes observed in Pten-deleted stromal fibroblasts we noted 

that there was a significant increase of Ets2 mRNA levels (2.8 fold, p <0.001). This 

induction is notable because the Ets2 transcription factor is known to be transcriptionally 

induced by MAPK24,25 activation and its function to be post-translationally enhanced by 

the Akt- and JNK-mediated phosphorylation of its pointed domain at threonine 72 

(Ets2T72)23,26. We confirmed the higher levels of Ets2 mRNA and protein in Pten-deleted 

fibroblasts (~3-fold, p<0.001; Supplementary Fig. 9a, 9b) and consistent with the activation 

of Akt and JNK in these mammary glands, there was a marked increase of P-Ets2T72 in 

stromal fibroblasts and adjacent epithelial ducts (Fig. 2h, 2i). Loss of Pten in stromal 

fibroblasts resulted in the induction of a number of genes involved in ECM remodeling and 

macrophage recruitment, two of which, Mmp9 and Ccl3, are known to be direct 

transcriptional targets of Ets227,28 (Supplementary Fig. 9c, 6c). The increase of Mmp9 

expression appears to be of pathological relevance since in situ zymography29 showed 

robust Mmp9 activity in tumor samples (Supplementary Fig. 9d). Chromatin 

immunoprecipitation (ChIP) assays showed an increase in the loading of Ets2 onto the 

Mmp9 and Ccl3 promoters in Pten-deleted mammary fibroblasts (Supplementary Fig. 9e), 

suggesting a direct role for Ets2 in the transcriptional regulation of these two target genes in 

vivo. Together, these data illustrate the extensive molecular reprogramming that takes place 

in the tumor and its microenvironment in response to ablation of Pten in stromal fibroblasts.

Stromal Ets2 promotes mammary tumorigenesis

To determine whether Ets2 promotes a microenvironment conducive to tumor growth we 

analyzed the consequences of ablating a conditional allele of Ets2 (Ets2loxP)30 in mammary 

stromal fibroblasts of a well-characterized mouse model of breast cancer, MMTV-PyMT 

(PyMT)31. The PyMT oncogene initiates the rapid onset and progression of mammary 

tumors and thus represents an appropriate model for evaluating any potential delay that loss 

of Ets2 might have on tumorigenesis. The efficient Fsp-cre mediated ablation of Ets2 in 

stromal fibroblasts was facilitated by using mice carrying conventional and conditional 

knockout alleles of Ets2 (DNA-binding domain-Ets2db/LoxP)32 (Fig. 3a; Supplementary Fig. 

10a, 10b). Ablation of Ets2 in these cells had no detectable physiological consequence on 

the development of mammary glands, either during puberty or pregnancy (MCO, 

unpublished observations). The evaluation of PyMT;Fsp-cre;Ets2db/loxP and control 

PyMT;Ets2db/loxP mice over a period of three months showed that ablation of Ets2 in 

mammary fibroblasts significantly reduced the tumor load (Fig. 3b) and slowed progression 

to adenoma and early carcinoma (Fig. 3c). Quantitative RT-PCR showed high levels of 

Mmp9 expression in tumor-associated fibroblasts containing Ets2 and low levels in Ets2-

deleted fibroblasts (Fig. 3e). Because Mmp9 activity is known to mediate the release of 

matrix-bound VEGF-A to its active isoforms, including VEGF16433, we visualized the 

spatial distribution of VEGF164 and Mmp9 activity by IF. These assays showed that the 

accumulation of VEGF164, which was particularly acute within collagen1A-rich stromal 
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locations overlapping Mmp9 activity, was significantly decreased in stromal-deleted Ets2 

tumors (Fig. 3d, 3f). Given that VEGF164 is a specific ligand for VEGF Receptor 2 

(VEGFR2; FLK-1; KDR), one of the most potent mediators of VEGF-induced endothelial 

signaling and angiogenesis34, we also evaluated VEGFR2 status by immuno-staining tumor 

sections with antibodies specific for CD31 and the phospho-activated form of the murine 

VEGF receptor (P-VEGFR2Y1173)35. This analysis revealed a four-fold decrease in the 

number of CD31/VEGFR2Y1173 double-positive cells in Ets2-deleted versus non-deleted 

tumor samples (Fig. 3f, 3g). Together, these data show that loss of Ets2 in stromal 

fibroblasts results in decreased Mmp9 activity in the tumor ECM and reduced 

VEGFR2Y1173-activation in the tumor vasculature.

Loss of Ets2 diminishes tumor formation in Pten stromal-deleted mammary glands

We then entertained the hypothesis that Ets2 may be contributing to the remodeling of the 

tumor microenvironment caused by stromal deletion of Pten. To directly test this possibility, 

we compared tumor incidence in PtenloxP/loxP, Fsp-cre;PtenloxP/loxP and Fsp-

cre;PtenloxP/loxP;Ets2db/loxP mammary glands that were orthotopically injected with an 

established ErbB2-initiated mammary tumor cell line (NT 2.5)36. This orthotopic model 

recapitulated the consequences of deleting Pten in the mammary stroma that were observed 

in the genetically engineered ErbB2-mouse model described earlier in this study. Indeed, 

tumor incidence and tumor load in injected Fsp-cre;PtenloxP/loxP females was markedly 

higher than in control PtenloxP/loxP females (Fig. 4a, 4b). Importantly, mammary glands 

doubly deleted for stromal Pten and Ets2 had fewer and smaller tumors than glands deleted 

for Pten only. These mammary tumors had decreased number of macrophages and 

recruitment of new vasculature (Fig. 4c–f). Loss of Pten and Ets2, however, failed to fully 

reduce the tumor load and collagen deposition to control levels (Fig. 4b, Supplementary Fig. 

11a, 11b), suggesting that additional effectors must contribute towards Pten’s tumor 

suppressor functions. From these data, we conclude that Ets2 is a major component of the 

Pten tumor suppressive axis that acts in the stromal fibroblast compartment of mammary 

glands.

Mouse fibroblast Pten-signature distinguishes normal from tumor stroma in breast cancer 
patients

To determine the relevance of these findings to human breast cancer, we compared the 

mouse stromal fibroblast Pten-expression signature to the expression signatures derived 

from laser-captured tumor stroma (49 samples) and adjacent normal stroma (52 samples) in 

breast cancer patients37. This analysis identified 137 human orthologs from the 150 

differentially expressed mouse genes detected by the Affymetrix oligo-arrays shown in 

Supplementary Fig. 6a and 6b. Of these 137 orthologs, 129 genes were represented in the 

expression platform used (Agilent) for the analysis of human patient stroma samples37. 

Only 70 of these 129 genes had highly variable gene expression across all human stromal 

samples (a variance cutoff of >0.5). The heat map generated for the human stroma dataset 

showed that this 70 gene-subset derived form the mouse Pten-signature was sufficient to 

distinguish normal from tumor stroma in all patients (Fig. 5a; p = 8e−5 as determined by a 

permutation test). Principal Component Analysis (PCA) also discriminated normal from 

tumor stroma perfectly (p<1e−10; Supplementary Fig. 12). Interestingly, 12 of the 70 human 
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orthologs identified by the Pten-signature (Fig. 5a: gene names highlighted in red; 

Supplementary Fig. 13) were previously shown to be differentially expressed in the tumor 

stroma of breast cancer patients and to be associated with recurrence37 (Fig. 5b; p = 2.5e−8, 

Fisher’s Exact Analysis). These analyses suggest that the fibroblast Pten-expression 

signature identified by our stroma mouse model represents a significant subset of the total 

gene signature expressed in the stroma of human breast cancer. We interpret these results to 

mean that a portion of the transcriptome regulated by Pten in mammary stromal fibroblasts 

is dysregulated in the tumor stroma of breast cancer patients.

We also evaluated the relevance of the Pten Ets2 relationship in human cancer by 

immunohistochemical staining of breast cancer tissue microarrays (TMAs) with antibodies 

specific for Pten, P-Ets2T72 and P-AktS473 (Fig. 5c). From the analysis of 99 patient samples 

with invasive carcinoma, Pten expression was scored as absent or low in approximately fifty 

percent of samples. Importantly, Pten staining in the TMAs was negatively correlated with 

P-AktS473 and nuclear P-Ets2T72, whereas P-AktS473 and nuclear P-Ets2T72 showed a 

positive association (Fig. 5d). These results suggest that activation of P-Ets2T72 in human 

breast cancer stroma is a pathologic event that is favored by a reduction in Pten expression.

DISCUSSION

Histopathology and molecular studies suggest that malignant tumors consist of a complex 

cellular system that is dependent on reciprocal signaling between tumor cells and the 

adjacent stroma. However, the signaling pathways that mediate the communication between 

the various cell types in the tumor remain virtually unknown. We recently developed a 

mesenchymal-specific cre mouse15 and used it here to examine the consequences of 

inactivating Pten in mammary stromal fibroblasts. Using this system we show, for the first 

time, that Pten in stromal fibroblasts has a critical role in the suppression of epithelial 

mammary tumors that is, in part, mediated through an Ets2-regulated transcriptional 

program.

The tumor suppressor functions of PTEN have been extensively studied in the tumor cell38–

40. We show here that genetic ablation of Pten in mammary stromal fibroblasts of mice 

alters the expression profile of these cells to increase ECM, chemokine and cytokine 

production in the tumor microenvironment. As a result, Pten stromal-deleted tumors exhibit 

high levels of collagen, macrophage recruitment and vascular networks, which together 

favor the initiation and progression of mammary epithelial tumors. Remarkably, side-by-

side evaluation of histopathology by independent pathologists could not distinguish tumors 

between Pten stromal-deleted mice and human breast cancer patients, highlighting the 

importance of modeling stromal cell compartments of the tumor microenvironment. The 

mechanism by which Pten in the stroma exerts its tumor suppressor role likely involves the 

control of multiple signaling pathways, including components of the Ras, Akt and JNK 

networks, which together culminate in the regulation of Ets2 transcriptional activity. The 

fact that loss of Ets2 in mammary stromal fibroblasts diminished the oncogenic 

consequences of deleting Pten in these cells underscores the importance of the stromal Pten-

Ets2 axis in stromal fibroblasts during tumor suppression. These observations are consistent 

with previous work from Oshima and colleagues that showed a critical cell non-autonomous 
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role for Ets2 in the growth of mammary tumors in mice41 and with the identification of Ets2 

activation as a key event associated with breast cancer in human patients having poor 

prognosis42–44. The relevance of this mouse Pten-Ets2 tumor suppressor axis to breast 

cancer is underligned by the high correspondence between the mouse and human stromal 

expression signatures. The observation that the dire consequences of targeting this Ets2-

driven stromal program are tumor-specific, sparing normal mammary development, 

emphasizes the potential utility of stromal-specific strategies for therapeutic intervention in 

human breast cancer.

In summary, this work identifies Pten-Ets2 as a key regulatory axis in stromal fibroblasts 

that suppresses mammary epithelial tumors by profoundly attenuating some of the most 

malignant characteristics of the tumor microenvironment. This novel function of Pten may 

be relevant in the suppression of epithelial tumors of other organs, but may also extend 

beyond cancer, to conditions where the microenvironment may impact disease 

manifestation, such as in autoimmune syndromes45, lung fibrosis46 and 

neurodegeneration47. Interestingly, the stromal Pten expression signature identified here 

includes genes that have been causally linked to ECM deposition and inflammation in 

rheumatoid arthritis, lung fibrosis and neurodegeneration (Supplementary Table 1 and Table 

2). These data offer a molecular basis for how altered Pten signaling in the tumor stroma 

may elicit broad responses in a variety of cells in the tumor microenvironment that 

contribute to disease manifestation.

METHODS SUMMARY

Transgenic mice

Generation of Fsp-cre mice has been described15. PtenloxP mice were created following the 

strategy described in Supplementary Fig. 1. Ets2loxP mice were generated by standard 

techniques30. Animals were maintained and euthanized following institutional guidelines. 

Tenth generation congenic (N10) FVB/N animals were used for transplantation and 

orthotopic injection studies.

Tissue processing, histology

Tissues were either embedded in OCT or fixed (4% PFA or formalin) and embedded in 

paraffin. Frozen sections were used for X-gal staining as previously described15. IHC on 

tissue microarray sections from 99 breast carcinoma patients were scored using Allred 

score’s system48.

Isolation of primary mammary fibroblasts

Primary mammary fibroblasts were purified following the protocol published previously 

with minor modifications49. Mammary glands were dissected from 8 week-old female mice, 

minced and digested with collagenase (0.15% Collagenase I, 160 U/ml Hyaluonidase, 1 

μg/ml hydrocortisone and 10 μg/ml insulin with penicillin and streptomycin) in a 5% CO2 

incubator overnight at 37°C. Collagenase was neutralized with 10% FBS-DMEM medium. 

Digested tissue was resuspended in medium and subjected to gravity for 12–15 min. Pellets 
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were washed three times to collect epithelial organoids and supernatants were subjected four 

more times to gravity sedimentation and then cultured.

RNA and microarray analysis

RNA was harvested with Trizol according to manufacturer’s instructions (Invitrogen). RNA 

quality and concentration were assessed with Bioanalyzer and Nanodrop RNA 6000 nano-

assays. RNA samples were hybridized to Affymetrix GeneChip Mouse genome 430 2.0 

platform at the Microarray Shared Resource Facility, Ohio State University Comprehensive 

Cancer Center. The microarray data was deposited with GEO and can be viewed by going to 

the following link: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

token=zhmbrcoqaacyite&acc=GSE16073.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Stromal fibroblast-specific deletion of Pten
(a) Whole mount, X-gal stained mammary glands from Fsp-cre;Rosa+/loxP and Rosa+/loxP 

(top inset) mice. Higher magnification of whole mount gland (bottom left) and a histological 

cross section (bottom right); scale bar represent 30 μm. lu, lumen; epi, epithelium; str, 

stroma.

(b) Representative Western blot analysis of mammary fibroblast lysates derived from 8 

week-old PtenloxP/loxP mice with (+) without (−) Fsp-cre.

(c) Paraffin sections from 8 week-old female mammary glands stained with a Pten-specific 

antibody; lower panels represent higher magnification of boxed areas; scale bars for top 
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panels represent 200 μm and for bottom panels 30 μm. lu, lumen; epi, epithelial 

compartment; str, stromal compartment; red dotted line indicates the border between the two 

compartments.

(d) Tumors collected at 26 weeks post-transplantation.

(e) Tumor development by 16 weeks in mammary glands with the indicated genotypes. 

Tumorigenicity was determined by palpation or histological presentation of adenoma/

carcinoma at each implantation site and statistically analyzed using Fisher’s Exact test. (n), 

represents the total number of transplants.

(f) Total tumor burden at 26 weeks post-transplantation in mammary glands with the 

indicated genotypes. Differences were tested using the non-parametric Wilcoxon Rank Sum 

test.

(g) H&E stained sections of mammary glands harvested at time of transplantation (0 weeks) 

and indicated times post-transplantation; scale bars represent 100 μm.
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Figure 2. Characterization of ECM deposition and immune cell infiltration
(a) Schematic representation of the biological processes affected by differentially expressed 

genes (<4 fold) in Pten-deleted stromal fibroblasts.

(b) Mammary gland paraffin sections stained with Masson’s Trichrome and Collagen I-

specific antibodies, respectively; scale bars represent 200 μm.

(c) Trichrome stained sections were quantified for collagen deposition; mammary glands in 

the absence (left graph) or presence of ErBb2 (right graph) were analyzed, respectively. 

Values shown represent the mean with s.d.; Wilcoxon Rank Sum test was used for the 

comparison between groups.
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(d) Mammary gland paraffin sections stained with the macrophage-specific marker F4/80; 

scale bars represent 50 μm.

(e) Quantification of F4/80 positive stained stromal cells in mammary glands in the absence 

(left graph) or presence of ErBb2 (right graph), respectively. Values shown represent the 

mean with s.d.; Wilcoxon Rank Sum test was used for the comparison between groups.

(f) Western blot analysis of whole-cell lysates derived from mammary stromal fibroblasts

(g) Mammary gland paraffin sections stained with the phospho-Akt473/308, phospho-

JNK183/185 and phospho-Erk1/2 specific antibodies; scale bars represent 100 μm.

All analyses were performed using tissue or cells from 8 week-old females.

(h) Frozen mammary tissue sections stained with a phospho-Ets2T72-specific antibody. Note 

that loss of Pten in the mammary stroma increased Ets2 phosphorylation in both the stromal 

and epithelial compartments. Dotted-white line indicates the stromal-epithelial boundary. lu, 

lumen; epi, epithelium; str, stroma and scale bars represent 50 μm.

(i) Quantification of mammary epithelial and stromal cells that stained positive for nuclear 

phospho-Ets2T72. Values represent the mean with s.d.; Wilcoxon Rank Sum test was used 

for the statistical comparison between groups.
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Figure 3. Ets2 ablation in stroma fibroblasts restricts mammary tumorigenesis
(a) Immunofluorescence staining of cultured mammary fibroblasts with Vimentin (green), p-

Ets2(T72) (red) antibodies and counterstained with DAPI (blue).

(b) Total mammary tumor volume of PyMT;Ets2db//loxP (n = 20) and PyMT;Fsp-

cre;Ets2db/loxP (n = 21) mice collected 30 days after tumor initiation. Values represent the 

mean with s.d. shown in parentheses.

(c) H&E staining of tumors harvested from PyMT;Ets2db//loxP or PyMT;Fsp-cre;Ets2db/loxP 

mice.

(d) Consecutive sections stained for (left to right): trichrome, Mmp9 gelatinase activity and 

VEGF164, and counterstained with DAPI from PyMT;Ets2db/loxP and PyMT;Fsp-

cre;Ets2db/loxP mammary tumors.
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(e) Quantification of Mmp9 mRNA expression by qRT-PCR.

(f) Quantification of EGF164 IF staining in tumor stroma (top graph) and tumor endothelial 

cells co-expressing CD31 and phospho-VEGFR2 (bottom graph).

(g) Tumor vascular endothelial cells visualized by IF double staining with CD31 (green) and 

p-VEGFR2(Tyr1173) (red), and counterstained with DAPI (blue) in mammary tumors 

collected one week post tumor initiation in PyMT;Ets2db/loxP and PyMT;Fsp-cre;Ets2db/loxP 

mice.

All analyses were performed using tissue or cells from 9–10 week-old females and all scale 

bars represent 50μm. Bar values in Fig. 3e and 3f represent the mean and error bars 

represent s.d. Student t-test test was used for all the statistical comparisons between groups.
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Figure 4. Loss of Ets2 in stromal fibroblasts diminishes tumor growth in stromal Pten-deleted 
mammary glands
(a) H&E sections of mammary glands after orthotopic injection of the ErbB2-expressing 

tumor cell line NT 2.5. T, tumor; str, stroma and scale bars represent 500 μm.

(b) Volumes of tumors collected 21 days after injection. PtenloxP/loxP;Ets2db/loxP (n=10) and 

PtenloxP/loxP (n=10) control groups were combined ((*), n=20) after it was determined that 

there was no statistical difference in tumor incidence/load between these two control groups. 

Values represent the mean with s.d shown in parentheses.

(c) Sections from mammary glands with the indicated genotypes stained with the 

macrophage-specific marker F4/80. Scale bars represent 100 μm.

(d) Quantification of stromal cells positive for F4/80 in mammary glands. Values shown 

represent the mean with s.d.

(e) Frozen mammary gland sections stained with the endothelial-specific antibody, CD31. 

Scale bars represent 50 μm.

(f) Quantification of CD31 positive staining.

Bar values in Fig. 4d and 4f represent the mean and error bars represent s.d. For all the 

statistical analyses, an ANOVA model with Bonferroni adjustment was used. Pairwise 

comparisons shown have a significant difference between marked genetic groups.
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Figure 5. Pten-signature is represented in breast cancer stroma
(a) Heat map displaying the expression of the human orthologs of the 70-gene subset in 

normal- and tumor-stroma from human breast cancer patients. The 70-gene subset derived 

from the mouse Pten-signature includes 57 genes upregulated (denoted by red bar on the y-

axis) and 13 genes downregulated (denoted by the green bar on the y-axis). Red and green 

regions inside the heat map indicate relative gene expression levels (red, increased and 

green, decreased). The p-value indicates the ability of the mouse 70-gene signature to 

partition normal and tumor stroma in breast cancer patients (see Statistical Methods). The 

coded patient IDs are listed at the bottom.

(b) Venn diagram depicting the overlap between the mouse Pten-deleted fibroblast and 

human stroma microarray data sets. The 12 genes highlighted in red (Fig. 5a, right margin) 

are common between the mouse Pten 70 gene-signature and the human 163-gene signature 

that has been shown to associate with recurrence38. This overlap is highly significant (p-

value=2.5e−8; Fisher’s Exact Test).

(c) Representative Pten, P-Ets2T72 and P-AktS473 IHC staining in human breast carcinoma 

samples from the tissue microarray. Scale bar represents 50 μm.

(d) Pearson correlations between Pten, P-Ets2T72 and P-AktS473 expression based on Allred 

scores of a tissue microarray (Fig 5c) containing 99 patients with advanced breast carcinoma
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