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Abstract

After discrimination learning between two stimuli that lie on a continuum, animals typically

exhibit generalization on the basis of similarity to the physical features of the stimuli, often

producing a peak-shifted gradient. However, post-discrimination generalization in humans

usually resembles a monotonically increasing (e.g., linear) gradient that is better character-

ized as following a relational rule describing the difference between the stimuli. The current

study tested whether rule-based generalization could be disrupted by reducing the applica-

bility of a relational rule on test. We compared generalization following a difficult categoriza-

tion task between a group who could use their rule consistently throughout test (Group

Consistent), and a group who could only apply their rule effectively on 50% of test trials and

thus could only use it inconsistently (Group Inconsistent). Across two experiments, a peak

shift was found in the Inconsistent group and a monotonic gradient in the Consistent group.

A post-hoc sequential analysis revealed that the Inconsistent group produced both peak-

shifted and monotonic gradients as a function of whether or not the relevant rule was appli-

cable on the previous trial. Reducing the applicability of a rule on test thus appeared to lead

participants to revert to generalizing on the basis of similarity. Our results suggest that

humans learn about the physical features of the stimuli alongside relational rules, and that

rule- and similarity-based learning can interact in determining generalization.

Introduction

Generalization is a fundamental ability that allows humans and animals to adapt effectively to

novel situations. A wide range of studies using simple discrimination tasks suggest that

humans are capable of generalizing on the basis of similarity to the physical features of the sti-

muli, but also on the basis of the abstract relationships between stimuli (e.g., [1,2]). In contrast,

there is still debate about the presence of even simple forms of relational generalization in

infrahuman animals ([2]). Relational and feature-based generalization appear to encapsulate

two different forms of learning in terms of their core content, but whether they represent the

operation of independent learning processes is more difficult to determine empirically. Char-

acterizing the nature of interaction between relational and feature-based generalization may

help to address this issue.
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One procedure where clear differences can emerge between relational and feature- or simi-

larity-based responding is dimensional generalization and in particular, the phenomenon of

peak shift ([3]). As we will discuss, peak shift is particularly suited to investigating a potential

interaction between associative and rule-based processes since it is readily predicted by asso-

ciative theories, easily contrasted with rule-based generalization, and emerges under condi-

tions where rule use is hindered. In animal learning experiments, generalization is often

examined by rewarding subjects for responding to a stimulus (S+), for example, a light of a

particular wavelength or a tone of a particular frequency, and then assessing responding to sti-

muli with varying values along that same dimension of interest (e.g., [4,5]). Such studies in ani-

mals typically produce a peaked generalization gradient, with the highest rates of responding

at the trained S+, and responding decreasing as a function of the degree of similarity between

the test stimulus and the S+ (see [6], for a review). These peaked generalization gradients can

be explained by assuming that behavior towards a stimulus is governed by the degree of simi-

larity or shared features between the novel versus trained instances. This assumption is a fun-

damental tenet of many associative learning theories ([7,8,9,10,11,12,13]).

If instead of training responses to a single stimulus, animals are trained using differential

reinforcement to discriminate between an S+ and S- that lie close together on the relevant

dimension, a phenomenon called peak shift often occurs ([3]). Peak shift describes the situa-

tion in which the peak of the generalization gradient shifts from the location of the S+ in the

direction away from the S-. This effect is well accounted for by associative models that employ

elemental representation and conceive of the S+ and S- as a series of overlapping elements on

a continuum ([7,10,14], but see [15], for an alternative rule-based explanation). Peak shift can

be predicted if it is assumed that the S+ and S- activate elements on the continuum in a graded

(Gaussian) manner during discrimination training. If the S+ and S- contain many common

elements, a large proportion of elements on the dimension will be activated by both stimuli

and accrue weak associative strength due to excitatory learning on S+ countermanded by

inhibitory learning on S- trials. Units with the greatest difference in activation between the S

+ and S- will thus accrue the strongest associative strength. Therefore, elemental theories

directly predict that a stimulus slightly removed from the S+ in the direction away from the S-

should accrue the most associative strength and produce the peak shift phenomenon.

A similar analysis (e.g., see [16]) can be applied for a discrimination task with two stimuli

(i.e. S1 and S2) with competing corresponding responses (i.e. R1 and R2). These responses

have a mutually exclusive relationship (if one is correct, the other is not), meaning that S1

serves as a S- to S2, and vice versa. Assuming that the probability of choosing the associated

response is a function of the activation of that response relative to activation of the alternative

response ([17]), the highest rates of R1 will be to a stimulus slightly displaced from S1 in the

direction away from S2, and vice versa for S2, producing a two-way peak shift ([16]). In both

differential and two-choice discrimination tasks, even when a shift in the peak of responding

occurs, a decline in responding is usually observed for extreme stimuli that are sufficiently dif-

ferent from those used in training (e.g., [3], see [6]). This suggests that generalization still

occurs on the basis of physical similarity, albeit with a learned bias towards exaggerated ver-

sions of the S+. Thus, a generalization gradient with a localized peak of responding is typically

interpreted as evidence of generalization based on the number of shared features between the

test and training stimulus (i.e. physical similarity), consistent with an associative analysis.

While peak shift is readily found in animal studies given appropriate parameters (see [18]),

its elusiveness in human studies suggests there may be other important factors that dictate the

manner of generalization. Analogous procedures in humans, particularly those involving sim-

ple forms of category or discrimination learning, often result in a different pattern of generali-

zation. Instead of a peaked gradient, humans show a monotonically increasing gradient with
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the highest levels of responding or accuracy at the extreme ends of the dimension, where the

stimuli are the most dissimilar from the training stimuli (e.g., [19,20,21,22], see Fig 1). If par-

ticipants have formed a simple relational rule (e.g., concerning brightness: “category 1 is

darker than category 2”), accuracy should be greatest at the extreme ends of the dimension

(e.g., the lightest and darkest stimuli) since a relational rule is presumably easiest to apply at

these test stimuli (in Fig 1, note that the dimension is folded such that the stimuli on the right

represent the lightest and darkest stimuli). A monotonic gradient thus implies that participants

have learnt about the relationships between the features of the stimuli rather than just the

physical features themselves. Forming a relational rule requires abstract representations of the

difference between the stimuli and thus the manner in which they are related to one another.

Higher-order cognitive processes such as hypothesis-testing and reasoning are thought to be

critical in the successful discovery of such rules ([2,23]). Therefore, the underlying mecha-

nisms in rule-based generalization may be qualitatively different to the processes that support

feature-based generalization in other animals (e.g., [24]). Even if rule- and feature-learning

arise from the same system (e.g., [25]), it is clear that the content of learning differs, and that

they produce distinct patterns of generalization.

There are, however, a few instances of peak shift reported in the human generalization liter-

ature. The conditions under which these studies have obtained peak shift are suggestive of a

common feature-driven mechanism of generalization between humans and animals ([26]).

For example, peak shift can be found when deriving a relational rule is difficult due to the com-

plexity of the stimuli ([22]). Other demonstrations of peak shift in discrimination learning rely

on using speeded responses during training with the stimuli presented as incidental cues

([27]), degrading the contingency between the training stimuli and the correct response ([28]),

or interleaving two qualitatively distinct sets of stimuli to decrease the opportunity for stimulus

comparison between trials ([20]). Taken together, these demonstrations suggest that when the

training stimuli and procedures minimize the opportunity to form a relational rule, humans

generalize on the basis of physical stimulus features, and in a manner that produces the peak

shift phenomenon.

Fig 1. Example of rule-based and similarity-based generalization gradients in a two-choice categorization task.

Note that the dimension has been folded such that the ‘Far’ point represents both extremes of the stimulus dimension

(e.g., the brightest and darkest stimuli).

https://doi.org/10.1371/journal.pone.0203805.g001
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While the literature demonstrates that humans can generalize in different ways, the ques-

tion remains as to how these two forms of generalization interact. A study by Livesey and

McLaren ([20]) provides one answer. In their study, participants were trained to discriminate

between two shades of green differing only in their hue. In two experiments, a peak-shifted

gradient was found in the initial phase of testing which gradually became monotonic through-

out testing. In Experiment 2, this change in generalization was only found for participants who

had failed to notice the difference between the stimuli during training as assessed by a post-

experiment interview (those who reported noticing the relation in training produced mono-

tonic gradients from the outset). Presumably, these participants were able to use what they had

learned during training to derive the appropriate rule on test. Their within-subjects demon-

stration of both a monotonic and peak-shifted generalization gradient shows that in the

absence of a relational rule, participants generalize according to the physical features of the

stimuli.

To summarize, the experimental evidence suggests that the integration of associative and

relational information is probably not equal. The fact that peak shift is so elusive suggests that

humans predominantly use explicit rules when confronted with discrimination tasks, and if

present, this relational rule dominates responding when generalizing at test. This dominance

of rule-based responding may be because the majority of human discrimination studies report-

ing rule-based generalization have used stimuli that are relatively simple with only one relevant

dimension (e.g., colored squares, [20]). Although the discriminations are usually difficult

enough to ensure that deriving a rule is not easy, once it has been derived the application of

that rule on test is certainly straightforward, given that participants can identify the rule-rele-

vant difference between the stimuli or categories of stimuli. To date, none of the post-discrimi-

nation generalization studies of this nature have observed disruption of the application of rules

on test once that rule has been learned.

The aim of the current study was to examine whether reducing the applicability of a rela-

tional rule on test could disrupt the application of that rule on trials where the rule should be

easy to apply. Rather than restricting the acquisition of relational rules during training, as has

been done in the past, the current study provided conditions to encourage the use of a rela-

tional rule and then manipulated its applicability on test (that is, the consistency with which

the rule can be applied). Our hypothesis was that evidence of feature-based generalization

would emerge when the applicability of a rule was reduced at test. The results of Livesey and

McLaren ([20]) show that participants’ generalization gradients progress from being peak-

shifted towards being monotonic through the course of testing only if participants derive a

rule at test and not training, suggesting that in the absence of a relational rule, participants

learn about, and generalize according to the physical features of the stimuli. Thus, if knowledge

of relational rules and stimulus features are stored concurrently and expression of rule-based

generalization dominates under situations where the rule is easy to apply, then reducing the

applicability of a rule on test may result in participants reverting to generalizing on the basis of

similarity to stimulus features.

Another aim of the study was to provide stronger evidence for rule use by including an

additional measure of stimulus similarity. Livesey and McLaren ([20]) found a strong concor-

dance between monotonicity in generalization gradients and verbal description of the relevant

stimulus relation (see also [29]). Evidence of rule use at test corresponded with participants

reporting that they had noticed the relevant dimension during training. However, this type of

analysis inevitably requires post-hoc comparisons from which the relationship between pat-

terns of generalization and articulated knowledge is never completely clear. Furthermore, asso-

ciative models (e.g., [14]) can also explain monotonic gradients of generalization through

feature-based processes, by assuming very broad underlying generalization functions. Under
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these parameters, the hypothetical peak of the gradient lies close to or beyond the bounds of

the test range and thus declining response accuracy would not be observed ([20]). This expla-

nation implies that a monotonic gradient results because participants over-generalize to sti-

muli that they perceive to be physically similar despite the large differences in at least one

physical property. This stands in contrast to rule use, in which a major advantage is that it

allows for greater extrapolation of learning to novel situations that are not perceived to be

physically similar, that is, instances with low surface similarity but similar structural or rela-

tional features ([2,30]).

A simple way to determine if monotonic generalization is based on stimulus properties

other than mere physical similarity is to test whether participants simultaneously acknowledge

that the stimuli at the extreme ends of the dimension (which should show the highest levels of

accuracy) are not similar to the stimuli they have seen during training. Therefore, in addition

to category judgements on test, participants were also asked to give typicality ratings as a mea-

sure of perceptual similarity. If the presence of a monotonic gradient were due to overly broad

generalization and under-assessment of the full range of the dimension, then we would expect

typicality ratings to be relatively flat and high across the dimension. On the other hand, if par-

ticipants are using a relational rule, then categorization accuracy and ratings of typicality

should diverge as the test stimuli become less similar to the trained stimuli, with a sharp

decline in typicality ratings at the extreme end of the dimension. In summary, the current

study aims to investigate whether peak shift can be found in the presence of a relational rule by

disrupting rule application, rather than hindering rule formation ([22,31]) or assessing gener-

alization prior to rule formation ([20]) as previous studies have done. In addition, by including

typicality ratings, a monotonic gradient of generalization can be more strongly inferred to be

the product of relational rule use.

Experiments

Experiments 1 and 2 examined the effect of disrupting rule application on test by comparing

generalization between a Consistent group and an Inconsistent group. In Group Consistent,

any relational rules derived during training continued to be applicable throughout the entire

test phase. To reduce the applicability of the rule on test in group Inconsistent, we provided a

situation where a rule was easily applicable, or useful in determining category membership on

50% of test trials but not easily applicable (and potentially not useful at all) in determining cat-

egory membership on the other 50% of test trials. In order to prevent participants from simply

discounting the trials where the rule was difficult to use as being irrelevant, the test stimuli

were created to be perceptually similar to the training stimuli so that participants would

assume that their rule would continue to be valid throughout test. We chose stimuli that had

two relevant category dimensions and therefore two possible relational rules that participants

could form. This allowed us to disrupt rule use by making one dimension (and rule) relevant

on half of the test trials, and the other dimension (and rule) relevant on the other half of test

trials. We made the stimuli complex with multiple features (9 colored circles on a black back-

ground) in order for rule application on test to be more difficult than previous studies, with

the hue (blue vs. green) and size of the circles (small vs. large) chosen as the diagnostic category

dimensions. The complexity of the stimuli was assumed to make it difficult for participants to

determine with confidence whether their rule was applicable on a particular trial, thereby facil-

itating an effect of our test manipulation. These dimensions were correlated during training,

meaning that for example, one category had bluer and larger circles and the other had greener

and smaller circles (see stimuli labeled ‘P1’ and ‘P2’ in Fig 2). In order to provide the best

opportunity to obtain peak shift, we made the training stimuli perceptually similar and added
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noise such that relational differences for any given circle were less reliable than the average of

all the circles (see S1 Supplemental Materials for full details). This makes the discrimination

more difficult but also discourages participants from attending to a single circle, which might

have made rule application straightforward and undermine the effect of our manipulation.

To create the test stimuli, we varied one dimension at a time such that when one dimension

was being varied, the other stayed constant. Whether the information on this non-varied

Fig 2. Schematic diagram of the test stimuli in a two-dimensional space for the consistent and inconsistent groups for each experiment. “P” represents the category

prototype whose color and size values were seen during training. “T” represents the Train test stimulus which had the same color and/or size values as the training

stimuli. “F” represents the Far test stimulus which contains the greenest/bluest or smallest/largest circles. “N” represents the Near1 stimulus. The diagonal white dotted

line indicates the category boundary. In Experiment 1, diagnostic information was always present on both dimensions in the Consistent group, but only present on one

dimension for any given test stimulus in the Inconsistent group. In Experiment 2, the critical test stimuli (where the attended dimension was varied) were equated

between the Consistent and Inconsistent groups. Note that in both experiments, a relational rule using the attended dimension can be used on 100% of test trials in the

Consistent group, but only 50% of test trials in the Inconsistent group.

https://doi.org/10.1371/journal.pone.0203805.g002
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dimension was diagnostic of category membership (i.e. varied reliably between categories) was

manipulated between groups (see Fig 2). For example, when the color dimension was varied in

Group Consistent, the other dimension (i.e. size) was set at the same values used for the train-

ing stimuli such that size was still diagnostic of category membership (Fig 2A), but in group

Inconsistent, size was set at a value roughly in the middle of the two categories, making it non-

diagnostic of category membership (Fig 2B). Fig 3 shows an example of test stimuli seen by the

Inconsistent group. Notice that when size was varied (top row), the color values do not change

between categories and when color was varied (bottom row), the size values of the circles do

not change (but the location of the circles change randomly, providing some noise in the sti-

muli). This means that if participants were to derive a rule using color, for example, this rule

would be difficult to use on test trials when size is varied (Fig 3, top row), and is thus only use-

ful on the half of test trials where color is being varied (Fig 3, bottom row).

In order to increase reliance on a rule at training, and therefore increase the probability of

observing an effect of reducing rule applicability at test, participants were explicitly directed to

attend to one of the two dimensions (see S1 Supplemental Materials for details of an experi-

ment without this attention manipulation), creating an attended and an unattended dimension

(either the color or size of the circles served as the attended dimension, counterbalanced across

participants). The focus was on how participants generalized on the attended dimension since

this was the dimension where rule use was most likely to occur, and therefore the dimension

on which rule disruption was likely to occur. However, generalization along the unattended

dimension was also assessed to see whether any learning occurred in the absence of instructed

attention. If participants derived a rule using one of the two dimensions, this rule would either

be easy to apply on 100% (Group Consistent) or 50% of test trials (Group Inconsistent). Thus,

Group Inconsistent would experience a sequence of test trials where their rule was easy to

apply on some trials, and very difficult to apply on the other trials, making application of a rule

inconsistent. The question of interest was whether manipulating the consistency of rule appli-

cation on test in this way would affect application of the rule on the test trials where the rule

was clearly valid and easy to apply.

Fig 3. Example stimuli. Examples of a subset of the test stimuli (Train, Near2, Far) seen by the Inconsistent group

varying size (top row) and color (bottom row). The left category contains smaller and greener circles, and the right

category contains larger and bluer circles. Note how the values of the non-varied dimension (color in the top row and

size in the bottom row) do not change between categories. The values of the non-varied dimension were set at a value

roughly in the middle of the two categories, making it non-diagnostic of category membership in the Inconsistent

group. The Consistent group had diagnostic information from the non-varied dimension, such that there would be a

small difference between categories in terms of color in the top row (the same difference present between the Train

stimuli in the bottom row), and a small difference between categories in terms of size in the bottom row (the same

difference present between the Train stimuli in the top row).

https://doi.org/10.1371/journal.pone.0203805.g003
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Experiments 1 and 2 were identical except for a minor procedural detail designed to rule

out an alternative explanation of any obtained group differences. In Experiment 1, the Consis-

tent and Inconsistent groups differ not just in the ease of application of rules on test, but also

in the slight physical characteristics of the critical test stimuli. As depicted in Fig 2, the Consis-

tent group have diagnostic information present on both dimensions while the Inconsistent

group have diagnostic information from a single dimension. Thus, considering the critical

‘attended dimension’ trials, the Consistent group have ‘extra’ diagnostic information on test,

which may aid rule use. For instance, for a participant in the Consistent group attending to

color, the attended dimension stimuli that vary in color also contain a subtle difference in size

that is diagnostic of category membership. Having diagnostic information available during test

makes the testing context more similar to the training context than in the Inconsistent group.

This is particularly important because despite the proposal that rule use should not be affected

by the similarity between training and target domains ([30]), research in different paradigms

has shown that in practice, rule use is affected by the similarity between the training and test

stimuli even when the rule is perfectly valid (e.g., [32,33,34]) and even when using similarity is

detrimental to performance ([34]). Consequently, to rule out this alternative explanation for

any potential group differences, in Experiment 2, the critical test trials varying the attended

dimension were equated between Consistent and Inconsistent groups such that neither group

had information on the unattended dimension when the attended dimension was varied (see

Fig 2C and 2D). Note that across both experiments, the Consistent group would be able to use

a relational rule on their attended dimension on all test trials while the Inconsistent group

would only be able to use a rule on their attended dimension on half of the test trials. Due to

the high degree of similarity between the designs of these experiments, the data were analyzed

together.

Method

Participants

One hundred and thirty-nine (M age = 20.88, SD = 6.22, 96 females) and one hundred and

forty (M age = 19.48, SD = 3.17, 92 females) University of Sydney students participated in

Experiment 1 and 2 respectively in exchange for partial course credit or payment (Experiment

1 only, AUD$15/hour). Participants were randomly allocated to either the Consistent

(n = 134) or Inconsistent (n = 145) group. Participants who indicated that they were colorblind

were excluded (6 participants).

Apparatus

The experiments were programmed using Matlab software and PsychToolbox ([35,36]) and

run using Apple Mac Mini desktop computers connected to 23 inch Dell monitors and a stan-

dard Apple keyboard and mouse. Testing was conducted in groups of up to four and partici-

pants were asked to wear headphones to attenuate background noise.

Stimuli

Each stimulus presented in training and test consisted of 9 circles on a black 600x600 pixel

square background. The stimulus background was divided into a 3x3 grid, with each circle

confined to a 200x200 pixel cell so that there was no overlap between circles. The location of

the circles within each cell varied randomly such that circle location was not predictive of cate-

gory membership. The critical dimensions that were varied between categories were the color

and size of the circles. The minimum and maximum size values (circle radii) were 15 and 50
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pixels respectively, and the minimum and maximum color values (hue) were .403 and .555,

with saturation and brightness set to 100% and 75% respectively. To allow an adequate assess-

ment of generalization along each dimension, the test stimuli varied between this full range,

but the training stimuli were restricted to vary in a mid-range band that included the middle

52% of values. This was done to ensure that the test stimuli were more extreme than the train-

ing stimuli to allow an adequate assessment of generalization along each dimension. An exam-

ple of how stimuli varied along each dimension can be seen in Fig 3, and the full details of how

the stimuli were constructed can be found in S1 Supplemental Materials.

Procedure

Experiments 1 and 2 consisted of three phases, an initial training phase, a categorization test,

and a short questionnaire. All instructions and phases were presented within the computer

program. Participants gave informed written consent and the experiments were approved by

the University of Sydney Human Research Ethics Committee. Participants were randomly

allocated to either the Consistent or Inconsistent group, and to either the Attend Color or

Attend Size group. The experiment was thus a 2x2x2 between-subjects design with attention

group (Attend Color or Attend Size), test group (Consistent vs. Inconsistent), and experiment

(1 vs. 2) as the independent variables.

Training phase. For each participant, the size and color of the categories were random-

ized independently such that one category would have greener and the other bluer circles, and

one category would have larger and the other smaller circles. Participants first read a cover

story explaining that they would see various artworks that belonged to different artists (Evan

and Justin), and their task was to work out which artworks belonged to which artist through

trial and error. They were warned that the artworks were very similar and thus they might find

the task difficult at first, but they would be able to learn about the artworks with feedback. The

instructional manipulation was presented on a separate screen prior to the start of the training

phase and read:

“You should try to use as much information about the circles to categorize the stimuli. How-
ever, the [COLOUR/SIZE] of the circles may be most helpful in distinguishing Evan’s and Jus-
tin’s artworks. Try and attend to the [COLOUR/SIZE] of the circles when learning the
categories.”

Before training started, a message appeared for 3s that told participants to get ready for the

task by placing their fingers on the left and right shift keys. On each trial, participants were pre-

sented with an artwork in the middle of the screen and the names of the artists appeared on

the sides of the screen (“Evan” on the left and “Justin” on the right). Participants made a cate-

gorization response by pressing the left or right shift key, and had 4s to respond before they

were timed out. Once a response was made or the timeout was reached, the stimulus disap-

peared, and feedback (either “correct” in black, “wrong” in red, or “too slow” in red) was

shown in the center of the screen, along with the choice of artist they had made on that trial.

Feedback was shown for 500ms and 1000ms later the next trial would begin. There were 120

trials in total (with 120 unique stimuli, see S1 Supplemental Materials), and the training phase

progressed in exactly the same way for both groups.

Categorization test. The instructions for the test phase emphasized that participants

would now be shown more artworks that belonged to the same artists, and that they should

choose which artist the artwork belonged to by again pressing the left and right shift keys, and

then make a typicality rating on a scale using the mouse. They were also told that some of the
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artworks might look like the artworks seen previously, while others would not. It was empha-

sized in the instructions that the category judgements and typicality ratings were separate

judgements, by telling participants that it was possible to know the correct category due to

high similarity (i.e. give a high rating for typicality) between a test stimulus and the trained sti-

muli, or despite a lack of similarity between the test stimulus and training stimuli (i.e. give a

low rating for typicality).

The test stimuli consisted of the training stimulus (Train), and transfer stimuli that were

more extreme along the dimension (Near1, Near2, Near3 and Far stimuli) for each of the two

categories, and for each of the two dimensions. These 20 different test stimuli were presented 4

times each, with the location of the circles randomized each time, such that each instantiation

of each stimulus was unique (but the critical color and size values were the same). The only dif-

ference between Experiment 1 and Experiment 2 was that the Consistent group had diagnostic

information on both attended and unattended dimensions in Experiment 1, but only ever on

the attended dimension in Experiment 2 (compare Fig 2A and 2C).

On each test trial, a stimulus was presented with the question “Who does this artwork

belong to?” appearing underneath. Participants had unlimited time to respond and pressed the

left or right shift key to make their decision. Once they had made their choice a new question

replaced the previous one asking “How typical of [chosen artist]’s art collection is this art-

work?” and a rating scale appeared underneath the question, ranging from “NOT typical” to

“VERY typical”. Participants were free to alter their category choice and typicality rating until

they were satisfied with both, after which they could press spacebar to progress to the next

trial. There was a blank inter-trial interval (ITI) of 1000ms.

Questionnaire. Participants answered a series of questions following the categorization

test. The first question asked participants how useful they found various dimensions (bright-

ness, size, color, location) of the circles. Four visual analogue scales appeared on the same page

(one for each dimension) and participants made a rating on each scale ranging from “Not use-

ful” to “Very useful”. They could make their four ratings in any order and could only progress

to the next question once all ratings had been made. We then asked participants to answer a

three-alternative forced-choice question (3AFC) and then a two-alternative forced-choice

(2AFC) question about participants’ attended dimension first, and then their unattended

dimension. The first 3AFC question read:

“You may have noticed a difference between the left (Evan) and right (Justin) categories in
terms of the COLOUR/SIZE of the circles. If you did notice a difference, when did you notice
it?”

1. During the FIRST phase of the experiment (where there was feedback)

2. During the SECOND phase of the experiment (where there was no feedback, and you had to
give typicality ratings)

3. I did not notice a difference

After answering the 3AFC question, participants proceeded to the 2AFC question, which read:

“One of the categories had mostly BLUER/LARGER circles, while the other category had mostly
GREENER/SMALLER circles. Which of the following do you think is correct?”

1. LEFT category (Evan) had mostly GREENER/LARGERcircles, RIGHT category (Justin) had
mostly BLUER/SMALLER circles.
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2. LEFT category (Evan) had mostly BLUER/SMALLER circles, RIGHT category (Justin) had
mostly GREENER/LARGERcircles

Both the 3AFC self-report question and the 2AFC rule-identification question were

answered by pressing the corresponding number key on the keyboard. Participants also made

a confidence rating for the 2AFC rule-identification question on a scale ranging from “I’m

guessing” to “100% confident”. All scale ratings were transformed to a scale ranging from

0–100. A manipulation check was also performed asking participants “Which dimension were

you asked to attend to? Press 1 for colour or 2 for size”. Lastly, we asked participants to indicate

whether they suffered from any form of color-blindness.

Results and discussion

Data analysis

The training and test data were analyzed in hierarchical mixed effects regressions using the

‘lme4’ package ([37]) in R ([38]). In the context of our experiments, hierarchical linear regres-

sion is more appropriate and powerful than traditional analysis of variance (ANOVA) (see

[39]). Firstly, both our training and test data consist of multiple trial-level observations for

each level of each factor. Hierarchical linear models utilize the raw trial-level responses (e.g.,

correct/incorrect), minimizing information loss ([40]). Mixed effects models are especially

useful in analyzing categorization test data consisting of binary (correct/incorrect) responses,

which otherwise would need to be averaged to form continuous data to analyze in a repeated-

measures ANOVA (see [39], for other arguments against using repeated-measures ANOVA to

analyze generalization gradients).

In our analyses, we treated subject and trends over test stimuli as random effects, allowing

the model to account for subject-level variance by estimating a unique intercept (i.e. categori-

zation accuracy or typicality ratings for the ‘Train’ test stimulus) and slope (i.e. slope of the

generalization gradient) for each participant (see [40], for arguments for including both sub-

ject and stimuli as random factors). In this way, mixed effects models give more accurate esti-

mates of group effects than traditional ANOVA, as individual differences in intercept and

trend are estimated separately to fixed effects in the mixed effects model ([40,41]). For the cate-

gorization test data, the presence of linear and quadratic trends was tested in separate models

since these trends capture linearity and curvature suggestive of monotonic and peak-shifted

gradients respectively. For all other analyses, stimulus was treated as a linear predictor. For

brevity, we report only the results concerning the statistical significance of each predictor,

using type III Wald Chisquare tests. Note that any significant predictors of categorization

accuracy should be interpreted as a change in log odds of responding correctly.

Exclusion criteria

To ensure that the data we analyzed were from participants who used their hint to derive the

appropriate rule, we excluded participants who reported not noticing a difference in their

attended dimension during training (58 participants, 21.2% of the sample). It was assumed

that despite the difficulty of the discrimination, giving participants a hint should have made it

easy to eventually discover a difference between the categories in their attended dimension

during training. Thus, any participants who failed this criterion were probably not following

the instructions. Participants who failed the manipulation check were also excluded (a further

17 participants, 7.9% of the remaining sample) for the same reason. Note that neither of these

exclusion criteria require participants getting the 2AFC rule-identification question correct.

We also excluded participants if they did not score > 55% accuracy in the last half of training
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(a further 14 participants, 6.9% of the remaining sample, see S1 Supplemental Materials for

scatterplots of training and test accuracy). After applying these criteria, 184 participants

remained (95 in the Consistent group and 89 in the Inconsistent group).

Questionnaire

Fig 4 shows the proportion of participants in each of the four groups that selected each option

in the 3AFC self-report question for color and size in Experiments 1 (4A and 4B) and 2 (4c

and 4d) after exclusions. Fig 5 shows the proportion of participants in each group who were

able to identify the correct difference between the categories after applying these exclusion cri-

teria in Experiment 1 (5A and 5B) and Experiment 2 (5C and 5D). Accuracy for the rule-iden-

tification is generally quite high, and not surprisingly there was significantly higher accuracy

for the color dimension when participants were told to attend to color, χ2(1, N = 184) = 16.9,

p< .001, (Fig 5A and 5C), and vice versa for the size dimension, χ2(1, N = 184) = 5.49, p = .019

(Fig 5B and 5D). The proportion of participants identifying the rule for color and size did not

differ between experiments, largest χ2(1, N = 184) = 2.25, p = .134, but a larger proportion of

participants in the Consistent group were able to identify the correct category difference for

color, χ2(1, N = 184) = 6.54, p = .011, and also for size, χ2(1, N = 184) = 11.9, p< .001. A possi-

ble explanation for these group differences in rule identification is that the reduction of rule

applicability at test may have resulted in more errors when attempting to identify the rule in

the subsequent questionnaire.

Fig 4. Phase in which category relation was noticed. Proportion of participants who selected each option for the

3AFC self-report question (after exclusions) for each dimension (left panels: color, right panels: size) in Experiment 1

(A and B) and Experiment 2 (C and D). Note that participants who reported not noticing differences in their attended

dimension during training were excluded.

https://doi.org/10.1371/journal.pone.0203805.g004
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Training

The training data were analyzed in a logistic hierarchical regression with test group (Consis-

tent vs. Inconsistent), attention group (Attend Color vs. Attend Size), experiment (1 vs. 2), and

training block (1–4) as predictors, and estimating a random intercept and slope for each par-

ticipant. Training block predicted linear increases in accuracy, χ2(1, N = 184) = 11.7, p< .001,

and did not interact with test group, χ2(1, N = 184) = 1.07, p = .300, nor attention group, χ2 <

1, but did interact with experiment, χ2(1, N = 184) = 6.23, p = .013. This interaction was due to

steeper learning curves in Experiment 2. Due to these training results, the following analyses

will collapse over attention group and experiment but we also ran an additional model for

each analysis including experiment as an additional predictor. We have noted where any

results interacted with experiment.

Category judgements

The categorization results for variations along the attended dimension are shown in Fig 6A.

Inspecting Fig 6A, a monotonic gradient seems to be present in the Consistent Group, while

the Inconsistent Group is clearly showing a different pattern of generalization that resembles a

peak shift. We fitted a logistic hierarchical mixed effects model to the trial-level binary (cor-

rect/incorrect) data including stimulus as a linear predictor, group as a nominal predictor, and

estimating a random intercept and slope (across the stimulus predictor) for each participant.

Fig 5. Rule identification accuracy. Accuracy for the 2AFC rule-identification question (after exclusions) for Experiment 1 (A and

B) and Experiment 2 (C and D).

https://doi.org/10.1371/journal.pone.0203805.g005
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There was a significant effect of group, χ2(1, N = 184) = 4.25, p = .039, meaning that the Con-

sistent group were significantly more accurate in categorizing the test stimuli than the Incon-

sistent group. Stimulus was found to be a significant linear predictor of the trend in

categorization accuracy, χ2(1, N = 184) = 41.7, p< .001, and there was a significant interaction

between stimulus and test group, χ2(1, N = 184) = 7.06, p = .008. The results were similar for

the model testing for a quadratic trend over the stimulus dimension, with test group, χ2(1,

N = 184) = 5.07, p = .024, stimulus, χ2(1, N = 184) = 26.6, p< .001, and their interaction, χ2(1,

N = 184) = 8.40, p = .004, all significant. Therefore, it appears that reducing rule applicability at

test changed the shape of the generalization gradient.

Since we obtained significant interactions between stimulus and group, we conducted

planned simple effect analyses testing for linear and quadratic trends within each group and a

peak shift in the Inconsistent group. In both groups, stimulus was found to be a significant lin-

ear, and quadratic predictor of categorization accuracy, χ2s(1, N = 89) > = 9.98, p = .002.

Thus, it appears that linear and quadratic trends in categorization accuracy were present in

both groups, but the linear trend was stronger in the Consistent group, and the quadratic

trend was stronger in the Inconsistent group. To test for the presence of peak shift in the

Inconsistent group, we compared the highest of the three middle points (Near1, Near2, Near3)

to the two endpoints (Train and Far) in a logistic hierarchical regression. These tests are neces-

sarily one-tailed since peak shift involves a significant rise and fall in accuracy. Since we tested

the highest of the three middle points, the critical Bonferroni-corrected alpha value used for

both tests was .033. Using the Near1 point, there was a significant rise in accuracy from the

Train stimulus, χ2(1, N = 89) = 27.4, p< .001, and a marginally non-significant fall in accuracy

to the Far stimulus using the Bonferroni-corrected alpha value of .033, χ2(1, N = 89) = 4.33, p
= .037. Although the statistical evidence for the presence of the peak-shifted gradient in the

Inconsistent group was weak, differences in the shape of the generalization gradient and over-

all poorer performance in the Inconsistent group relative to the Consistent suggest that rule-

based generalization was disrupted in the Inconsistent group.

Categorization accuracy for generalization along the unattended dimension is shown in Fig

7A. The data were analyzed in a similar way to the attended dimension, but treating stimulus

as a predictor of linear trend only. Stimulus was not found to be a significant linear predictor,

Fig 6. Generalization gradients for the attended dimension. Categorization accuracy (A) and typicality ratings (B) for test stimuli varying the attended

dimension in Experiments 1/2. Error bars represent the standard error of the mean. Note that the scales on the y-axis do not start at 0.

https://doi.org/10.1371/journal.pone.0203805.g006
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χ2(1, N = 184) = 2.85, p = .091, and stimulus did not interact with test group, χ2(1, N = 184) =

3.30, p = .069, although this effect was marginal, and probably due to the slight linear trend evi-

dent in the Inconsistent group (Fig 7A). However, the Consistent group had significantly

higher accuracy than the Inconsistent group overall, χ2(1, N = 184) = 191.5, p< .001. The high

level of accuracy attained by the Consistent group can be explained by the fact that on these tri-

als, information on the other (i.e. attended) dimension was present, and participants must

have relied on this dimension for their category judgements. The Inconsistent group on the

other hand, did not have information on the other (attended) dimension and accuracy is there-

fore close to chance. The flat generalization gradients in each group indicate that the unat-

tended dimension did not acquire any stimulus control.

Typicality ratings

The typicality ratings for the attended dimension are shown in Fig 6B. It can be seen that while

both groups exhibit a descending linear gradient in their ratings, the gradient for the Consistent

group is clearly steeper than the Inconsistent group. These observations were confirmed statisti-

cally in that stimulus was found to be a significant predictor of typicality ratings, χ2(1,N = 184) =

103.6, p< .001, and interacted with test group, χ2(1,N = 184) = 20.3, p< .001. Note that stimulus

did interact with experiment, χ2(1,N = 184) = 3.99, p = .046, once experiment was added to the

model. Group was not found to be a significant predictor, χ2< 1. The typicality ratings show that

the highest categorization accuracy was achieved for the test stimuli that participants considered

to be least typical of the category, providing further evidence that participants in the Consistent

group were generalizing on the basis of a relational rule. A monotonic gradient in categorization

accuracy can always be argued to indicate the rise of a peak-shifted gradient that spans a large

width of the category dimension ([20]), but the presence of these descending typicality gradients

confirms that the monotonic gradient in categorization is based on more than just the perceived

similarity of the test stimuli to those seen in training.

Similar results were found for typicality ratings on the unattended dimension (Fig 7D).

Again, stimulus was a significant predictor of typicality ratings, χ2(1, N = 184) = 73.9, p< .001,

with significantly steeper gradients in the Consistent group than the Inconsistent group, χ2(1,

N = 184) = 9.49, p = .002. There was no effect of group, χ2(1, N = 184) = 2.12, p = .146.

Fig 7. Generalization gradients for the unattended dimension. Categorization accuracy (A) and typicality ratings (B) for test stimuli varying the unattended

dimension in Experiments 1/2. The data in Experiments 1 and 2 were combined since there were no significant differences found between experiments. Error

bars represent the standard error of the mean. Note that the scales on the y-axis do not start at 0.

https://doi.org/10.1371/journal.pone.0203805.g007
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Summary

In summary, we found, for category judgements of stimuli varying along the attended dimen-

sion, evidence of reduced accuracy in the Inconsistent group, as well as a different pattern of

generalization to the Consistent group. Critically, these results suggest that reducing the appli-

cability of a rule on test disrupted rule-based generalization. Neither of these effects interacted

with experiment, indicating that they were not due to the subtle additional information con-

veyed on the unattended dimension in the Consistent condition in Experiment 1. In the Con-

sistent group, a monotonic gradient of generalization was present, consistent with rule use.

Although a weaker (though still significant) linear trend in generalization was also present in

the Inconsistent group, the gradient appeared to be non-monotonic, peaking at an intermedi-

ate stimulus value close to the trained stimuli. However, planned analyses of the peak-shifted

gradient revealed that the decline in accuracy to the extremes of the test range was marginally

non-significant. Thus, although the shape of the gradient is consistent with generalization on

the basis of similarity to physical features, the overall evidence for a peak shift was statistically

weak. Evidence for generalization on the basis of a rule was provided by the typicality ratings,

where the Consistent group performed at the highest level of accuracy for stimuli they rated as

least typical of the category. Interestingly, our test manipulation affected not just category

judgements but perceptions of typicality, with the Inconsistent group showing a flatter gradi-

ent in their typicality ratings. It is clear that while the Inconsistent group displayed a gradient

resembling a peak shift, the decline in accuracy from the peak to the extremes of the test range

was statistically weak and the linear trend (indicating, more generally, an increase in accuracy

across the dimension) was also significant. This pattern of statistical results suggests that par-

ticipants were generalizing on the basis of a rule and similarity. This is to be expected if partici-

pants have derived a rule and are simply unsure whether to use it and therefore show a

mixture of generalization gradients. The effect of reducing rule validity might therefore be to

undermine certainty or confidence in applying the rule, and it may be the case that this cer-

tainty changes on a trial-by-trial basis, with the pattern of generalization dictated by rule appli-

cability on the previous trial.

Sequential re-analysis

To test this hypothesis, we conducted a post-hoc sequential analysis of the categorization data

in both experiments whereby the “attended dimension” test trials were divided into “repeti-

tion” and “alternation” trials. Repetition refers to trials where the previous trial varied the

same (i.e. attended) dimension (and therefore a rule on the attended dimension was previously

applicable in both groups), and alternation refers to trials where the previous trial varied the

other (i.e. unattended) dimension (and therefore a rule on the attended dimension was not
previously applicable in the Inconsistent group but was applicable in the Consistent group).

The results for the sequential analysis are shown in Fig 8A, with the corresponding typicality

ratings shown in Fig 8B. It is firstly apparent that the Consistent groups are showing roughly

monotonic gradients for both repetition and alternation trials, but the Inconsistent groups are

showing different patterns of generalization based on the previous trial. Due to this being a

post-hoc analysis, only the results of interest will be reported concerning categorization

accuracy.

Inconsistent group. The data for the Inconsistent group were analyzed in a logistic hier-

archical regression with stimulus as a continuous predictor, previous trial (repetition vs. alter-

nation) as a nominal predictor, and including a random intercept and slope for each

participant. As before, two separate models were fitted, one treating stimulus as a linear predic-

tor and another treating stimulus as a quadratic predictor. Stimulus was found to be a
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significant predictor of linear, χ2(1, N = 89) = 13.7, p< .001, and quadratic, χ2(1, N = 89) =

6.89, p = .009, trends in categorization accuracy. Importantly, there was a significant interac-

tion between stimulus and previous trial in the quadratic model, χ2(1, N = 89) = 4.54, p = .033,

and a marginally non-significant interaction between stimulus and previous trial in the linear

model, χ2(1, N = 89) = 3.61, p = .057. There was no overall effect of previous trial in either

model, largest χ2 < 1. The significant interaction suggests that the shape of the gradient within

the Inconsistent group varied depending on whether the primary rule was applicable or inap-

plicable on the previous trial. In particular, for the alternation trials, there appears to be a

peak-shifted gradient that is not present in the repetition trials. Supporting this observation,

using the Near1 point, there was a significant rise in accuracy from the Train stimulus, χ2(1,

N = 89) = 30.2, p< .001, and a significant fall in accuracy to the Far stimulus, χ2(1, N = 89) =

5.02, p = .025, for the alternation trials. Thus, dividing the trials based on the applicability of

the rule on the previous trial appears to have strengthened the peak shift effect on the alterna-

tion trials, while the gradient for the repetition trials appears to be more linear, like the gradi-

ent in the Consistent group. Notably, on these repetition trials the Inconsistent group’s

performance still did not match the absolute levels attained by the Consistent group, suggest-

ing a strong overall impairment as a result of the test manipulation. On trials where the previ-

ous trial varied the other dimension and the rule could not be used, participants did not

consistently generalize using a relational rule but instead generalized on the basis of similarity,

showing a peak shift.

Consistent group. In contrast, the Consistent group did not show the same interaction

between stimulus and previous trial in either the linear, χ2 < 1, nor the quadratic model, χ2 <

1, although stimulus was found to be both a significant linear, χ2(1, N = 95) = 23.8, p< .001,

and quadratic, χ2(1, N = 95) = 14.0, p< .001, predictor of accuracy. There was no effect of pre-

vious trial in either model, χ2s < 1. Therefore, whether the same or different dimension was

varied on the previous trial had no effect on generalization in the Consistent group, who

showed consistent rule-based generalization throughout test, since they could use their rule on

every trial. None of these effects interacted with experiment.

Fig 8. Sequential re-analysis for the attended dimension. Fig shows categorization accuracy (A) and typicality ratings (B) for test stimuli varying the

attended dimension. Trials are further divided according to whether the rule on the attended dimension was applicable on the previous trial (i.e. the previous

trial varied the same dimension, ‘repetition’ trials) or not applicable on the previous trial (i.e. the previous trial varied the unattended dimension, ‘alternation’

trials). Note that the scales on the y-axis do not start at 0.

https://doi.org/10.1371/journal.pone.0203805.g008
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Thus, within the same participants in the Inconsistent group, a peak-shifted and monotonic

gradient of generalization were both observed, depending on the applicability of a rule on the

previous trial. In contrast, the typicality ratings in the Inconsistent group did not appear to dif-

fer in the same way (see Fig 8B), suggesting that what was changing on a trial-by-trial basis was

participants’ likelihood of using a relational rule based on its recent applicability, rather than

perceptions of similarity between the test and training stimuli. This analysis reinforces our

conclusion that disrupting rule use serves to undermine participants’ certainty or proficiency

in applying their rule and leads them to switch between generalizing on the basis of rules and

similarity on a trial-by-trial basis. The results of this sequential analysis indicate that partici-

pants apply rules in a flexible way as a function of recent difficulty in the applicability of the

rule, suggesting an important condition that can limit rule use.

Given previous literature demonstrating that peak shift only occurs in the absence of a rela-

tional rule (e.g., [20,27]), the evidence suggestive of a peak-shifted gradient in the Inconsistent

group is striking since the majority (77/89) of participants in the Inconsistent group were able

to correctly identify the rule-relevant difference between categories. The fact that we explicitly

directed participants to use a particular dimension during training, and the fact that we

excluded participants who claimed that they did not notice any difference between the catego-

ries during training given this hint, leaves little chance that the remaining participants were

mostly guessing the category relation correctly. However, the present result can easily be

accommodated by assuming that rule-based generalization only occurs when the rule is both

easy to derive and apply.

General discussion

In this study, we compared categorization accuracy and typicality ratings between a group

who were able to derive a relational category rule during training and apply that rule consis-

tently on test, and a group who could only use that rule inconsistently. During training, the

color and size of stimulus features were predictive of category membership and it appeared

that instructing participants to attend to one of the dimensions facilitated derivation of a rela-

tional category rule on that attended dimension. On test, participants either experienced test

trials where information was present on both color and size dimensions, making a rule on the

attended dimension relatively easy to apply on all trials (Consistent group), or test trials where

information was only present on the attended dimension on half of the test trials, making a

rule about that dimension very difficult to apply on 50% of trials and thereby rendering its

application on test inconsistent (Inconsistent group). The test trials of interest were those in

which the rule was clearly valid and easy to apply in both groups (i.e. where the attended

dimension was varied). These test stimuli were slightly different in Experiment 1 but equated

in Experiment 2, and these slight physical differences were not found to influence the results.

Although participants showed strong evidence of learning and reported noticing simple rela-

tional rules, when rule application was made difficult on test, a generalization gradient that

appeared peak-shifted emerged, with declining accuracy at the extrema of the test range

despite the majority of participants being able to identify the relational category rule. Although

the peak shift was statistically weak, the critical group interactions, when integrated with the

existing human literature on peak shift, suggest that when formation or application of a rela-

tional rule is difficult, generalization gradients resemble a peak shift more than a monotonic

gradient.

Although our main hypothesis did not find support in the analysis of the overall test data, a

posthoc sequential analysis suggested that this was due to participants in the Inconsistent

group exhibiting different patterns of generalization depending on rule applicability on the

Rule-based generalization and peak shift

PLOS ONE | https://doi.org/10.1371/journal.pone.0203805 September 14, 2018 18 / 24

https://doi.org/10.1371/journal.pone.0203805


previous trial. Our sequential analysis showed a within-participant dissociation in generaliza-

tion based on whether the rule was applicable on the previous trial. Rule applicability on the

previous trial had no effect on the monotonic gradients displayed in the Consistent group,

while the Inconsistent group showed a peak shift on trials where they could not use their pri-

mary rule easily on the previous trial, and a monotonic gradient on trials where they could use

their rule on the previous trial. This not only confirms that participants in the Inconsistent

group did acquire a relational rule but also reinforces our conclusion that reducing rule appli-

cability at test serves to undermine the likelihood of applying that rule. A much stronger peak

shift was seen in the sequential analysis than in the overall test data, since the overall test data

was composed of trials in which participants generalized in different ways. In contrast, partici-

pants in the Consistent group showed a monotonic gradient that was unaffected by the nature

of the previous trial, presumably since their rule was applicable on all test trials. The sequential

re-analysis suggests that participants can engage in both rule-based and feature-based generali-

zation during test, with the expression of each varying according to the difficulty of applying

the rule on the previous trial. This finding is noteworthy as it suggests that the formation of a

relational rule is not always overridden by a permanent switch to rule-based generalization, as

suggested in Livesey and McLaren ([20]). In other words, our study adds to the previous

human peak shift literature in presenting a novel eliciting condition for peak shift that surpris-

ingly, involves the presence of a relational rule. We note however, that this analysis was post

hoc, and should be interpreted in light of its exploratory aim.

Typicality ratings

Interestingly, typicality gradients were found to be steeper for the Consistent group than the

Inconsistent group (Fig 6B). The flatter typicality gradient in the attended dimension for the

Inconsistent group can be explained if we assume that participants are attending less to their

attended dimension than group Consistent. Disrupting rule validity on test may have led partici-

pants in group Inconsistent to search for additional information other than their attended dimen-

sion to aid their judgements. Since at test it is now obvious that two dimensions are varying,

participants may have started focusing on the unattended dimension as well. As these values did

not change between stimuli, typicality ratings incorporating information on the unattended

dimension would thus be flatter. However, since the same pattern of results was also found for the

unattended dimension, a more likely explanation is that participants in the Inconsistent group

may have started to attend to the irrelevant features of the stimuli during the test phase (e.g., the

location of circles), which would have the same effect on both dimensions. In fact, any attention

directed away from the relevant dimension when judging typicality would have made the typical-

ity gradient flatter, and therefore explain the flatter gradient observed in the Inconsistent group.

Further, since the group difference did not interact with experiment, we cannot explain

these results using differences in the ‘attended dimension’ stimuli presented to the Consistent

and Inconsistent groups on test, since these were equated in Experiment 2. It would seem that

when a rule is rendered less valid on test in the Inconsistent group, participants overgeneralize

perceptions of typicality to non-typical category members in comparison to the Consistent

group, effectively considering dissimilar stimuli as being part of the category. This may reflect

uncertainty in the boundaries of the category as a direct result of the lack of applicability of a

rule. This is an intriguing result as it suggests that undermining the applicability of a relational

rule has effects not just on categorization accuracy, but also when judging perceptions of typi-

cality of novel category members. Whether this was a direct result of disrupting rule use or the

result of changes in attention is not determinable in our study, and is a potential avenue for

future research.

Rule-based generalization and peak shift

PLOS ONE | https://doi.org/10.1371/journal.pone.0203805 September 14, 2018 19 / 24

https://doi.org/10.1371/journal.pone.0203805


Mechanisms responsible for monotonic generalization gradients

Similar to previous authors, we have interpreted monotonic generalization over a wide range

of test stimuli to be indicative of the use of a relational rule. However, one problem with

assuming that monotonic categorization is synonymous with relational rule use is that the

same pattern can be derived from other psychological processes. In principle, an associative

model (e.g., [14]) can simulate a monotonic gradient if a broad generalization gradient is

assumed which spans a wide range of the dimension ([20]). The monotonic gradient can thus

be interpreted as the rise in accuracy in a peak shift that has not been given the opportunity

to decrease due to testing a limited range. Our inclusion of typicality ratings addresses this

problem to some extent. It is clear that the Consistent group, who show greater evidence of a

monotonic gradient, do not show broader generalization on the typicality ratings. In fact,

generalization gradients for typicality fell more sharply in this group compared to the Inconsis-

tent group. Our typicality ratings complement the evidence from self-report measures that

monotonic gradients are correlated with identification of the underlying relationships between

stimuli. This evidence is important because relying on self-report measures to divide and com-

pare participants is effectively correlational and, furthermore, it has been argued that partici-

pants have poor introspective skills and can report knowledge of rules that were not responsible

for their behavior at test ([42]). The declining typicality ratings for the Consistent group lend

some validity to using self-report measures to assess rule use and category knowledge.

Mechanisms responsible for peak-shifted generalization gradients

It is tempting to conclude that the peak shift shown in the Inconsistent group on trials where

the relational rule was not applicable on the previous trial is due to the same basic associative

processes used to explain peak shift in animals. Error-correction learning models account for

the peak shift phenomenon with impressive quantitative precision ([7,10,14], but see [15], for

an alternative rule-based explanation]. When considered in light of the human literature on

peak shift, our results seem wholly consistent with the idea that associative processes always

operate in human categorization or discrimination studies, but are usually masked by higher-

order rule-learning which dominates performance at test ([20]). Relational rules, especially

simple ones that are easy to articulate and apply, should reduce the difficulty of discriminating

between categories and thus it is to the participants’ advantage to search for a rule to improve

their performance. If rules have primacy over associative information in governing respond-

ing, then only when the task requirements and stimuli make it difficult to derive a rule (e.g.,

[22,27]) can evidence of peak shift emerge.

It is also possible that participants in the Inconsistent group are generalizing on the basis of

a similarity rule that is closely tied to the physical characteristics of the experienced category.

Note that the content of learning in a rule of this form is still clearly different to the content of

learning of a relational rule that describes the relationships between the stimuli, and that such

a rule would need to explain why performance does not peak at the value of the training stimu-

lus. For example, peak shift can be explained if we assume that participants are adopting a con-

servative decision-rule (e.g., “respond left when the circles are mostly small, but not too

small”) whereby the training stimuli are too similar to each other to enable confident categori-

zation but the stimuli that are slightly more extreme are less likely to suffer this problem.

Whatever the exact specification of the similarity rule, the results of the sequential analysis can

be explained by participants switching between two rules–one based on similarity and the

other based on relations.

Whether this switch is a deliberate decision or more automatic is difficult to determine. It

may be that rule use, despite being a higher-order function, exhibits sequential effects just like
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more simple responses and predictions (e.g., [43,44]). However, instead of explaining these

sequential effects through activation or priming of an event representation, the rule itself is

primed through its utility on the previous trial. This priming process may be relatively auto-

matic, but would still imply a conscious recognition of the applicability of the rule on each trial

since no feedback is given pertaining to the correctness of participants’ answers or the utility

of their rule. Participants could also be deliberately switching strategy between trials, or simply

‘trying’ the other category response as a result of uncertainty in their rule. This would certainly

account for the lower overall accuracy seen in the Inconsistent group, but does not explain

how the monotonic gradient could change to peak-shifted gradient. To explain peak shift,

such an account would also need to incorporate some moderating effect of stimulus similarity

on the likelihood of trying the alternative category response.

Indeed, one interpretation of peak shift may be that it reflects relational rule use that is

modulated by stimulus similarity. Participants may know, for example, that stimuli in the left

category had smaller circles, but at the extreme ends of the dimension where the circles

become very small, participants may be uncertain of the applicability of their rule due to the

stimuli being too dissimilar to the training stimuli. Although possible, this explanation seems

unlikely due to the reasonable limits on the range of each dimension tested (see Fig 3). There is

no obvious reason why participants would regard their rule as applicable to the Near1 stimuli

but not to the Near3 and Far stimuli. Still, the evidence showing that rule use is affected by

similarity between test and training stimuli (e.g., [32,34]) suggests that further exploration of

the nature of rules that participants derive and their willingness to use that rule on extreme test

stimuli is needed. For example, it may be that the degree to which participants show a peak-

shifted gradient is related to their degree of certainty in a relational rule.

Interaction between rules and similarity

Livesey and McLaren ([25]) showed that the emergence of a relational rule during test

resulted in a peak-shifted gradient being replaced by a monotonic one, leading them to

suggest that the operation of rule learning and other executive processes meant that evi-

dence of associative processes would be hard to find. The current study however, shows

that the presence of a relational rule does not entail that the expression of feature-driven

learning will be completely overridden. Rather, our study shows that under certain condi-

tions, relational rules can only be fully expressed on trials where participants are confident

that it is applicable. This finding is also consistent with Natal, McLaren, and Livesey

([45]) who proposed that the content of associative learning and rules are integrated into

category judgements and subject to cognitive control. In their study, they found different

levels of accuracy and patterns of generalization based on whether participants could ver-

balize a relational category rule. However, they found that both rule-learners and feature-

learners were able to reverse the category assignments when asked to, suggesting that

associative learning in this context does not automatically bias actions and instead is sub-

ject to cognitive control. Similarly, the fact that peak shift was found once rule use was dis-

rupted suggests that learning about a relational rule does not preclude learning about

physical features, but that feature learning is only expressed under conditions where par-

ticipants are not willing or able to use a rule. If peak shift is interpreted as the result of

associative learning mechanisms, our results are consistent with the idea that associative

learning processes operate alongside rule learning, but may not always be expressed due

to rule-based generalization having priority on test ([25]).

Our results are also relevant to theories of categorization that propose two separate, qualita-

tively different learning processes (e.g., [24,46]), as well as hybrid models of categorization.
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Hybrid models assume that rule- and similarity-based processes are qualitatively similar (e.g.,

[47,48,49]), but vary based on the number of dimensions considered ([48]), the abstractness of

the feature that is considered ([49]) or whether attention is directed to rules or exemplars

([47]). In particular, models that assume competitive processes with only a single process ‘win-

ning’ and determining behavior would need to incorporate an assessment of rule applicability

to explain our results. With both dual-process and hybrid models of categorization, the utility

of a process is assumed to determine its use ([34]). Thus, our results might be consistent with

these models if it is assumed that our test manipulation reduced the utility of using a rule and

therefore decreased its ability to influence responding. Further studies investigating other fac-

tors that cause participants to switch between using relational rules and similarity may further

inform the development of models that assume competitive processes, whether qualitatively

distinct or similar.

Conclusion

In conclusion, our results show that in simple category learning, the presence of a relational

rule does not necessarily entail that a monotonic gradient of generalization will result. Rather,

whether the test conditions make that rule applicable determines whether participants show a

monotonic or a peak-shifted gradient of generalization. When rule application on test was

consistent, participants generalized using a relational rule, but when rule application on test

was rendered inconsistent, participants may have been uncertain of their rule and reverted to

generalizing on the basis of similarity. Importantly, we have provided a within-subjects dem-

onstration of participants switching between rule- and similarity-based generalization as a

function of rule applicability on the previous trial, suggesting that both kinds of learning are

stored concurrently, and their respective influences on behavior can change dynamically

throughout test.
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