Behav Res (2013) 45:684-695
DOI 10.3758/513428-012-0286-x

GazeParser: an open-source and multiplatform library
for low-cost eye tracking and analysis

Hiroyuki Sogo

Published online: 13 December 2012

© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract Eye movement analysis is an effective method for
research on visual perception and cognition. However, record-
ings of eye movements present practical difficulties related to
the cost of the recording devices and the programming of
device controls for use in experiments. GazeParser is an
open-source library for low-cost eye tracking and data analy-
sis; it consists of a video-based eyetracker and libraries for
data recording and analysis. The libraries are written in Python
and can be used in conjunction with PsychoPy and VisionEgg
experimental control libraries. Three eye movement experi-
ments are reported on performance tests of GazeParser. These
showed that the means and standard deviations for errors in
sampling intervals were less than 1 ms. Spatial accuracy
ranged from 0.7° to 1.2°, depending on participant. In gap/
overlap tasks and antisaccade tasks, the latency and amplitude
of the saccades detected by GazeParser agreed with those
detected by a commercial eyetracker. These results showed
that the GazeParser demonstrates adequate performance for
use in psychological experiments.

Keywords Eye tracking - Open source - Python

Open-source library for low-cost eye tracking
and analysis

For the last several decades, eye movement measurement
has been consistently used in research on visual perception
and cognition in such areas as space perception, scene
recognition, reading, spoken language processing, and clin-
ical studies (van Gompbel, Fischer, Murray, & Hill, 2007).

H. Sogo (<)

Ehime University,

3 Bunkyo-cho,

Matsuyama, Ehime 790-8577, Japan
e-mail: hsogo@ehime-u.ac.jp

@ Springer

Although eye movement measurement is an effective meth-
od for these research areas, there remain certain barriers that
restrict its application in other research areas. One of these
barriers is the cost of eyetrackers—that is, eye movement
recording devices. Some commercial eyetrackers that are
used in eye movement research cost in excess of $40,000.
Recently, several low-cost open-source eyetrackers have
been developed mainly for use as human—computer interac-
tion devices (Li, Babcock, & Parkhurst, 2006; San Agustin,
Skovsgaard, Mollenbach, Barret, Tall, Hansen, & Hansen,
2010; Zielinski, 2007). For example, the ITU Gaze Tracker
(San Agustin et al., 2010) performs real-time eye movement
measurement from ocular images taken from a standard
USB Web camera or a video camera with night vision.
Although the spatial resolution of these eyetrackers is ade-
quate for research on visual perception and cognition, the
sampling frequency of eye movements is limited to the
camera’s speed. The majority of camera units that are adapt-
able to such open-source eyetrackers capture, at most, 30
frames per second. This means that the sampling rate of eye
position is only 30 Hz. Although this sampling frequency is
sufficient for achieving human—computer interactions, re-
search on visual perception and cognition sometimes
requires much higher sampling frequencies.

A second barrier in research applications of these eye
movement measurement tools is the difficulty in achieving
eyetracker synchronizations with stimulus presentations.
Some commercial eyetrackers have libraries that provide
methods for synchronizing the eyetracker in conjunction
with a stimulus presentation program. For example, the
Eyelink (SR Research Ltd.) eyetracker is easily controlled
from Python scripts using the Pylink package, provided by
the manufacturer. Using Pylink packages with Python-based
experimental control libraries, such as VisionEgg (Straw,
2008) and PsychoPy (Peirce, 2007), an experimenter can
start and stop the recording of eye movement with precise

Behav Res (2013) 45:684-695

685

timing. Similarly, Eyelink can be easily controlled from
MATLAB scripts using Psychophysics Toolbox (Brainard,
1997; Pelli, 1997) in conjunction with Eyelink Toolbox
(Cornelissen, Peters, & Palmer, 2002). However, because
current open-source eyetrackers do not have such libraries,
researchers must write programs to synchronize an eyetracker
with experimental presentations if they use open-source eye-
trackers; this creates difficulty in the use of open-source eye-
trackers for research.

In the present article, I describe the use of an open-source
eye-tracking library, GazeParser. This tracking library consists
of two components. The first component is an application that
captures ocular images from a camera to record eye position.
The second component is a Python library for calibrating,
synchronizing stimulus presentation and recording, and ana-
lyzing eye movements. GazeParser relies on Python packages
such as OpenCV (Bradski, 2000), SciPy (Jones, Oliphant, &
Peterson, 2001), and Matplotlib (Hunter, 2007) for camera
image analysis and data visualization. VisionEgg or PsychoPy
can be used with GazeParser for stimulus presentation. Al-
though GazeParser is designed mainly for use with Microsoft
Windows, a cross-platform edition is currently under devel-
opment for use not only with Windows, but also with Linux
and Mac OS X operating systems. This software is distributed
through the GazeParser project page (http://gazeparser.
sourceforge.net/); documents pertaining to the use of the
software are also available there.

In the present study, three experiments were conducted to
evaluate performance of the GazeParser library. In the first
experiment, eye movement during fixation on a small square
was recorded to evaluate the temporal and spatial character-
istics of GazeParser. In the second experiment, temporal
accuracy and precision were examined when sampling fre-
quency was increased to 500 Hz. In the third experiment,
eye movements during performance of an antisaccade task
(Everling & Fischer, 1998) and a gap/overlap task (Fischer
& Weber, 1993) were recorded to test the performance of the
GazeParser in a condition similar to those in actual eye
movement research.

General method
Apparatus

Two Windows personal computers (PCs) were used. One
recorded eye movements (recorder PC), and the other was
used to present visual stimuli to participants (presentation
PC). A camera unit was connected to the recorder PC to
capture ocular images. Different recorder PCs and camera
units were used for the three experiments; details are de-
scribed in the Method section for each experiment. A LAN
cable connected the recording and presentation PCs. A 22.5-

in. liquid crystal display (LCD) was connected to the pre-
sentation PC. Experiments were controlled by a Python
script run on the presentation PC. The VisionEgg library
was used for displaying visual stimuli.

Each experiment was performed in a dimly lit room. A
participant sat on a chair; a head- and chinrest restricted
head movement. The LCD was placed at a distance of 57 cm
from the participant for stimulus presentation. The refresh
rate of the LCD was 60 Hz. A keyboard situated in front of
the participant was connected to the presentation PC.

The camera unit was placed in front of a participant’s left
eye, with the vertical level of the camera lower than this eye.
This alignment ensured that the camera would not disturb a
participant’s view of the LCD. Distance between the camera
and the participant was adjusted for each participant so that
the participant’s left eye was captured full in the camera
image; typically, this distance was about 15 cm. An infrared
(IR) LED light was placed just below the LCD to illuminate
the participant’s eye.

Synchronizing recording and presentation PCs

The recording and presentation PCs sent commands and re-
ceived data though a TCP/IP connection. TCP “NO_DELAY”
mode was used to minimize the delay for sending commands.
Calibration and recoding processes on the recorder PC were
controlled from the presentation PC. Information on events
during the experiment, such as the onset time of a visual
stimulus and keypresses of the participant, were sent from
the presentation PC to the recorder PC. The recorder PC
collected gaze position data and information on these events,
which were stored in a CSV (comma-separated values) format
file.

Getting gaze position

The pupil of a participant’s eye and the reflection image of
the IR light from the cornea (the Purkinje image) were
detected each time a new camera image was captured. Here
U and V denote the center of the Purkinje image, relative to the
center of the pupil, in the camera image coordinate. The gaze
position on the screen was calculated using the following
equation:

(X, Y) = (axU-i-bXV—f—Cx,ayU-i-byV—l-Cy).

X and Y denote horizontal and vertical gaze positions on
the display coordinate. The ay, by, cx, ay by and cy terms
are parameters to be estimated from calibration data. In the
calibration procedure, (U, V) were collected while the partic-
ipant fixated on a target, which was sequentially presented at
several locations. The arrangement of target locations can be
customizable. The target was presented for 1 s per position.

@ Springer

http://gazeparser.sourceforge.net/
http://gazeparser.sourceforge.net/

686

Behav Res (2013) 45:684-695

Following this, parameters were estimated by finding numer-
ical values that minimized the sum of square distances be-
tween the gaze position and the target position. To avoid
including eye movement changes in the fixation point in the
calibration data, data that were obtained within 200 ms before
and after the target had moved to a new position were
discarded.

Saccade detection

Detection of saccades and fixations was performed offline.
The detection algorithm had three parameters: “Velocity-
Threshold,” “MinimumSaccadeDuration,” and “Minimum-
FixationDuration.” At the beginning of the detection
process, eye movements that exceeded the VelocityThreshold
were extracted. Movements that were continuously faster than
VelocityThreshold and longer than MinimumSaccadeDura-
tion were marked as saccade candidates. If the interval be-
tween successive saccade candidates was shorter than
MinimumFixationDuration, these saccade candidates were
merged together. After these processes were completed,
saccade candidates were considered to be saccades, and the
intervals between these saccades were considered to be
fixations.

In the present study, detection of saccades and fixations
was performed only in Experiment 3 (see the Method section
of Experiment 3 for relevant parameters).

Recording and data analysis with GazeParser

Figure 1 shows an example of an experimental script. At the
beginning of the experiment script, written with VisionEgg
or PsychoPy, a few commands were inserted to initialize
GazeParser (i.e., the “initialization” portion of Fig. 1); these
included IP address of the recorder PC, location of calibra-
tion target, and other settings such as viewing distance.
Adjustment of camera angle and parameters, performing
calibration, and verifying calibration results could be done
only by calling the calibrationLoop() method.

At the beginning of each trial, the startRecording() method
was called to start data recording, and at the end of each trial,
the stopRecording() method was called to stop recording. By
passing messages through these methods, information on each
trial and the gaze position data could be collated and saved
together. During recording, an event such as a stimulus onset
was saved with a timestamp by sending a message using the
sendMessage() method. The latest gaze position was available
by calling the getEyePosition() method.

Data were recorded at the recorder PC as a CSV format
file. Saccades and fixations were detected from this CSV file
and saved as “GazeData” object, using GazeParser’s data
conversion module. Parameters such as latency of saccade
relative to an event and duration of fixation are readily

@ Springer

calculated using class methods of the GazeData objects.
For example, the saccade following a given message can
be found by using the getNextEvent() method. The latency
of a saccade relative to a given message can be obtained by
the relativeStartTime() method. Detailed documents of these
Python modules and methods are available at the Gaze-
Parser project page (http://gazeparser.sourceforge.net/).

Experiment 1

To evaluate performance of the GazeParser, eye movements
were recorded while participants fixated on a small square
presented at randomly selected locations on a computer
display. The primary aim of Experiment 1 was to test effects
of the recorder PC on the temporal accuracy and precision of
the data, using two recorder PCs.

Method
Participants

Five volunteers and the author participated in the experiment.
All volunteers were naive as to eye movement research. All
participants had normal or corrected-to-normal vision. None
had any type of oculomotor dysfunction.

Apparatus

Two configurations of eye-tracking hardware, hardware sets
la and 1b, were used (Table 1). Hardware set 1a is a sample
of a low-price PC that has adequate spec for office work,
such as document writing and Web browsing. Hardware set
1b is a sample of a more powerful PC, as compared with
hardware set 1a. In hardware set 1a, a laptop PC (Intel Core
i3 M370 CPU, HMS55 express chipset) was used for the
recorder PC. An OptiTrack V120slim (Naturalpoint Inc.)
camera was used to capture ocular images; the frame rate
of the camera was set to 120 Hz. The size of the camera
image was set to 320 x 240, and the camera unit was
connected to the recorder PC by USB2.0 interface. In con-
figuration 1b, a desktop PC (Intel Core i7 950 CPU, Intel
X58 chipset) was used as the recorder PC. The camera unit
was the same as that in hardware set 1a.

Procedure

Participants sat in the chair, and the experimenter adjusted
the position of the headrest, chinrest, and camera. After
confirming that the pupil and the Purkinje image were
correctly detected, calibration was initiated. The calibration
period began with the presentation of a target in the form of
a black square (0.26° x 0.26° in visual angle) in the center of

http://gazeparser.sourceforge.net/

Behav Res (2013) 45:684-695

687

Fig. 1 An example of
experiment script with
GazeParser. Only important
portions are shown

####HHHHAH NIt LaLizat lon####H#EH#H#H
from GazeParser.Tracker import getController

tracker = getController(backend='VisionEgg',config='DisplaySettings.cfg")

#Establish TCP/IP connection
tracker.connect('192.168.0.1")

#Send settings for calibration and data recording

tracker.setCalibrationScreen(screen)

tracker.setCalibrationTargetPositions(calibrationArea, targetPositions)

tracker.sendSettings(config.getParametersAsDict())

#calibration is performed only by calling this method.

tracker.calibrationLoop()

#iHH## re cording#iti# it

#Start recording. Message can be set for later analysis.

tracker.startRecording(message="'Trial No.%d' % trialNo)

#Message can be sent anytime during recording.

#Message 1s recorded with timestamp at the Recorder PC.

tracker.sendMessage('Targetl ON')

#latest gaze position can be get anytime from the Recorder PC

currentGazePosition = tracker.getEyePosition()

#Stop recording. Message can be sent for later analysis.

tracker.stopRecording(message="'Response %s', key)

the screen. When a participant pressed the space key, the
target moved to one node of a 3 x 3 invisible grid. The
center of the grid was located at the screen center, and the
horizontal and vertical distances between adjoining grid
nodes were 9.3° and 6.6°, respectively. Participants were
instructed to move their eyes to track the target motion. The
target was steadily moved to a new location over a period of
1,000 ms; it then remained at that location for 1,000 ms. The
center of the Purkinje image relative to the pupil center was
corrected for calibration within a period of 200-800 ms after
the target arrived at a new location. The calibration process
was completed when the target sequentially visited each of
the nine locations once. The order of visiting these locations
was randomly determined.

Following the calibration period, experimental trials were
presented. The first experimental trial began with the

presentation of a target smaller (0.13° x 0.13° black square)
than that used in calibrations. After a participant pressed the
space key, the target jumped to a location that was randomly
selected from the nodes of a 6 x 6 invisible grid. The center
of this grid was located at the screen center. The horizontal
and vertical distances between adjoining grid nodes were
2.7°. Note that no grid node position corresponded to cali-
bration target positions. Participants were instructed to make
a saccade to the target when it jumped from one location to
another. The target stayed at one node for 1,000 ms and then
jumped to an unvisited node. Each trial was completed 1 s
after the target jumped to the 10th node. The recorder PC
recorded gaze position from the beginning to the end of all
trials. Participants performed 20 trials per each hardware set;
they could take a break between trials without moving their
head off the head- and chinrest.

Table 1 Hardware setup

Set la Set 1b Set 2
Recorder PC
CPU Intel Core i3 M370 Intel Core i7 950 Intel Core 17 950
Chipset Intel HMS55 Intel X58 Intel X58
Camera
Camera unit OptiTrack V120slim OptiTrack V120slim IMPREX ICL-B0620

Interface

USB2.0 (On board)

USB2.0 (On board) Interface PEX-530421

@ Springer

688

Behav Res (2013) 45:684-695

Prior to each time a new screen was drawn on the pre-
sentation PC, this computer transferred a request to the
recorder PC to send the latest recorded gaze position back
to the presentation PC. Timestamps indicating when
requests were sent and data received were recorded on the
presentation PC, and this PC also requested the recorder PC
to record the time at which a target jumped to a new
location.

Data analysis

Gaze position data within 250—750 ms after the time when
the target jumped to a new position were used to estimate
spatial accuracy and precision. The saccade detection fea-
ture of the GazeParser was not used in data analysis of this
experiment.

Results and discussion
Temporal accuracy and precision

To evaluate the effects of the performance of the recorder
PC on the temporal accuracy of data sampling, intersample
intervals were calculated for the data recorded by hardware
sets 1a and 1b. The data for all participants were collapsed.
Figure 2 shows the frequency distribution of intersample
intervals obtained from these hardware sets. Table 2 shows
the mean, standard deviation (SD), 0.5 percentile point, and
99.5 percentile point, as well as the minimum and maximum
values of intersample intervals. Because the frame rate of
the camera was 120 Hz, the ideal intersample interval was
8.33 ms. In both hardware sets, the mean interval was close
to this ideal value. As compared with the intersample inter-
vals recorded by hardware set 1b, those recorded by hard-
ware set la were broadly distributed. It is noteworthy that
the maximum intersample interval of 29.8 ms was greater
than 16.67 ms—that is, the double of the ideal intersample
interval. The likely cause of this was that the recorder PC
could not follow the camera’s sampling speed. Intersample

Fig. 2 Distribution of

Hardware setup 1a

intervals longer than 16.67 ms were observed four times
among all data recorded by hardware set 1a. On the other
hand, the maximum intersample interval was 8.60 in the
data obtained by hardware set 1b.

The time lag in communicating between the presentation
PC and recorder PC is also an important point for evaluating
temporal performance. In this experiment, a long lag might
cause skipping of video frames because the presentation PC
stopped drawing new frames until the latest gaze position
was sent back from the recorder PC. To evaluate the time
lag, the distribution of the time lags between sending a
request from the presentation PC and receiving the gaze
position data from the recorder PC (top row of Fig. 3) was
analyzed. The peak of this distribution was shorter than
1 ms, and 99 % of the lag times were shorter than 4 ms.
The maximum lag was 8.1 ms for hardware set la and
9.7 ms for hardware set 1b. These values were shorter than
the interframe interval of the LCD (16.67 ms). To ensure
that frame skipping did not occur, I analyzed the distribution
of intervals between successive sendings of requests. Be-
cause requests were sent immediately after every drawing
frame, this interval was equal to the interframe interval. The
bottom row of Fig. 3 shows the distribution of these
requests. All request intervals were within 1.0 ms from the
ideal interval of 16.67 ms. This is consistent with the con-
clusion that no frame skipping occurred in the present data.

In summary, the difference between the mean intersample
time interval and the ideal interval was less than 0.1 ms in
both hardware setups tested in Experiment 1. The present
findings confirm that temporal accuracy was adequate for
research on eye movements. Ninety-nine percent of inter-
sample intervals fell within approximately +0.3 ms from the
ideal interval; however, several samples were lost when the
data were recorded by a PC that was not designed for lab use
(hardware set 1a). To prevent the loss of samples, a higher
quality PC is necessary. Communication between the re-
corder PC and presentation PC was rapid enough to transfer
current gaze position prior to each time stimuli were drawn
on the presentation PC at the refresh rate of 60 Hz.

Hardware setup 1b

intersample interval. Vertical
dashed lines indicate the ideal
interval (8.33 ms)

o
o

o
&)

o
~

Relative frequency
o o
oo

=4
o

8.33ms

8.33ms |_

N

o
=)

7.5

@ Springer

80 85 9.0 9.5 75 80 85 9.0 9.5

Inter-sample interval (ms)

Behav Res (2013) 45:684-695

689

Table 2 Temporal accuracy and precision in Experiment 1

Hardware set la Hardware set 1b

Mean 8.34 8.34
Standard deviation 0.54 0.06
0.5 percentile point 8.07 8.17
99.5 percentile point 8.55 8.48
Minimum interval 0.77 8.01
Maximum interval 29.7 8.60

Unit: milliseconds
Spatial accuracy and precision

To evaluate spatial accuracy and precision, the mean dis-
tance between the target position and recorded gaze position
was calculated. For simplicity, this value is referred to as
spatial error in this article. The left panel of Fig. 4 shows
the spatial error calculated trial by trial. The data for all
target positions on a single trial were collapsed. A repeated
measures one-way analysis on variance (ANOVA) showed
that the effect of trial number on mean distance was signifi-
cant, F(19,95) = 1.80,p = .03, 7712) = .26. Post hoc compar-
ison with Bonferroni correction showed that only the spatial
errors in trial 4 and trial 7 were significantly different (p <.05).
Although minor head movements after calibration may poten-
tially cause a decrease in spatial accuracy and precision, such a
decrease was not prominent in this experiment.

The right panel of Fig. 4 shows the mean spatial error
calculated for each participant. The data for all target posi-
tions on all trials were collapsed. The mean spatial error

Fig. 3 Temporal performance

Hardware setup 1a

ranged from 0.7° to 1.2°. Considering that spatial errors of
research and commercial video-based eyetrackers range
from 0.5° to 4.0° (Hansen & Ji, 2010), it can be considered
that spatial accuracy of GazeParser falls within an accept-
able range for use as a video-based eyetracker. A spatial
error of 0.7°-1.2° would be problematic for research in
which high spatial accuracy is required; for example, the
particular letter that is fixated on in a word must be strictly
distinguished in research on sentence reading. However,
there would be much research in which this amount of
spatial error is acceptable.

Experiment 2

In Experiment 2, the sampling frequency of eye tracking
was boosted in order to examine the upper limits of sam-
pling frequency recording possible with the GazeParser
system. That is, high-frequency recording presents two dif-
ficulties. First, the intersample interval becomes too brief at
very high frequencies for the recorder PC to process camera
images during recording. Second, saccade detection can
increase in difficulty at higher frequencies due to low sig-
nal-noise ratios. As sampling frequency increases, the
amount of eye movement between subsequent samples
decreases if the eye moves at the same velocity. Addition-
ally, the shutter speed of the camera becomes faster as
sampling frequency increases, and this causes greater noise
in the camera image. Therefore, as sampling frequency
increases, the signal (eye movement) decreases, and image
noise increases. To examine performance of the GazeParser

Hardware setup 1b

of inter-PC communication. 1.0 1.0
Top row: Distribution of the
lag between sending a request 0.8r] 1 o.8r) 1
from the presentation PC and MOde. 08-410 MOde. 09570
. . ax: 8. ax: 9.
receiving gaze position data 06 fle:3.14 | 06[tile: .87 |
from the recorder PC. Bottom 99 percentile: 3. 99 percentile: 3.8
row: Intervals between requests 047 1 0.4r 1
for current gaze position. The -
ideal interval was equal to the § 0.2 1 o2 1
interframe interval of the LCD El
(16.67 ms, indicated by a @ 009 2 4 6 8 1090 2 4 6 8 10
vertical dashed line) E Lag between sending request and receiving data (ms)
=10 1.0 i
[0} [
o 16.67ms 16.67ms |y
08 1 o8 i 1
0.6 [1 o6l E i
0.4 Ff 1 04Ff i]
02f 1 o2f i
0.0 0.0 -
. 10 12 14 16 18 20 22 : 10 12 14 16 18 20 22

Inter-frame interval (ms)

@ Springer

690 Behav Res (2013) 45:684-695
Fig. 4 Mean distance between 2.0 2.0
target position and gaze
position (spatial error). Left
panel: Effects of time spent I | L]
from calibration on the spatial 1.5 1.5
error. Right panel: Individual =) >
differences in the spatial error. § chi
In both charts, spatial error was S 1.07 1 s 101
averaged over all target i i
positions
051 h 0.5
0.0 0 5 10 15 20 0.0 1 2 3 4 5 6
Trial Participant

during high-frequency recording, data were recorded at 250,
400, and 500 Hz.

Method

Participants

The author participated in this experiment.
Apparatus

Hardware set 2 (Table 1) was used to record data. The
recorder PC was the same PC as that used with hardware
set 1b. A Bobcat ICL-B0620 (IMPREX Inc.) camera unit
was used to capture ocular images. An IR pass filter (cutoff
frequency = 800 nm) was inserted between camera and lens
to reduce noise. The ICL-B0620 was connected to the
recorder PC through an image grabber PEX-530421 (Interface
Corp.). The frame rate of this camera is 260 Hz at its default
setting; however, to capture images at higher frame rate, the
camera was set to run at 2 x 2 binning, overclock mode, 320 x
224 pixels of image size. As a result, the frame rate of the
camera was boosted to 500 Hz. In this experiment, the oper-
ation of the system was tested at sampling rate of 250, 400,
and 500 Hz.

Procedure

The calibration procedure and the task were the same as
those in Experiment 1. Participant performed 20 trials for
each camera frame rate (250, 400, 500 Hz).

Data analysis

To examine the effect of low-pass filtering on saccade
detection, a zero-phase third-order Butterworth low-pass
filter (Gustafsson, 1996) was applied to the gaze position
during offline analysis. The cutoff frequency of the filter
was 60 Hz. Data obtained in Experiment 1 (120 Hz of

@ Springer

sampling rate) were used for comparison. Because data
sampled at 120 Hz contain no frequency components higher
than the Nyquist frequency (i.e., 60 Hz), a low-pass filter
was not applied to the data from Experiment 1.

Results and discussion

Figure 5 shows the intersample intervals in 250-, 400-, and
500-Hz measurements. In all measurements, the center of
the distributions was close to the ideal value. Table 3 shows
the mean, SD, 0.5 percentile point, and 99.5 percentile point,
as well as the minimum and maximum of the intersample
intervals. The difference between the mean intersample
interval and an ideal interval was less than 0.01 ms. On
the other hand, the maximum interval reached 4.0 ms in all
measurement conditions. Because 4.0 ms is twice as long as
the ideal interval for the 500-Hz measurement, this result
implies that data loss might occur often in 500-Hz measure-
ment. Although the camera was capable of higher-frequency
image capturing, 500 Hz should be the limit of the current
hardware set.

1.0 T T T
2.0msi i 2.5ms 4.0ms'i

o8l E E O 250Hz
& : i | m400Hz
< ' y H 500Hz
2 0.6} ; p 1
2 : :
© f]
2 0.4 f]
E : i
2 ; :

0.2 : ;

0.0 f N

2.0 2.5 3.0 3.5 4.0
Inter-sample interval (ms)

Fig. 5 Distribution of the intersample interval in Experiment 2. Vertical
dashed lines indicate the ideal interval

Behav Res (2013) 45:684-695

691

Table 3 Temporal accuracy and precision in Experiment 2

250 Hz 400 Hz 500 Hz
Ideal interval 4.00 2.50 2.00
Mean 4.00 2.50 2.00
Standard deviation 0.02 0.05 0.08
0.5 percentile point 3.93 2.40 1.83
99.5 percentile point 4.07 2.60 2.12
Minimum interval 3.89 1.10 0.44
Maximum interval 4.12 4.00 4.06

Unit: milliseconds

Figure 6 shows the effect of measurement noise on sac-
cade detection. The top row of Fig. 6 shows examples of the
recorded gaze position while fixated on a target for 500 ms.
The thick pale lines represent raw data, and the thin vivid
lines represent filtered data. The bottom row of Fig. 6 shows
absolute velocity of the gaze position. The pale lines and
dark areas represent absolute velocity calculated from raw

data and filtered data, respectively; horizontal black lines in
the bottom row indicate 22, 30, and 40 °/s from bottom to
top. A velocity of 22 °/s was used as the threshold for
saccade detection in the next experiment (Experiment 3).
Velocities of about 20—40 °/s are usually used as threshold
when saccade is defined as an eye movement faster than a
threshold value. Measurement noise was so large that raw
velocity fluently exceeded these threshold values. By con-
trast, low-pass filtered velocity scarcely exceeded the
thresholds when compared with raw velocity. These occa-
sional “breakthroughs” of threshold are unlikely to be
judged as saccades if the minimum duration of a saccade
is set appropriately. A drawback of using a low-pass filter is
that high-frequency components of minute eye movements,
such as tremors with frequencies close to 80 Hz (Findlay,
1971), might be distorted or lost by low-pass filtering.

In summary, the hardware set tested in this experiment
could effectively manage sampling frequencies of up to
500 Hz. However, conservative strategy would entail limit-
ing the sampling frequency to 400 Hz or less to avoid data

120Hz (Exp.1 set 1b) 250Hz 400Hz 500Hz
1.0 T T T T 1 I T T T T 1 1 T T T T 1 1 T T T T
— X(raw) Y(raw) — X(filtered) — Y(filtered)
> 05} 1 1 1 1
()
z
c
o A ‘AI\
2 oo AT - |
o
o
[0
3
o 05F 1T 1r 1
0.4 T T T T T T T T [T T T T l T T T T
3 40deg/s{ } 1 — raw L J
R filtered
5 0al 11 || ... |]
> 30deg/s | | 1L 1L |
Z
202 1 F 1 F .
5 ‘
o
o 1L 1 L i
>
§ 0.1 i . - 1
o |
Wl |” | 1 F] E 11 l[H
0.0 ‘ I‘MMM w““mm

0 100 200 300 400 5000

Fig. 6 Effect of measurement noise on detecting saccades. Columns
correspond to 120-, 250-, 400-, and 500-Hz measurements from left to
right. Top row: Raw data and low-pass filtered data (only raw data are

100 200 300 400 5000 100 200 300 400 5000

100 200 300 400 500

time (ms)

plotted for the 120-Hz measurement). Bottom row: Absolute velocity
of raw data and filtered data. Note that the unit is not °/s but °/Hz.
Horizontal black lines indicate 40, 30, and 22 °/s from top to bottom

@ Springer

692

Behav Res (2013) 45:684-695

loss. Applying a low-pass filter would be necessary for high-
frequency recording to detect saccades based on velocity
threshold.

Experiment 3

In Experiment 3, saccades were detected from data recorded
while participants performed both an antisaccade task and a
gap/overlap task. The goal was to examine the performance
of GazeParser’s saccade detection function. A commercial
eyetracker, Eyelink, was also used to record and detect
saccades for comparison.

Method
Participants

Five naive volunteers and the author participated in the
experiment. One of the 5 naive volunteers and the author
had also participated in Experiment 1. All participants had
normal or corrected-to-normal vision. None had any type of
oculomotor dysfunction.

Apparatus

Hardware set 1b in Experiment 1 was used to record eye
movements. For comparison, an Eyelink eyetracker was also
used to record eye movements. The Eyelink was connected to
the presentation PC using a LAN cable. The Pylink library
(SR Research Ltd.) was used to control Eyelink from the
presentation PC.

Procedure

The experiment consisted of an antisaccade task and a gap/
overlap task. The antisaccade task consisted of four blocks,
two antisaccade blocks, and two prosaccade blocks. At the
beginning of each block, a nine-point calibration was per-
formed. During calibration, participants fixated on a small
black square that appeared sequentially at nine locations on
the screen. The camera was adjusted, and participants per-
formed the calibration task until the measurement error was
less than 0.8° for the average of the nine locations. Upon
completion of calibration, a message appeared instructing
participants as to whether they should perform an antisac-
cade or a prosaccade task in the following block. The first
experimental trial of each block began immediately after
participants read the (above) message and pressed the space
key. At the beginning of each trial, an initial fixation point (a
0.33° x 0.33° square) was presented at the center of the
screen. The color of this fixation square was red in the
antisaccade block and green in the prosaccade block. The

@ Springer

duration of this fixation square was 1,000, 1,100, 1,200,
1,300, 1,400, or 1,500 ms. Immediately after the fixation
point disappeared, a target (a 0.33° x 0.33° white square)
was presented above, beneath, to the left, or to the right of
the location of the initial fixation point. The distance be-
tween the position previously occupied by the fixation point
and the target was 4.2°. Participants were instructed to make
a saccade to the direction opposite of the target in the
antisaccade block (i.e., if the target appeared below the
fixation point, they should make an upward saccade from
the point indicated by the fixation stimulus), whereas they
were instructed to make a saccade to the target in the
prosaccade block. Three seconds after the onset of the initial
fixation point, the trial ended, and the target disappeared.
The next trial started automatically after a 500-ms interval
from the end of the trial. Twenty trials were performed in
each block. The presentation duration of the initial fixation
point was randomly decided on each trial, and the direction
of the target was balanced within each block.

The procedure of the gap/overlap task was the same as
that of the antisaccade task, except for the following. Par-
ticipants were instructed to make a saccade to the target in
all four blocks. The color of the initial fixation point was
white in all blocks. The target appeared either to the left or
to the right of the initial fixation. The gap duration—that is,
onset time of the target relative to the offset of the initial
fixation point—was —200, —100, 0, 100, or 200 ms. Nega-
tive gap duration indicated that the initial fixation point
disappeared before the onset of the target, and the gap
duration was balanced within each block.

Each participant performed the antisaccade task and the
gap/overlap task once, with eye movements recorded by the
GazeParser and once by the Eyelink. The order of the
measurement devices was balanced between participants.

Data analysis

Parameters for saccade detection are shown in Table 4. A
velocity threshold of 22.0 °/s and an acceleration threshold
of 4,000 °/s* for Eyelink was a typical configuration for a
psychophysical experiment according to the Eyelink user
manual. A low-pass filter was not applied to gaze position
data.

Table 4 Parameters for saccade detection in Experiment 3

GazeParser Eyelink
Velocity threshold 22 °/s 22 °/s
Acceleration threshold * 4,000 °/s?
Minimum saccade duration 12 ms *
Minimum fixation duration 12 ms *

* No corresponding parameter

Behav Res (2013) 45:684-695

693

The first saccade executed after onset of the target was
used for analysis. If the onset time of the first saccade
relative to the target onset (i.e., latency) occurred within a
range of 100-600 ms, it was considered that the participant
had made a saccade correctly on that trial. Trials on which
the first saccade did not land on a point further than 2.0°
from the target position were also considered saccade mis-
takes. These error trials were removed from further analyses.

Results and discussion

Regarding the data recorded by Eyelink, 6.3 % (SD = 1.3 %)
of the trials were removed, on average. On the other hand,
15.5 % (SD = 9.8 %) of the trials were removed from the
data recorded by GazeParser. This difference resulted from
occasional failure of eye position detection in 2 participants
(Fig. 7) who did not serve in Experiment 1. When the data
of these 2 participants were removed (32 % and 26 %,
respectively) from analysis, the ratio of removed trials de-
creased to 8.8 % (SD = 2.8 %). Because there was no
problem in saccade detection concerning trials with success-
ful eye position detection, the data of these participants were
used in the following analyses.

Figure 8 shows the mean saccade latency in the antisac-
cade task and the gap/overlap task, collapsed across all
saccade directions. As previous studies have shown, the
mean latency in the antisaccade condition was longer than
that in the prosaccade condition in the antisaccade task. In
the gap/overlap task, the mean latency depended on the
target onset time, relative to the fixation offset time. Nega-
tive onset time (gap condition) resulted in a shorter mean
latency, while positive onset time (overlap condition)
resulted in a longer mean latency. Notably, the results
obtained by GazeParser agreed closely with those obtained
by Eyelink. A two-way repeated measures ANOVA was
performed to confirm these observations. For the antisac-
cade task, the effect of condition (antisaccade or prosaccade)

participant: 002
S 0.0 trial:15
§ FIX
C
2
@ 21
[]
o
g
o TRG
= a2f
o
T

1 1 1
500 1000 1500

Time (ms)

Fig. 7 Examples of recorded data. Left and right panels show data
from the same participant. Blue lines indicate gaze position, and gray
bars indicate presence of the initial fixation point and the target. Pale
blue areas indicate that eye position detection failed during this period.

J
2000

was significant, F(1,5) =101.16,p < .01,77127 = .95. The
effect of measurement device was significant, F(1,5) =
8.99,p = .03,77; = .64. The interaction of these effects

was not significant, F(1,5) = 5.40,p = 06,7, = .52. For

the gap/overlap task, the effect of relative onset time was
significant, F(4,20) = 35.50,p < .01, 77,27 = .99. The effects
of measurement device, F(1,5) =3.84,p = 11,1 = 43,
and the interaction, F(4,20) =1.26,p = .32, = .20,
were not significant. Although a significant effect of mea-
surement device was observed in the antisaccade task, we
can confirm that typical results of antisaccade and gap/
overlap tasks could be obtained with either GazeParser or
Eyelink.

To compare the measurement of saccade amplitude as a
function of device (i.e., GazeParser vs. Eyelink), the mean
and SD of saccade amplitude in the prosaccade condition of
the antisaccade task were calculated for each device. For the
data recorded by Eyelink, the mean and SD were 4.39 and
0.60, respectively, whereas for the data recorded by Gaze-
Parser, corresponding mean and SD values were 4.34 and
0.43. Both mean values agreed closely with the target dis-
tance from the fixation point (4.2°). A paired #-test showed
that mean amplitude was not significantly different between
measurement devices, #5) = 0.16, p = .88, dp = .07).

These results show that GazeParser can measure saccade
latency and amplitude reliably. However, GazeParser occa-
sionally failed to detect gaze position in 2 participants, even
though Eyelink could stably detect their gaze position. This
difference probably derived from the difference in the meth-
od of eye position detection. Eyelink uses pupil image and
images of four IR markers mounted on the stimulus presen-
tation display; on the other hand, GazeParser uses both pupil
image and the Purkinje image. If the detection of a partic-
ipant’s Purkinje image is unstable, due to certain factors
such as cornea shape and long eyelashes, the GazeParser
fails to detect eye position. However, Eyelink can detect eye

participant: 002
E by, trial:21

FIX

o
<)

N
o
T

TRG

R g =)

Horizonal position (deg)
&
N
T

~

J
2000

1 1 1
500 1000 1500

Time (ms)
In the left panel, eye position detection failure occurred near the
saccade onset; therefore, that detection of saccade onset failed. Such

a failure occurred in 2 participants more often, when compared with the
other participants

@ Springer

694

Behav Res (2013) 45:684-695

Fig. 8 Mean saccade latencies
in the antisaccade task and the . — Eyelink . 450}| = Eyelink
gap/overlap task. The results @ 340 G @
£ —e GazeParser c —o GazeParser
obtained by GazeParser agreed = < 400
with those obtained by Eyelink 6 320 § 350
[0]
S 300 g 300
S S
© < 250
g 280 3
® & 200
260 150
Prosaccade Antisaccade -200 -100 O 100 200
Gap Overlap

position even in cases with factors such as these. Improving
eye position detection performance is one of the main
issues that need to be addressed in future development of
GazeParser.

General discussion

Although eye movement is a useful behavioral index for
studying perceptual and cognitive processes, engaging in
eye movement research can be difficult because of the initial
cost of recording devices and the programming time re-
quired to synchronize eye movement recording and visual
stimuli. The GazeParser is an open-source library that is
being developed to mitigate these difficulties. An advantage
of GazeParser, when compared with other open-source eye-
tracking libraries, is the ability of the software to coordinate
with VisionEgg and PsychoPy. The present study showed
that GazeParser was capable of recording gaze position at a
rate of more than 100 samples per second. The spatial
accuracy of GazeParser was reasonably high, as compared
with that of other video-based eyetrackers.

The choice of a camera unit is important when constructing
an eye-tracking system with GazeParser. In the present study,
an OptiTrack V120 slim camera was primarily used to capture
ocular images. Although this camera is available at a relatively
low cost and has a good performance record, it can be used
only with Microsoft Windows. Therefore, in order to use
Macintosh or Linux machine as the recorder PC, other cam-
eras are required. Currently, the cross-platform edition of
GazeParser depends on OpenCV to capture a camera image.
Because OpenCV supports various camera units, including
low-cost USB2.0 Web cameras, these cameras might poten-
tially be used with GazeParser. However, the performance
characteristics of these cameras differ greatly, and most are
not suitable for use in research. For example, some cameras
cannot capture images at a constant time interval, while with
other cameras, the detection of the Purkinje is unstable be-
cause of a built-in IR cut filter. Moreover, auto-adjustment of

@ Springer

Condition

Tareget onset relative to
Fixation offset (ms)

camera settings, such as gain and exposure, may have unpre-
dictable effects on data quality. I recommend the use of quality
industrial cameras with user-customizable functions. The res-
olution of the camera image need not necessarily be high; for
example, the cameras used in this study had a resolution of
only 320 x 240 or 320 x 224. Although using high-resolution
images might improve spatial accuracy and precision, it might
be impossible to transfer these images from the camera to the
PC at a desirable sampling frequency, because limitations of
transfer depend on the camera, PC, and interface unit. For
example, transferring a 640 x 480 8-bit monochrome image at
120 Hz is near the practical limit of USB 2.0 interface;
hardware set 1a in Experiment | could not transfer this image
format, whereas hardware set 1b could.

One important characteristic of eye-tracking devices that
was not examined in this study is the tracking range. Eval-
uating this range is difficult because it differs considerably
across participants. If participants have long eyelashes or
narrow eyes, GazeParser may encounter difficulty in pupil
detection, as with other video-based eyetrackers, and, there-
fore, narrow the tracking range. When the eye rotates away
from the center, the Purkinje image leaves from the cornea
surface. In this situation, the GazeParser cannot estimate
gaze position reliably. The range of eye rotation within
which the Purkinje image stays on the cornea surface
appears to depend on cornea shape. Individual differences
in these factors affect the tracking range of GazeParser. If
detection of the pupil and the Purkinje image are not dis-
turbed by these factors, the tracking range of GazeParser
reaches approximately 30° in the horizontal and 20° in the
vertical directions.

GazeParser is currently under development. The main
features now in development involve recording in binocular
fashion, importing data recorded by other eyetrackers, and
analyzing recorded data through multiple methods. Binocu-
lar recording has been tentatively implemented and is now
undergoing testing. As for data importation, GazeParser can
import gaze position and some event data from an Eyelink
EDF file (via edf2asc.exe, which is bundled with Eyelink)

Behav Res (2013) 45:684-695

695

and Tobii’s tab-separated text file (Tobii Technology, Ltd.).
This feature is intended to provide a common interface for
analyzing data recorded by these eyetrackers and Gaze-
Parser. Further improvements are necessary for enabling
importation of whole data sets from these files. To support
data analysis, GazeParser currently provides Python modules
to detect microsaccades according to the method proposed by
Engbert and Kliegl (2003), to evaluate similarity between two
gaze trajectories using ScanMatch algorithm (Cristino,
Mathot, Theeuwes, & Gilchrist, 2010), and to evaluate
saccade trajectory curvature. Additionally, modules for other
analyses will be added in the future.

In summary, GazeParser is a low-cost solution for gaze
position recording. It is an open-source software that runs on
Microsoft Windows, Linux, and Mac OS X, with tem-
poral and spatial performance that is sufficient for research
use.

Author Note This project was supported by MEXT/JSPS KAKENHI
Grant Number 23530955 and Grant-in-Aid for Research Promotion,
Ehime University. The author received generous support from Professor
Naoyuki Osaka for data recording with Eyelink.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution License which permits any use, distribution,
and reproduction in any medium, provided the original author(s) and
the source are credited.

References

Bradski, G. (2000). The OpenCV library. Dr. Dobb’s Journal of Soft-
ware Tools.

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10,
433-436.

Cornelissen, F. W., Peters, E., & Palmer, J. (2002). The eyelink toolbox:
Eye tracking with MATLAB and the psychophysics toolbox. Behav-
ior Research Methods, Instruments and Computers, 34, 613—617.

Cristino, F., Mathot, S., Theeuwes, J., & Gilchrist, I. D. (2010).
ScanMatch: A novel method for comparing fixation sequences.
Behavioral Research Methods, 42, 692—700.

Engbert, R., & Kliegl, R. (2003). Microsaccades uncover the orienta-
tion of covert attention. Vision Research, 43, 1035-1045.

Everling, S., & Fischer, B. (1998). The antisaccade: A review of basic
research and clinical studies. Neuropsychologia, 36, 885-899.

Findlay, J. M. (1971). Frequency analysis of human involuntary eye
movement. Kybernetik, 8, 207-214.

Fischer, B., & Weber, W. (1993). Express saccades and visual atten-
tion. Behavioral and Brain Sciences, 16, 553—610.

Gustafsson, F. (1996). Determining the initial states in forward-backward
filtering. [EEE Transactions on Signal Processing, 44, 988-992.

Hansen, D. W., & Ji, Q. (2010). In the eye of the beholder: A survey of
models for eyes and gaze. I[EEE Transactions on pattern analysis
and machine intelligence, 32, 478-500.

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Com-
puting in Science & Engineering, 9, 90-95.

Jones, E., Oliphant, T., & Peterson, P. (2001). Scipy: Open source
scientific tools for Python. Retrieved from http://www.scipy.org/

Li, D., Babcock, J., Parkhurst, D. J. (2006). openEyes: A low-cost
head-mounted eye-tracking solution. Proceedings of the ACM Eye
Tracking Research and Applications Symposium.

Peirce, J. W. (2007). PsychoPy - Psychophysics software in Python.
Journal of Neuroscience Methods, 162, 8-13.

Pelli, D. G. (1997). The videotoolbox software for visual psychophysics:
Transforming numbers into movies. Spatial Vision, 10, 437-442.

San Agustin, J., Skovsgaard, H., Mollenbach, E., Barret, M., Tall, M.,
Hansen, D. W., & Hansen, J. P. (2010). Evaluation of a low-cost
open-source gaze tracker. Proceedings of the 2010 Symposium on
Eye-Tracking Research & Applications, pp. 77-80.

Straw, A. D. (2008). Vision egg: An open-source library for realtime
visual stimulus generation. Frontiers in Neuroinformatics, 2.
doi:10.3389/neuro.11.004.2008

van Gompel, R. P. G., Fischer, M. H., Murray, W. S., & Hill, R. L.
(Eds.). (2007). Eye movements: A window on mind and brain.
Oxford: Elsevier.

Zielinski, P. (2007). Opengazer: Opensource gaze tracker for ordinary
webcams. http:/www.inference.phy.cam.ac.uk/opengazer/

@ Springer

http://www.scipy.org/
http://dx.doi.org/10.3389/neuro.11.004.2008
http://www.inference.phy.cam.ac.uk/opengazer/

	GazeParser: an open-source and multiplatform library for low-cost eye tracking and analysis
	Abstract
	Open-source library for low-cost eye tracking and analysis
	General method
	Apparatus
	Synchronizing recording and presentation PCs
	Getting gaze position
	Saccade detection
	Recording and data analysis with GazeParser

	Experiment 1
	Method
	Participants
	Apparatus
	Procedure
	Data analysis

	Results and discussion
	Temporal accuracy and precision
	Spatial accuracy and precision

	Experiment 2
	Method
	Participants
	Apparatus
	Procedure
	Data analysis

	Results and discussion

	Experiment 3
	Method
	Participants
	Apparatus
	Procedure
	Data analysis

	Results and discussion

	General discussion
	References

