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Abstract

pediocin PA-1 by use of transcriptomic analyses.

Background: The class lla bacteriocin, pediocin PA-1, has clear potential as food preservative and in the medical
field to be used against Gram negative pathogen species as Enterococcus faecalis and Listeria monocytogenes.
Resistance towards class lla bacteriocins appear in laboratory and characterization of these phenotypes is important
for their application. To gain insight into bacteriocin resistance we studied mutants of £. faecalis V583 resistant to

Results: Mutants of E. faecalis V583 resistant to pediocin PA-1 were isolated, and their gene expression profiles
were analyzed and compared to the wild type using whole-genome microarray. Significantly altered transcription
was detected from about 200 genes; most of them encoding proteins involved in energy metabolism and
transport. Glycolytic genes were down-regulated in the mutants, but most of the genes showing differential
expression were up-regulated. The data indicate that the mutants were relieved from glucose repression and
putative catabolic responsive elements (cre) could be identified in the upstream regions of 70% of the differentially
expressed genes. Bacteriocin resistance was caused by reduced expression of the mpt operon encoding the
mannose-specific phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS), and the same
transcriptional changes were seen in a mptD-inactivated mutant. This mutant also had decreased transcription of
the whole mpt operon, showing that the PTS is involved in its own transcriptional regulation.

Conclusion: Our data confirm the important role of mannose PTS in class lla bacteriocin sensitivity and we
demonstrate its importance involving global carbon catabolite control.

Background

Bacteriocins are bacterial peptides or proteins inhibitory
to bacteria closely related to the producer. Many of the
bacteriocins produced by lactic acid bacteria (LAB) have
inhibitory spectra spanning beyond the genus level and
have a potential in defending unwanted microflora.
Since they are produced by food grade bacteria, some
are being used in food preservation. However, LAB bac-
teriocins could have a potential in the medical field.
With the increasing spread of antibiotic resistance, the
need for alternative antimicrobials is growing. Most of
the bacteriocins of LAB are small, heat-stable, cationic
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peptides and are divided into two classes; class I, the
lantibiotics containing modified amino acids and class
II, the non-lantibiotics having regular amino acid resi-
dues [1]. Among the regular peptide bacteriocins, those
belonging to class Ila are produced by a large number
of LAB and are best studied [2]. These bacteriocins have
highly conserved amino acid sequences, and have a lar-
gely common inhibitory spectrum which includes patho-
gens like Listeria monocytogenes and Enterococcus spp.
Their mode of action is different from common antibio-
tics [3,4]. Bacterial resistance towards these bacteriocins
does not appear to be common in nature [5], while in
laboratory experiments resistance to some bacteriocins
appear at high frequency [6,7]. Characterization of the
resistant phenotype is important for assessment of the
usefulness for application of bacteriocins. The target for
class Ila bacteriocins is the mannose phosphotransferase
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system (mpt-PTS) [8-11], and mutants lacking a bac-
teriocin dedicated target are insensitive to the bacterio-
cin. This mannose PTS is the major uptake system for
mannose and glucose in the bacteria [12]. PTS compo-
nents are also involved in gene regulation of catabolic
operons [13]. Hence bacteriocin resistance is likely to
cause multiple effects. Among the effects seen in class
ITa bacteriocin resistant strains of L. monocytogenes are
changes in cell envelope, alterations in fatty acid com-
position [14-17], and a metabolic shift [18]. Entero-
cocci are among the most common LAB habitants in
the mammalian microflora, and they are commonly
found in fermented foods where they contribute to fla-
vour and preservation, but enterococci have also
become the most frequent antibiotic-resistant bacteria
in hospitals causing serious infections. As such strains
could potentially be defeated by using bacteriocins we
need more knowledge about bacteriocin resistance
phenomena in enterococci. In this work we have per-
formed transcriptional analyses by genomic microarray
to study the effects on class IIa bacteriocin resistance
in E. faecalis V583, a vancomycin-resistant clinical iso-
late [19,20]. Our data confirm the important role of
the mannose PTS in bacteriocin sensitivity and provide
new insight into its role in global gene regulation in
this organism.

Methods

Bacterial strains and growth conditions

Enterococci were routinely grown at 37°C in M17
(Oxoid) supplemented with 0.5% glucose (GM17) or
brain heart infusion (BHI) (Bacto™ BHI, Difco Labora-
tories, Becton, Dickinson and Company). Growth was
monitored using a Bioscreen C instrument (Oy Growth
Curves Ab Ltd.), at 37°C.

Bacteriocin assay

Pediocin PA-1 was obtained from Pediococcus acidilac-
tici Pac 1.0 [21] grown for 24 hours in MRS (Oxoid) at
30°C. The culture supernatant was heated to 70°C for
15 min, and applied to a column of SP-sepharose
(Amersham Pharmacia Biotech). The column was
washed with sodium phosphate buffer (10 mM, pH 5)
before the concentrated bacteriocin was eluted with 1
M NaCl. Bacteriocin activity was measured with a 96-
well microtiter-plate assay [22]. Stationary phase cul-
tures diluted 100 times in MRS were used as indica-
tors. The plates were incubated for 16 hours at 37°C,
and growth was measured spectrophotometrically at
620 nm. One bacteriocin unit (BU) was defined as the
amount of bacteriocin that inhibited growth of the
indicator strain E. faecalis V583 by 50% under these
conditions.
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Isolation of resistant mutants

Aliquots from a culture of E. faecalis V583 grown in
GM17 to an optical density at 600 nm of 1.0 were
spread onto GM17 agar plates containing 10 BU/ml
pediocin PA-1. After incubation overnight at 37°C, the
spontaneously pediocin PA-1 resistant mutant MOP1
was picked. Mutant MOP5 was obtained by inoculating
MOP1 in lactic broth [23] supplemented with 800 BU/
ml pediocin PA-1. After growth over night the mutant
was colony purified on GM17 agar. Mutant MOP2 was
resistant to 2-deoxyglucose (2-DG), 2-DG is known to
enter the bacteria via mannose PTS [24]. One pl of an
E. faecalis culture grown overnight at 37°C in M17
broth supplemented with 0.2% fructose was spread onto
M17 agar (Oxoid) plates containing 10 mM 2-DG
(Sigma) and 0.2% fructose. After incubation for 24
hours, the mutant was isolated. To construct a strain
with an inactivated mpt, a 355 basepair fragment of
gene mptD was PCR amplified using primers mptDi-F
and mptDi-R and the template was DNA from V583
(Table 1). The fragment was ligated into the SnaBl1 site
in pAS222 [25]. Transformation established the recom-
bination plasmid pGhostAmptD in Escherichia coli
EPI300. The resulting plasmid was isolated and electro-
transformed into E. faecalis V583 as described by Holo
and Nes [26]. Transformants were grown at 28°C. Inte-
gration into the V583 genome was achieved by growth
at 37°C in the presence of tetracycline as described pre-
viously [25]. Integration of the plasmid into mptD was
verified in mutant MOMI1 by DNA sequencing using
primers mptD-F and mptD-R.

Metabolites

Glucose, and metabolic products were analyzed by high-
performance liquid chromatography and headspace gas
chromatography [27,28].

Acid production

Cells were grown in BHI to OD = 0.2, harvested by cen-
trifugation, then washed and resuspended to the same
cell density in 5 mM sodium phosphate buffer pH 6.9
containing 0.025% bromocresol purple. Acidification was
monitored at 37°C in 200 pl reaction volumes in micro-
titer plates using a microtiter reader recording absor-
bance at 620 nm after the addition of either glucose or
glycerol (1%).

RNA isolation, cDNA synthesis and microarray
experiments

Cultures of strain V583 and its mutants grown over-
night in (BHI) (Bacto™ BHI, Difco Laboratories, Becton,
Dickinson and Company) were diluted 1:50 in BHI and
incubated further. Bacterial cells were harvested at OD
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Table 1 Plasmids, bacterial strains and primers used in this study
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Description, characteristics® or sequence (5'—3’) forward primer, reverse primer Source or reference

pAS222 Shuttle vector, TetR [25]
pGhostAmpD Insertion inactivation vector of mptD This work
Strain

E. coli EPI300 Epicentre Technologies, USA
E. faecalis /583 Wild type [20]

MOP1 Resistant mutant, from exposure to pediocin PA-1 10 BU/ml This work
MOP2 Resistant mutant, from exposure to 10 mM 2-deoxsyglucose This work
MOP5 Resistant mutant, from exposure to pediocin PA-1 640 BU/ml This work
MOM1 Inserted inactivated mptD This work
Pediococcus acidilactici Pac 1.0 Pedioicn PA-1 producer [21]

Primer Target DNA
arcA-F TAACTCGACAACGGGAAACC EF0104, arcA
arcA-R TCCCAATGGCCACTACTTCT EF0104, arcA
citE-F CGGTGATTAACCCTCGTCAA EF3320, citE
citE-R ACGGAGATAACACCGGAACC EF3320, citE
dnaB-F TAGAAATGGGGGCAGAATCA EF0013, dnaB
dnaB-R ATTCGCACGGGACAAACTAC EF0013, dnaB
mptAB-F TGACCTATGGGGAGGAACAC EF0020, mptAB
mptAB-R GTCGCAATTTCTTGTGCTGA EF0020, mptAB
mptC-F ATTCGTATTGCGATTCCAGCA EF0021, mptC
mptC-R TGCATAACCTACGGCAACGAC EF0021, mptC
mptD-F TCGTTGGTCATTCATGTGGT EF0022, mptD
mptD-R GTTGAACTAATGCGGCCAGT EF0022, mptD
mptDi-F GAAGGAGGAGCAAAGAAAATGGCA EF0022, mptD
mptDi-R CACCGACACCGGCTAAAGGAC EF0022, mptD
mptO-F TATCCAAATTCCGTGGGAAG EF0024, manO
mptO-R TAACACTCGCTTCGGCTCTT EF0024, manO
pgk-F AATGACGCTCCTTTCCACAC EF1963, pgk
pgk-R TTTCAAATACGCCCATTGGT EF1963, pgk

*TetR, tetracycline resistance

600 nm 0.2 by centrifugation, washed in TE-buffer
(10 mM Tris-HCl, 1 mM EDTA pH 7.4), and quickly
frozen in liquid nitrogen. From the frozen bacteria pel-
lets (-80°C) lysate was obtained after lysozyme digestion
(10 pg/ml) and total RNA was extracted using the
RNeasy Mini kit (Qiagen) according to the manufac-
turer’s protocol. Residual DNA was removed on-column
with RNase free DNase (Qiagen) (27 Kunitz units). The
integrity of RNA samples was verified using capillary
electrophoresis on prokaryotic total RNA Nano LabChip
with Bioanalyzer 2100 (Agilent Technologies), and
purity and concentration were determined by optical
density measurements with NanoDrop ND-1000 (Nano-
Drop Technologies, Inc.). Synthesis of cDNA and incor-
poration of aminoallyl-labeled dUTP (Sigma) were
performed at 42°C for 3 hours with Superscript III

(Invitrogen) after preheating 10 pg of total RNA with
30 ug random hexamers as specified by Aakra et al.
[29]. RNA in the cDNA samples was hydrolyzed and
then the reactions were neutralized [29]. The cDNA was
purified by washing through MinElute columns (Qiagen)
and dried in a vacuum centrifuge. Coupling of the ami-
noallyl-labelled cDNAs to the fluorescent N-hydroxysuc-
cinimide-ester dyes; cyanine-3 and cyanine-5 (in DMSO)
(Amersham Pharmacia) were done for 30 min in 18 ul
50 mM Na,COj; buffer pH 9.3. The probe was purified
through MinElute columns and dried. Corresponding
probes generated from the wild type and the mutant
samples were combined, then prehybridisation, hybridi-
sation, washing and drying were performed as described
[29]. Scanning of hybridized microarray slides
were done with Agilent G2505B scanner (Agilent
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Technologies). Transcriptome analyses were performed
using whole-genome DNA microarray of the E. faecalis
V583 genome containing PCR fragments representing
94.7% or 3160 of all open reading fragments in five
copies on each slides [29].

Data analysis

The microarray images were analyzed using GenePix Pro
6.0 software (Axon), and raw data from each slide was
preprocessed independently. The images were gridded to
locate the spots corresponding to each gene. Fluores-
cence intensities for mean spot signal to median back-
ground from both channels (532 nm, Cy3 and 635 nm,
Cy5) were extracted for data analysis and normalization.
Spots with diameter <60 micrometer and spots of low
quality were filtered. All filtering and Lowess normaliza-
tion were performed in BASE (BioArray Software Envir-
onment) [30]. Average log2-transformed intensity Cy3/
Cy5 ratio for each gene in 5 replicates on each array was
calculated. Statistical analyses using SAM (Significance
Analysis of Microarrays) were performed on the normal-
ized microarray data to identify significant differentially
expressed genes in each of the individual mutants by
one-class analyses [31]. SAM was used with a stringent
confidence level by setting the false discovery rate, FDR,
to zero, meaning no genes were identified by chance. The
microarray data obtained in this study has been deposited
in the ArrayExpress database (http://www.ebi.ac.uk/
arrayexpress/) with accession number E-TABM-934.

Quantitative real-time PCR (qPCR)

RNA was isolated independently from that used for tran-
scriptome analysis. Synthesis of cDNA were performed
from 150 ng of total RNA confirmed free of DNA after
an additional DNase treatment, 6 pg hexamers, 10 mM
of ANTP with Superscript III and supplied reagents as
described above. The primers used in real-time quantita-
tive PCR are listed in Table 1. Real-time PCR was per-
formed with a cDNA dilution in triplicates, representing
0.75 ng RNA, 0.1 uM of each primer with FastStart SYBR
Green master included ROX (Roche Applied Science) on
an ABI Prism 7700 Sequence Detection System (Applied
Biosystems). After denaturation at 95°C the program was
40 cycles, including 95°C for 15 seconds, 30 seconds at
62°C and 72°C for 30 seconds. Standard curves were
made for each primer pair to calculate amplification effi-
ciency of the target genes and the endogenous control
gene (EF0013). Differential expression was determined by
calculating the change in threshold cycles for each gene
with the AACt-method, with RNA isolated from resistant
mutants and wild type bacteria.
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DNA manipulations and sequencing

Isolation of DNA from E. faecalis V583 and mutants
was done using Advamax-beads (Advanced Genetic
Technologies Corp.). PCR products were generated with
Phusion DNA polymerase (Finnzymes). Other enzymes
for DNA manipulation were from New England Biolabs.
DNA fragments were purified by use of agarose gel elec-
trophoresis and Qiaquick PCR purification columns
(Qiagen). Plasmids were isolated using Qiagen miniprep
columns. Standard procedures [32] were used for
restriction cutting of DNA, ligation and cloning in E.
coli. DNA was sequenced using the ABI Prism BigDye
terminator sequencing ready reaction kit version 3.1 and
analyzed with the ABI Prism 3100 genetic analyzer
according to the supplier’'s procedures (Applied
Biosystems).

Results
Isolation and characterization of bacteriocin resistant
mutants
Four class Ila bacteriocin resistant mutants of E. faecalis
V583 were obtained. Mutants MOP1 and MOP5 were
isolated after exposure to two different concentrations
of pediocin PA-1. A third spontaneous mutant (MOP2)
was obtained by selecting colonies resistant to 2-DG.
The MOP2 mutant was also resistant to pediocin (Table
2). Pediocin PA-1 resistant mutants were isolated at a
frequency of 3 107, consistent with reported resistance
frequency in Enterococcus and Listeria [6,7]. Previous
studies have shown that pediocin resistance can be
obtained by mutations in the mannose PTS operon, mpt
[33,34], therefore we constructed a resistant E. faecalis
V583 (MOM1) disrupted in mptD. Mutants MOM1 and
MOP5 were highly resistant to pediocin PA-1, while
MOP1 and MOP2 were less resistant (Table 2). The
pediocin resistance phenotype was stably maintained in
all mutants in the absence of bacteriocin. All mutants
were resistant to 2-DG (results not shown). In exponen-
tial phase up to an optical density of 0.2 the mutants
grew with the same growth rate as the wild type, after
which they grew slower but reached a somewhat higher
final density than the wild type (Figure 1).

The mutant strains showed reduced glucose consump-
tion during growth (Table 3). In addition, these mutants

Table 2 Sensitivity to pediocin PA-1 of strains used

Strain MIC (BU/ml)
V585 5
MOP1 160
MOP5 >21-10°
MOP2 160
MOM1 >2110°
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Figure 1 Growth curves of E. faecalis V583 and the resistant mutants in BHI. Each graph is based on average of ten parallels.

displayed changes in the metabolic profile by producing
less lactate than the wild type, but more formate and
ethanol.

Acid production was measured using washed cell sus-
pensions with glucose or glycerol as substrates (Figure
2). The wild type produced acid from glucose more
rapidly than the mutants. Acid production from glycerol
was faster in the mutants. However, the rates were
much lower than with glucose, and the wild type did
not show detectable acid production.

Transcriptional analyses of pediocin resistant strains of

E. faecalis V583

The transcriptional profiles of each of the four pediocin
resistant mutants were compared to that of the parent
strain using DNA microarrays of E. faecalis V583 under
standard growth conditions. The microarray data used
are the means of four independent biological replicates
for the spontaneous mutants and four replicates for the
mptD-inactivated mutant. Significant differentially
expressed genes in each of the individual mutants were

identified using one-class analysis in the statistical soft-
ware SAM [31]. The three spontaneous mutants showed
large similarities in transcriptional responses, and by
using the two-class module in SAM no significant differ-
ence between them could be identified. Furthermore,
DNA sequencing showed no mutations in the mpt
operon in any of these mutants, but they all had the
same transversion mutation in EF0018 resulting in
amino acid substitution A356G in the transcription reg-
ulator MptR. This alanine is conserved among MptR
homologs (results not shown). Consequently, to gain
strength to the statistical analysis all the 12 microarrays
representing the spontaneous mutants were treated as
parallels of the same experiment and called MOP. In
MOP 119 genes showed more than two-fold change in
expression, and in MOM1 184 genes were differentially
expressed. Most of the genes were upregulated; only 15
and 11 genes were downregulated in MOP and MOM]1,
respectively. These genes and their expression profiles
are listed in Additional file 1. As shown in Additional
file 1, MOP and MOM1 had very similar transcriptional

Table 3 Metabolites in supernatants of BHI-grown E. faecalis V583 and mutant strains

Metabolites (mM)

Strain or genotype OD600 nm Glucose Citrate Lactate Formate Acetate Ethanol
V583 02 1.95 0.19 6.13 0.02 130 044
MOM1 02 1.03 0.21 3.64 0 1.30 041
MOP1 02 1.01 0.00 1.03 0.05 1.38 0.60
V583 0.8 7.82 1.02 20.76 530 7.14 3.28
MOM1 0.85 7.82 1.02 1740 16.44 8.82 561
MOP1 09 7.82 1.02 11.60 18.79 10.74 872

The composition of the BHI growth medium was: glucose, 7.82 mM; citrate 1.02 mM; acetate 4.50 mM; formate 0.01 mM, and other substrates in low

concentrations.
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profile, but we observed enhanced fold change ratio of
nearly every gene in the mptD-inactivated mutant com-
pared with the spontaneous mutants. Two-class analysis
identified 24 genes with a significant difference in tran-
scription between MOM1 and MOP, and 12 of them
had more than two-fold change in expression in the
AmptD mutant only (Table 4).

The differentially expressed genes are distributed across
the entire genome and the majority encodes proteins
involved in energy metabolism, transport and binding,
signal transduction, or of unknown functions (Figure 3).
Validation of the differential expression of nine genes
was performed using quantitative real-time PCR (qPCR).
These genes represented different patterns of expression
from various functional groups. As shown in Table 5,
the results were in general in high concordance with the
microarray results but the strongest responses were
more pronounced with qPCR, demonstrating the wider
dynamic range of response by this technique.
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Genes showing reduced expression in bacteriocin
resistant mutants

Only few genes were significantly downregulated in the
resistant mutants. These genes encode proteins involved
in transport, binding and energy metabolism. Most pro-
nounced effects in transcription of the pediocin resistant
mutants was the strong reduction in gene expression of
the mannose PTS operon (EF0019-EF0022). This mpt
operon is 654—regulated [34], and has an unusual gene
organization as it contains an additional gene encoding
a distinct EIIB in front of the genes for the EIIAB, EIIC
and EIID proteins and the last gene EF0024 (Figure 4).
Despite the strong down-regulation, the signals were not
completely abolished. Quantitative real-time PCR ana-
lyses confirmed reduced transcription of mptC repre-
senting the mpt operon (Table 5). The downstream
gene EF0024 was also downregulated indicating that it
belongs to the mpt operon. This gene, referred to as
manO [35], encodes a protein highly conserved among
strains of lactic acid bacteria, is part of the mannose

Table 4 Genes identified with significant different transcriptional profile between MOM1 and MOP mutants

of E. faecalis

ORF Log, ratio MOP Log, ratio MOM1 Protein encoded by gene (Gene name)

EF0071 -0.37 0.77 lipoprotein, putative

EF0352 -0.15 -0.75 hypothetical protein

EFO751 063 -0.51 conserved hypothetical protein

EF0754 0.25 -0.68 conserved hypothetical protein

EF0755 -0.03 -1.35 conserved hypothetical protein

EF0900 0.19 2.00 aldehyde-alcohol dehydrogenase (adhf)

EF1036 049 2.76 nucleoside diphosphate kinase

EF1227 -0.01 1.06 conserved hypothetical protein

EF1422 0.11 0.85 transcriptional regulator, Cro/Cl family

EF1566 -0.64 0.57 3-phosphoshikimate 1-carboxyvinyltransferase (aroA)

EF1567 -0.39 0.52 shikimate kinase (arokK)

EF1603 -0.15 1.01 sucrose-6-phosphate dehydrogenase (scrB-1)

EF1619 -0.33 2.31 carbon dioxide concentrating mechanism protein Ccml, putative
EF1624 -0.38 1.58 aldehyde dehydrogenase, putative

EF1627 -0.36 2.79 ethanolamine ammonia-lyase small subunit (eutC)

EF1629 -0.24 2.27 ethanolamine ammonia-lyase large subunit (eutB)

EF1732 037 201 ABC transporter, ATP-binding/permease protein, MDR family
EF1750 -0.04 046 endo/excinuclease amino terminal domain protein

EF1760 0.11 048 cell division ABC transporter, permease protein FtsX, putative
EF1769 0.01 145 PTS system, IIB component, putative

EF2216 0.07 0.80 hypothetical protein

EF2254 -0.06 -1.37 hypothetical protein

EF2887 0.26 -040 Not annotated

EF3029 0.14 064 PTS system, IID component

EF3041 0.07 -0.58 pheromone binding protein

The genes were identified by two-class SAM analyzes and their corresponding expression levels are included.
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Figure 3 Numbers and functional categories of the 207 genes differentially expressed in resistant strains of E. faecalis V583.

PTS operon in L. monocytogenes and Lactobacillus casei
[36,37].

As expected, MOM1 showed reduced hybridization to
the mptD probe, but the mutant also exhibited reduced
expression of the upstream genes in the mpt operon indi-
cating that MptD is involved in the regulation of its own
synthesis. Strongly reduced gene expression of EF0082
encoding a major facilitator family transporter was
detected in both the spontaneous mutants and in the
AmptD mutant. Interestingly, also the genes gap-2, pgk,
triA, eno (EF1961-64), gpm (EF0195), pyk (EF1046) and
ldh-1 (EF0255) encoding enzymes of glycolytic metabolism

Table 5 Gene expression analyzed by quantitative real-
time PCR and microarray of mutant MOP1

Microarray Quantitative RT-PCR
Gene ID Gene Log, ratio Log, ratio
EF0013 dnaB 0.02 0.04
EF0020 mptAB -2.80 -2.07
EF0021 mptC -0.68 -3.07
EF0022 mptD -1.70 -248
EF0024 manO -0.59 -3.29
EFO105 argF-1 3.06 383
EFO106 araC 3.02 328
EF0633 tyrS-1 -0.82 -1.46
EF1963 pgk -153 -2.71
EF3320 cite 4.90 583

Gene regulation values (log,) are the average results of four biological
replicates for microarray experiments and of two biological replicates for
quantitative PT-PCR.

were expressed to a lower extent in the resistant strains.
Of the remaining genes for the complete pathway for glu-
cose consumption, fba and pfk showed 1.6-fold reduced
expression (excluded by the 2-fold-change cut off in Addi-
tional file 1). Furthermore, the genes in the fructose
operon encoding a transcription regulator, fructose-speci-
fic PTS IIABC and 1-phosphofructokinase (fruKk-2),
showed reduced transcription in all mutants.

Genes with enhanced expression in bacteriocin resistant
mutants are involved in alternative pathways of energy
metabolism

About 90% of the differentially expressed genes were
upregulated in the mutants, and of them having an
ascribed function most encode proteins involved in
energy metabolism, transport, binding and signal trans-
duction (see Additional file 1).

Since the mpt operon is 6>*-regulated, we examined if
other 6**-controlled genes were affected in the mutants.
By in silico analysis of the genome sequence of E. faeca-
lis V583 using the sigma-54 promoter specific consensus
sequence of B. subtilis YTGGCACNNNNNTTGCW
[38], 10 putative c>*-dependent promoters were identi-
fied. Four of them are preceded by a gene encoding a
054-dependent activator, and downstream genes encod-
ing PTS enzyme II. Only the mpt operon showed
reduced expression, while up-regulation only was
observed for mphD localized downstream of EF1955
encoding a LevR-like 6°*-dependent activator.
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Involvement of catabolite-responsive elements (cre)
The large number of up-regulated catabolic genes in the
mutants suggests the involvement of a global regulator.
In Firmicutes carbon catabolite repression (CCR) is
mediated via binding of the catabolite control protein A
(CcpA) to operators known as catabolite-responsive ele-
ments cre [39]. By searching the E. faecalis V583 gen-
ome using the cre query consensus sequence
WTGNAANCGNWNNCW developed for B. subtilis
[40], we found 34 intergenic putative catabolite-respon-
sive elements, and 21 of them were in the promoter
regions of operons showing significant increased tran-
scription in the mutants (see Additional file 1). Another
42 of the promoter regions of differentially expressed
genes contained sequences with one mismatch to the B.
subtilis cre-consensus. We propose that these sequences
represent cre-sites of E. faecalis (see Additional file 2).
Their sequences were aligned and had the consensus
sequence WTGWAARCGYWWWCW. Many of the dif-
ferentially expressed genes contained this sequence in
their coding regions, and two were located in the inter-
genic regions downstream the down-regulated genes
EF0635 and EF1046 (see Additional file 1). As shown in
Additional file 1, a large majority of the differentially
expressed genes are associated with putative cre-sites,
and seven of them possibly regulate divergent expres-
sion. Many of the up-regulated genes located down-
stream of putative cre-sites encode enzymes involved in
the use of alternative energy and carbon sources.
Among them, genes encoding enzymes involved in
citrate transport and catabolism (EF3314 to 3328) had
the greatest increase in expression, up to sixty-fourfold
in the mutants. A cre-site was found in the intergenic
region between the two divergent cit operons. The arc
operon, preceded by a cre-site encodes the energy yield-
ing enzymes by arginine consumption, was also up-regu-
lated in the mutants. Other substrates whose catabolic
genes appear to be repressed via cre-sites in the wild
type and not in the mutants were serine, galactose, lac-
tose, glycerol and sucrose.

The transcription of several transcriptional regulators
appeared to be regulated via cre-sites, suggesting

involvement of CCR in regulatory cascades. None of the
genes encoding proteins mediating CCR (hprK, ptsH
and ccpA) had significantly changed expression.

Ten of the genes showing enhanced expression encode
proteins predicted to contribute to virulence [19]; pro-
teins involved in chitin catabolism (EF0361 + 62), poly-
saccharide lyase (EF0818), serine protease and
coccolysin (EF1817 + 18), secreted lipase (EF3060), two
ABC transporters of iron and peptides (EF3082,
EF3106), lipoprotein of YaeC family (EF3198), and cell
surface anchor family protein (EF3314). All of them
were associated with cre-sites and therefore under
potential CCR regulation.

Discussion

We compared the transcriptomes of wild type E. faecalis
V583 and stable pediocin PA-1 resistant mutants. The
mutants were spontaneously resistant isolates, and since
sensitivity to class Ila bacteriocins in E. faecalis is
dependent on mpt, we also constructed and studied an
insertion inactivated mptD mutant. The transcriptomes
were obtained from cells grown to early exponential
growth phase in rich medium.

In E. faecalis the mpt operon is under transcriptional
control from a promoter recognized by °* and depend-
ing on the activator MptR, encoded by EF0018 [33,34].
The spontaneous bacteriocin resistant isolates contain a
mutation in mptR causing down-regulation of the mpt
operon. Mutant MOP5, derived from MOP1, was resis-
tant to higher bacteriocin concentrations than the other
spontaneous mutants, but we could not identify
sequence differences in mptR or the mpt operon
between these mutants, indicating that changes in other
DNA sequences may also contribute to bacteriocin
resistance in E. faecalis.

Our data confirm previous findings on the role of the
mannose PTS in bacteriocin sensitivity, but the most
striking results were the extensive changes of transcrip-
tion among genes involved in carbohydrate metabolism,
caused by inactivation of the mpt PTS. The mutants
showed reduced glucose consumption, demonstrating
the important role of Mpt in glucose metabolism in
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E. faecalis. Glucose consumption was not abolished,
however, showing that the bacteria have alternative, less
efficient glucose uptake systems, probably among the
transport systems upregulated in the mutants. The pre-
sence of multiple glucose uptake systems is common in
bacteria, and transporters additional to the mannose
PTS were recently described in Lactococcus lactis and L.
monocytogenes [41,42]. Impaired glucose uptake and
metabolism affects the energy status of the cells, leading
to changes in concentrations of glycolytic metabolites.
Yebra et al [37] showed that disruption of the mannose
PTS caused a slower glucose uptake and relief of glu-
cose repression in L. casei.

The altered energy status is sensed by the HPr-kinase/
phosphorylase and implemented on the PTS phosphor-
carrier protein HPr [13,43-45]. In cells with a high energy
status HPr is phoshorylated at Ser-46 and can then form
a complex with CcpA [43,45]. In CCR or CCA (carbon
catabolite activation) the CcpA/HPr-Ser-P complex regu-
lates transcription through binding to the cre-sites [46].

Most of the differential gene expression observed in
our experiments could be ascribed to carbon catabolite
regulation via cre-sites. CCR in E. faecalis has been stu-
died by others, but not by transcriptomic analysis. It has
been reported that enzymes for degradation of citrate,
arginine, serine, galactose and glycerol are under control
of CCR in E. faecalis [47-50]. This is in agreement with
our finding that these genes are up-regulated and asso-
ciated with cre-sites. The metabolism of glycerol shows
that our mutants were catabolic derepressed.

The consensus sequence of the extragenic putative
cre-sites compiled in this study is WTGWAARC-
GYWWWC, very similar to what has been reported in
B. subtilis [40]. Most of the operons affected contain
upstream cre-sites, but in several cases the putative cre-
site is found within the open reading frames. Interest-
ingly, three of the differentially expressed genes have the
putative cre-site positioned in the intergenic region
immediately downstream of the genes. Regulation of
transcriptional initiation involving a 3’-cre located within
the open reading frame but distantly separated from the
promoter has been suggested to involve DNA looping
[51]. To our knowledge, cres located downstream of the
regulated gene have not been reported.

Another down-regulated gene with a putative cre-site
in its promoter was EF0082, encoding a major facilitator
family transporter. The gene has also been found to be
positively regulated by a PrfA-like regulator, Ers,
encoded by EF0074 [52].

Altogether, transcription involving about 90 cre-sites
appeared to be affected in E. faecalis by disturbing its
mannose PTS. About 65% of the putatively CCR regu-
lated genes encode proteins involved in uptake and
metabolism of alternative energy sources. It is
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noteworthy that a number of genes showing increased
transcription in our mutants encode transcription regu-
lators suggesting that regulatory cascades are involved.
Among them were EF1025 and EF1026, encoding the
homologs of CcpN and Yqfl which are involved in
CcpA independent CCR in B. subtilis [53].

When phosphorylated at His-15 by phosphotransfer
from phosphoenolpyruvate via enzyme I, HPr has other
regulatory functions. HPr-His-P reaches high levels in
cells with a low energy status in response to reduced
levels of glycolytic intermediates and ATP, and increased
level of Pi and PEP [12]. It can by phosphorylation regu-
late the activity of PTSs, enzymes such as DhaK and
GlpK and transcriptional regulators [13,48,54,55].

Interestingly, not only the spontaneous mutants but
also the mptD-inactivated mutant showed a strong
reduced transcription of the mpt operon. The decreased
transcription was also seen in the genes upstream of the
disrupted mptD, suggesting that a functional PTS is
necessary for transcription of the mpt operon. The mpt
regulator MptR contains two PTS regulatory domains
(PRDs) flanking an EIIA domain like its homologs, ManR
of Listeria innocua and the well studied LevR of B. subti-
lis [13,56,57]. Phosphorylation in EIIA of LevR mediated
by HPr-His-P leads to activation of /ev transcription,
while phosphorylation of PRD-II at His-869 by the speci-
fic PTS EIIB"®" negatively regulates transcription. Based
on mutation analyses it was suggested that mpt transcrip-
tion in L. innocua is similarity regulated by phosphoryla-
tion of ManR, and that phosphorylation at both sites
would also downregulate mpt transcription [58]. Such a
model can be reconciled with our findings on mpt tran-
scription regulation in E. faecalis, and in the mptD-inacti-
vated mutant EITABMP' will phosphorylate MptR (at
PRD-II) and thereby negatively regulate transcription of
its own operon. We cannot exclude that the weak mpt
signals of MOMLI are caused by altered mRNA stability.
Reduced expression was also seen for EF0024 located
downstream of mptD, indicating it being a part of the
mpt operon. This gene is highly conserved downstream
the mannose PTS genes in lactic acid bacteria, Listeria
and Clostridium, and it is down-regulated in a o>
mutant of L. monocytogenes, implying that it is part of
the mannose PTS operon also in this organism [36].

The mph operon is regulated by another >*-depend-
ing regulator, encoded by EF1955 [34], which has a
domain architecture similar to MptR and LevR and the
phosphorylatable histidines are conserved among the
three regulators. The up-regulation of the mph operon
seen in our mutants can probably be ascribed to acti-
vation of the regulator by phosphorylation of its
EIAMPP_domain (His-566) by HPr-His-P. Such activa-
tion would be prevented in the wild type growing on
glucose [13].
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HPr-His-P can control transcription dependent on
regulators containing PTS domains and PRDs [13]. Two
PRD containing antiterminator proteins were identified
in the E. faecalis genome, and enhanced expressions was
observed for one (EF1515), along with the downstream
gene encoding an N-acetylglucosamine-specific EIIABC,
a multidomain PTS protein. Regulators of this BigG-
family cause release of termination structures in mRNA
and enhanced transcription of downstream PTS genes
when activated by HPr-His-P [59,60], which can explain
the increased gene expression in the mutants. In an ana-
logous manner, the increased expression seen for the
ascorbate-specific EIIB and EIIC genes are possibly
caused by HPr-His-P mediated phosphorylation of the
regulator encoded by the upstream EF2966. The EF2966
gene product contains PRDs and PTS domains and is
probably a transcription regulator, but has erroneously
been annotated as a BglG-type antiterminator although
it lacks an RNA-binding domain [55].

Possibly, most or all the changes in gene expression in
the mutants are caused by altered energy status of the
cells, sensed by changes in metabolite concentrations.
But not all the effects seen in our mutants could be
directly ascribed to HPr phosphorylation. In E. faecalis
fructose utilization is not under CCR [50,61], and no
cre-site was detected in the fru promoter region of the
downregulated fru operon (EF0717-19). This is in con-
trast to L. lactis where fructose utilization is regulated
via CCR [62]. The fructose operon in L. lactis is also
regulated by FruR and activation is dependent on fruc-
tose-1-phosphate [62]. The fru operon (EF0717-19) has
a similar genetic organization in E. faecalis, including a
fruR homolog and a putative FruR recognizing promoter
which suggests that the fru operon is under repression
of FruR in the mutants due to lowered intracellular
levels of fructose-1-phosphate.

All the genes encoding enzymes leading from glucoses
to lactic acid were down-regulated in the mutants. The
ldh-1, encoding the major lactate dehydrogenase in
E. faecalis [25], appears to be regulated by CCA, like in
L. lactis [63]. Genes in the central glycolytic operon
(gap-2, pgk, tpiA, eno) showed reduced expression prob-
ably as a consequence of low fructose-1,6-bis phosphate
(FBP) concentration, and repression mediated by the
central glycolytic gene repressor CggR encoded by the
first gene in the operon, EF1965. A putative CggR
operator sequence upstream of EF1965 was identified
using the criteria of Doan & Aymerich [64]. In B. subti-
lis, the repressor binds the operator localized upstream
of cggR when not bound to FBP [64,65].

The observed shift in metabolic profile toward more
mixed acid fermentation reflects the transcriptional
changes observed, but also the changes in concentration
of central metabolic intermediates [66].
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The spontaneous mutants MOP1 and MOP2 showed
some Mpt activity, as substantiated by intermediate bac-
teriocin sensitivity. The deletion mutant could not have
any Mpt activity and would probably have a lower energy
status than the other strains. In agreement with this, we
observed quantitative differences in responses between
the spontaneous mutants and the constructed mutant.
Generally, all transcriptional effects were stronger in the
constructed mutant. In B. subtilis Singh and colleagues
[67] reported that the strength of cre-site dependent CCR
is dependent only of the HPr-Ser-P levels in the cells,
with involvement of different co-repressors as glucose-6-
P and FBP [68]. We show that difference in strength of
CCR is not only limited to cre-site dependent CCR.

Abranches et al [69] studied the transcriptome of an
EITIAB mannose-PTS mutant of S. mutans. A much
lower number of genes were upregulated in that case,
but largely the effects were similar to our results of
E. faecalis. Like in the pediocin resistant E. faecalis, a
significant number of genes encoding uptake systems
and catabolic enzymes were up-regulated, demonstrating
its central role in regulation of energy metabolism in
these organisms. However, notable differences were also
seen; PTS for trehalose (EF0958) and a gene for
sodium-iron-translocating uptake (EF3324), both down-
regulated in the S. mutans mutant were up regulated in
the E. faecalis mutants. Moreover, central glycolytic
genes showed an opposite regulation in the two species.
These differences could be a result of niche adaptation
and reflect the difference in habitat of these human lac-
tic acid bacteria. The fitness cost associated by a lack of
CCR is a probable reason why mutants resistant to class
IIa bacteriocins are rarely isolated from nature.

Conclusion

We have demonstrated global transcriptional effects in E.
faecalis mutants resistant to class Ila bacteriocins, caused
by changes in the mpt operon. The majority of the effects
can be attributed to relief from glucose repression and
lack of CCA. This mannose PTS is central in regulating
carbon catabolite control in this organism. Our study is
the first to characterize the cre-dependent and -indepen-
dent responses in carbon catabolite control in enterococci.

Additional material

Additional file 1: Table A1: Transcriptional differences between the
bacteriocin resistant mutants and the wild type. °The gene
expression ratios are shown as the log2 values of expression in the
mutant samples, MOP and MOM1, over that in the wild type, of the
differentially expressed genes. Gene expression ratio are indicated by 1
when the fold-change ration data are under 2 and/or the g-values are
higher than 0. "Gene included with special interest, when not meet the
statistical thresholds. “Putative cre-site adjacent gene is indicated with an
arrow and illustrates gene(s) controlled by the same cre-site. The arrow is
solid filled when the cre-site corresponds to the cre-consensus proposed
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by Miwa [40], and the arrow is not filled when it contains one mismatch.
The cre-site position is either localized in the promoter?, intragenic® or
downstream of the gene (gradient filled arrow). YThe functional
categories are: A. Amino acid biosynthesis, B. Biosynthesis of cofactors,
prosthetic groups and carriers, C. Cell envelope, D. Cellular processes, E.
Central intermediary metabolism, F. DNA metabolism, G. Energy
metabolism, H. Hypothetical proteins, I. Protein fate and synthesis, J.
Purines/pyrimidines/nucleosides/nucleotides, K. Regulatory functions, L.
Signal transduction, M. Transcription, N. Transport and binding proteins,
and O. Unknown function.

Additional file 2: Table A2: Summary of the putative cre-sites of
regulated genes in the mutant strains. Sequence and start position of
the 63 putative promoter catabolite-responsive elements of the
regulated genes in the pediocin PA-1 resistant mutants, MOM1 and MOP
of E. faecalis \/583.
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