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Introduction
The tumor syndrome von Hippel-Lindau (VHL) disease is 

caused by heterozygous germline inactivation of the VHL tumor 

suppressor gene, which resides on chromosome 3p25 (Kaelin, 

2003). The cardinal feature of this hereditary cancer syndrome 

is the development of multiple vascular tumors called heman-

gioblastomas in the central nervous system and retina combined 

with clear cell carcinoma of the kidney and pheochromocytoma. 

VHL disease is an autosomal-dominant disorder, and tumor 

 development in VHL disease is linked to somatic inactivation of 

the remaining wild-type VHL allele, leading to loss of the wild-

type VHL gene product, VHL protein (pVHL). In the kidney, 

this event not only precipitates the development of clear cell 

carcinoma but is also associated with the growth of  premalignant 

renal cysts (Lubensky et al., 1996; Mandriota et al., 2002). 

 Restoration of pVHL expression is suffi cient to suppress kidney 

tumor formation by pVHL-defective renal carcinoma cells 

in vivo, suggesting that tumorigenesis is a direct effect of the 

loss of both VHL alleles (Iliopoulos et al., 1995; Schoenfeld 

et al., 1998). Despite recent advances in our understanding of 

pVHL function in tumor formation (Kaelin, 2003; Ratcliffe, 

2003), the pathogenesis of cystic kidney disease in VHL  patients 

remains unknown.

Recently, the molecular pathogenesis of other cystic 

 kidney diseases has been linked to the monocilia of kidney cells 

(Benzing and Walz, 2006). Cilia are highly conserved organ-

elles that project from the surfaces of many cells (Igarashi 

and Somlo, 2002). The essential structure of renal monocilia 

consists of nine peripheral microtubule doublets forming the 

axoneme and surrounded by a membrane lipid bilayer that is 

continuous with the plasma membrane. The ciliary axoneme 

emerges from the basal body, a microtubule-based structure that 

also functions as the spindle-organizing center in mitosis. Cilia 

are sensory organelles (Snell et al., 2004; Pan et al., 2005), and 

it has been demonstrated that renal monocilia are involved in 

mechanosensation (Nauli et al., 2003; Praetorius and Spring, 
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2003a,b). The assembly and maintenance of cilia are mediated 

by intrafl agellar transport (IFT), a bidirectional microtubule-

based transport system.

In this study, we demonstrate that pVHL localizes to the 

monocilia of kidney cells and controls ciliogenesis. Further-

more, we show that pVHL is essential for the oriented growth 

of microtubules toward the cell periphery, a prerequisite for 

the formation of cilia. Moreover, pVHL interacts with the 

Par3–Par6–atypical PKC (aPKC) polarity complex, suggesting 

that pVHL may connect Par3–Par6–aPKC polarity proteins to 

microtubule capture and ciliogenesis. Our results uncover a 

novel role for pVHL that links the pathogenesis of premalignant 

renal cysts in VHL disease with the role of kidney cell mono-

cilia in cystogenesis.

Results and discussion
We examined the localization of pVHL in polarized kidney cells 

using different anti-pVHL antisera. Renal tubular epithelial cells 

(MDCK clone II) were grown on cell culture inserts for a mini-

mum of 5 d after confl uence to allow complete  epithelial polariza-

tion. We observed specifi c staining in the cytoplasm of the cells 

and some nuclear staining, as described previously (Hergovich 

et al., 2003; and unpublished data). In addition, strong pVHL 

staining in monocilia was detected by several pVHL antibodies 

(Fig. 1). Cilia were identifi ed with an antiacetylated tubulin anti-

body, which is a marker of the ciliary axoneme (Fig. 1, a and b). 

pVHL staining was completely blocked by adding an excess of 

recombinant pVHL peptide, confi rming the staining specifi city 

(Fig. 1 b). The same pVHL localization was observed using 

anti-pVHL antibody and anti–rabbit AlexaFluor-conjugated 

antisera but omitting the antiacetylated tubulin antisera, exclud-

ing cross-reactivity or bleed-through of the fl uorescent label. 

No immunofl uorescence was detected when secondary antibod-

ies were used alone (unpublished data).

Double and triple labeling of native human respiratory 

 epithelial cells revealed that pVHL is also present in motile 

cilia of respiratory epithelial cells (Fig. S1, available at http://

www.jcb.org/cgi/content/full/jcb.200605092/DC1). pVHL was 

detected in the ciliary axoneme (costained with antibodies against 

acetylated tubulin) and basal bodies (costained with antibodies 

against γ-tubulin). Immunoelectron microscopy of respiratory 

epithelial cells revealed that pVHL staining was confi ned to 

protein complexes associated with the ciliary microtubules (Fig. 

S1 c). These data suggested that pVHL may be important for the 

formation or maintenance of cilia and prompted us to examine 

the effect of VHL deletion on ciliogenesis.

To address a possible role for pVHL in the formation or 

maintenance of cilia, we examined ciliogenesis in pVHL-

 defi cient and in wild-type kidney cells. The A498 renal cell 

 carcinoma (RCC) cell line contains a single VHL allele with a 

frameshift mutation at codon 142, leading to the expression of a 

defective C-terminally truncated pVHL (Gnarra et al., 1994). 

Lentiviral vectors containing V5-tagged human pVHL30 cDNA 

or an empty cassette (control) were used to transduce pVHL-

defi cient A498 RCC cells. The reexpression of pVHL was con-

fi rmed by immunoblotting with anti-V5 antibody (Fig. 2 a). 

VHL-defective and -positive cells were grown 10 d after confl u-

ence to allow epithelial polarization and cilia formation. Under 

the chosen conditions, VHL-negative cells did not assemble 

cilia. Even after >14 d after confl uence, control cells trans-

duced with empty lentivirus did not form cilia (visualized with 

antiacetylated tubulin antibodies; Fig. 2, b and c). In contrast, 

the lentivirally mediated reexpression of pVHL resulted in the 

formation of intact monocilia at the apical surface of the cells, 

suggesting that pVHL expression is essential for cilia forma-

tion. Ciliogenesis was quantifi ed by blinded counting of cilia in 

two independent experiments (Fig. 2 b). Similar to wild-type 

cells, pVHL-reexpressing cells showed a ciliary localization of 

pVHL, as demonstrated by the costaining of pVHL with the 

cilia marker protein acetylated tubulin (Fig. 2 c). Reexpressed 

pVHL could also be stained with anti-V5 antibody, confi rming 

specifi c staining in monocilia (Fig. S2 a, available at http://

www.jcb.org/cgi/content/full/jcb.200605092/DC1).

Next, we engineered a cell line that expressed VHL under 

the control of a tetracyclin-dependent promoter. VHL-negative 

Figure 1. pVHL is localized to renal monocilia. (a) Colocalization of 
pVHL and acetylated tubulin in primary cilia of MDCK cells. MDCK 
cells were grown on coverslips at 100% confl uence and cultured for 5 d 
before the experiment to allow full polarization and cilia formation. 
 Localization of pVHL was determined by immunofl uorescence using a 
pVHL-specifi c antibody (green, rabbit polyclonal; sc-5575) with confocal 
images captured at the level of the apical membrane. Cells were 
costained with mouse antiacetylated tubulin antibody (middle), a marker 
protein for cilia. All images were captured using sequential Cy3 and 
 AlexaFluor488 scans on a laser confocal microscope to eliminate bleed-
through signals from the green and red fl uorescence. (b) Specifi c local-
ization of pVHL in primary cilia was confi rmed by the use of an additional 
anti-VHL antibody (goat polyclonal; sc-1535) and blocking with recombi-
nant pVHL. Lower magnifi cation (left) and higher magnifi cation views 
(middle) of ciliated cells are shown. Incubation of the specifi c pVHL anti-
body with a blocking recombinant protein (10-fold excess) resulted in the 
loss of pVHL staining in cilia, demonstrating specifi city of the antibody 
stain (right).



PVHL IS ESSENTIAL FOR CILIOGENESIS • SCHERMER ET AL. 549

A498 cells were lentivirally transduced to express a tet repres-

sor together with a tet-dependent VHL construct. Incubation of 

the cells in the presence of doxycycline resulted in pVHL 

expression already at very low doxycycline concentrations 

(Fig. 2 d). Several independent clones of cells were generated, 

plated at high density, and grown on cell culture inserts in the 

absence and presence of 500 ng/ml doxycycline for 5 d. As 

demonstrated in the previous paragraph, VHL-negative cells did 

not show cilia formation under the conditions chosen (unpub-

lished data). In contrast, doxycyclin-treated cells displayed the 

formation of monocilia (�10% of cells). These monocilia again 

stained positive for pVHL (as demonstrated by stainings with 

an anti-V5 antibody; Fig. 2 d).

To further study a role for pVHL in the formation of cilia, 

we next searched for short hairpin RNAs (shRNAs) to inter-

fere with VHL expression in renal cells. To test the effi cacy of 

candidate shRNAs, the cDNA of mouse VHL (coding sequence 

plus 3′ untranslated region [UTR]) was cloned into a bicistronic 

luciferase vector to fuse this cDNA with the coding sequence of 

Renilla reniformis luciferase. In this system, the activity of the 

R. reniformis luciferase is a quantitative parameter of RNA deg-

radation mediated by cotransfected shRNAs. Coexpressed fi re-

fl y (Photinus pyralis) luciferase served as a control to normalize 

for transfection effi ciency, expression level, and cell number. 

Several shRNAs were synthesized based on publicly available 

prediction programs (Table I; Yuan et al., 2004). These reagents 

were then tested by sequentially measuring the activities of fi refl y 

and R. reniformis luciferases in a 96-well format (Fig. S3 a, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200605092/DC1). 

shRNA#3 resulted in an almost 70% knockdown of the re porter 

construct (Fig. S3 a) and effi cient knockdown of the mouse 

pVHL (Fig. S3 b). We used shRNA#3 cloned into a lentivirus 

Figure 2. Lentivirally mediated reexpression of pVHL res-
cues the cilia-defective phenotype of VHL-negative renal epi-
thelial cells. (a) Lentiviral vectors containing human pVHL30 
cDNA or an empty cassette were generated and used to 
infect VHL-defective A498 RCC cells. Reexpression of pVHL 
was confi rmed by immunoblotting with VHL-specifi c antibody. 
#1 and #2 denote two different pools of transduced cells. 
(b) Ciliogenesis was quantifi ed by blinded counting of cilia 
in two independent experiments (three slides each). Error bars 
represent SD. (c) VHL-defective (left; lentiviral control) and 
-positive cells (right; lentiviral pVHL) were grown 10 d after 
confl uence to allow epithelial polarization and cilia forma-
tion. Red, acetylated tubulin; green, reexpressed V5-tagged 
pVHL; merge in the far right panels. (d) Doxycycline-induced 
reexpression of pVHL in tet-inducible A498 cells. Ttrp denotes the 
lentivirally mediated expression of Tet repressor. Top panel 
shows a dose-response curve (24 h of incubation). Doxycycline-
mediated pVHL expression is shown (bottom) and results in 
the formation of cilia in pVHL-expressing cells (right). Reex-
pressed pVHL was stained with an anti-V5 antibody.
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vector to selectively knockdown VHL expression in mouse 

inner medullary collecting duct 3 (mIMCD3) kidney cells. 

shRNA expression was monitored by simultaneous coexpres-

sion of GFP from the same construct (Fig. S3 c). This strategy 

allows the identifi cation of cells that effectively express shRNA. 

Interestingly, this level of knockdown was not associated with 

a marked change in the growth rate of the cells. Cell growth 

and formation of a closed monolayer was indistinguishable in 

cells with and without VHL knockdown, suggesting that low 

levels of pVHL are suffi cient to prevent tumorlike cell growth. 

The lentivirally mediated expression of shRNA#3 against VHL 

but not of a control scrambled shRNA inhibited cilia forma-

tion, supporting the concept that pVHL controls ciliogenesis. 

 Identical results were obtained with shRNA#2 (unpublished 

data). Importantly, although cilia formation was greatly attenu-

ated in VHL knockdown cells, ciliogenesis was not entirely ab-

rogated in this assay (some cilia could form at later stages).

Next, we examined the mechanism by which pVHL may 

affect ciliogenesis. The essential structure of cilia consists of 

nine peripheral microtubule doublets forming the axoneme 

and surrounded by a membrane lipid bilayer that is continuous 

with the plasma membrane (Rosenbaum and Witman, 2002). 

In microtubule sedimentation experiments, we found that pVHL 

associates with microtubules (Fig. 3 a), and immunoprecipita-

tion experiments revealed that pVHL interacts with β-tubulin 

(Fig. 3 b). Thus, it appears that pVHL is associated with mi-

crotubules. But how could this protein play a role in ciliogen-

esis? One possible explanation is that pVHL may have a direct 

effect on microtubule stability, as has been described previ-

ously by Hergovich et al. (2003). We tested this possibility by 

treating VHL-positive and -negative cells with 20 μM of the 

microtubule-depolarizing drug nocodazole for 20 min, staining 

the cells with antiacetylated tubulin antibody, and checking for 

the integrity of microtubules by fl uorescence microscopy. We 

were particularly interested in an effect on the peripheral micro-

tubule network. However, we could not fi nd an obvious defect 

in microtubule stability in VHL-negative cells or rescue from 

microtubule instability in pVHL-reexpressing cells (unpub-

lished data).

Alternatively, pVHL might infl uence microtubule growth 

rates or their directionality and organization. To test this possi-

bility, we examined microtubule growth and directionality using 

end-binding protein 1 (EB1) tagged with GFP in VHL-positive 

and -negative cells by high speed time-lapse videos. EB1 and 

Figure 3. pVHL associates with microtubules 
but does not affect microtubule growth or 
stability. (a) pVHL binds microtubules. Microtu-
bules were polymerized in vitro, and super-
natants and microtubule pellets were then 
subjected to SDS-PAGE and immunoblotted for 
the indicated proteins. (b) β-Tubulin coprecipi-
tates with pVHL. FLAG-tagged pVHL (F.VHL) or 
a control protein (F.GFP) were expressed in 
HEK 293T cells and precipitated with anti-
FLAG antibody. Western blot analysis was 
 performed with a β-tubulin–specifi c antibody 
(top). Expression levels of β-tubulin in the ly-
sates are shown (bottom). (c) End-binding pro-
tein 1 (EB1) tagged with GFP tracks microtubule 
growth in the monocilia of kidney cells, sug-
gesting that this protein is a suitable reagent to 
study the microtubule formation required for 
ciliogenesis. GFP-EB1 was expressed in MDCK 
cells, and fl uorescence (1,024 × 1,024  pixels) 
as well as differential interference contrast 
(DIC) images were recorded with a confocal 
scanning microscope. The confocal pinhole was set to achieve an optical slice thickness of 0.9 μm (top). The bottom panel shows a z stack of the same 
area. (d) GFP-EB1 accumulates at the plus ends of microtubules. GFP-EB1 movements were visualized with high speed confocal microscopy. (e) VHL does 
not affect the number of growing microtubules at the cell cortex. To estimate the number of growing microtubules at the cell cortex, GFP-EB1–positive micro-
tubules were counted at the cell periphery in defi ned areas of interest and were compared in VHL-positive and -negative cells (n = 8). Tracking paths were 
measured in two square fi elds (256 μm2) per cell positioned in the cytosol adjacent to the plasma membrane. Error bars represent SD. Bars, 5 μm.

Table I. Sequence information for hairpin constructs

Hairpin DNA sequencea Target

mVHL #1 G A G A A G A T G A C C T G A G A G G G C T G T T T T G G C C A C T G A C T G A C A G C C C T C T G G T C A T C T T C T cds

mVHL #2 G T T A A C C A G A A G T C C A T C A T G G G T T T T G G C C A C T G A C T G A C C C A T G A T G C T T C T G G T T A A cds

mVHL #3 G A A C T C A G G A A C A C T T A A T C T C G T T T T G G C C A C T G A C T G A C G A G A T T A A G T T C C T G A G T T 3′ UTR

mVHL #4 G A A C A C T A C A A A G C C C A G G G A T G T T T T G G C C A C T G A C T G A C A T C C C T G G T T T G T A G T G T T 3′ UTR

mVHL #5 G T T A A A C A C T A C A A A G C C C A G G G T T T T G G C C A C T G A C T G A C C C T G G G C T G T A G T G T T T A A 3′ UTR

hsaVHL #1 G T A A G G A A G G A A C C A G T C C T G T G T T T T G G C C A C T G A C T G A C A C A G G A C T T T C C T T C C T T A 3′ UTR

Scrambled G A A A T G T A C T G C G C G T G G A G A C G T T T T G G C C A C T G A C T G A C G T C T C C A C G C A G T A C A T T T None

cds, coding sequence.
aWithout overhangs; antisense target sequences (mature micro-RNA sequence) are indicated in bold.
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its Caenorhabditis elegans homologue EBP-2 have been shown 

to decorate the plus ends of growing microtubules (Salaycik 

et al., 2005; Srayko et al., 2005) and, thus, can be used to dy-

namically monitor microtubule formation (Mimori-Kiyosue 

et al., 2000). GFP-EB1 decorates the microtubules of cilia (Fig. 

3 c), suggesting that this protein is a suitable reagent to study 

the microtubule formation required for ciliogenesis. Targeting 

to cilia is specifi c to GFP-EB1 and could not be demonstrated 

with GFP alone (Fig. S2 b). However, because VHL-negative 

cells do not form cilia, studies addressing the microtubule 

formation required for ciliogenesis have to be performed in 

the cytoplasm.

We reasoned that monitoring microtubule formation at 

the cell cortex may allow us to address the mechanism that 

leads to the ciliogenesis defect in VHL-negative cells. In fact, 

this is what we found. Using life confocal microscopy, we 

observed multiple small dots of fl uorescence moving at the 

cell periphery in both VHL-positive and -negative cells (Fig. 

3 d and Videos 1 and 2; available at http://www.jcb.org/cgi/

content/full/jcb.200605092/DC1). The number of forming micro-

tubules at the cell cortex did not differ in VHL-negative cells 

(Fig. 3 e). To study the direction and growth rate of microtu-

bules, fl uorescent GFP-EB1 dot movements were tracked over 

10 s in high speed time-lapse videos using MetaMorph soft-

ware; microtubule growth rates and direction were determined 

from these data. Examples of microtubule growth tracks are 

shown in Fig. 4 a. To exclude the possibility that differentiation 

plays a major role in the effect of pVHL on microtubule growth, 

the experiments were performed in nonpolarized, nonconfl uent 

cells (EB1-GFP–expressing A498 cells rescued with V5.lacZ or 

V5.VHL). The analyzed region of interest was chosen between 

the centrosome and the cell membrane. In undifferentiated 

cells, the centrosome is located near the nucleus, whereas in 

fully differentiated cells, the centrosome localizes to the apical 

membrane, where the cilium originates. Only undifferentiated 

cells with centrosomes close to the nucleus were taken for the 

analyses, excluding the possibility that polarization, reorienta-

tion of centrioles, changes in microtubular polarity, or marked 

differences in cell cycle progression are responsible for any of 

the effects observed.

As stated in the previous paragraph, we found no obvious 

difference in microtubule growth between VHL-positive and 

-negative cells. However, we noticed that in wild-type cells, the 

direction of growth of newly formed microtubules at the cell 

periphery is coordinated toward the outer plasma membrane, 

whereas in VHL-defi cient cells, growth directions appear to be 

less coordinated (Fig. 4, a and b). To perform a statistical analy-

sis of the directionality of microtubule growth in regions of in-

terest in different cells, the microtubule growth directions were 

expressed as the deviation from a calculated sum vector of all 

growth directions in one particular experiment. The summary of 

fi ve independent experiments revealed a statistically signifi cant 

difference in deviation from the sum vectors in VHL-negative 

cells (Fig. 4 c), demonstrating that VHL defi ciency affects the 

coordinated growth of microtubules. These data suggest that the 

defi ciency in ciliogenesis in VHL-negative cells may be a result 

of the uncoordinated growth of microtubules.

Members of the family of Ras-related Rho GTPases have 

emerged as key regulators controlling microtubule–cortex inter-

actions and the coordinated growth of cortical microtubules 

(Gundersen et al., 2004; Jaffe and Hall, 2005). Three critical ef-

fectors of the GTPase-mediated microtubule control have been 

identifi ed, including Par6 (Etienne-Manneville and Hall, 2003), 

IQGAP1 (Fukata et al., 2002; Watanabe et al., 2004), and the 

mammalian homologue of Diapharous (mDia1; Palazzo et al., 

2001). Interestingly, coimmunoprecipitation experiments re-

vealed a specifi c interaction of pVHL with Par6 (Fig. 5 a). 

pVHL precipitated the Par3–Par6–PKCζ protein complex in 

human embryonic kidney (HEK) 293T cells (Fig. 5 b). Immuno-

precipitation of endogenous pVHL from the mouse kidney 

demonstrated that pVHL is in a complex with Par3, Par6, and 

Figure 4. VHL defi ciency affects the directed growth of microtubules. 
(a) Representative trackings of EB1 tagged with GFP (GFP-EB1) in the 
cytoplasm of VHL-positive and -negative cells. Each trace represents the 
history of GFP-EB1 movement (microtubule growth) over sequential time 
frames with an acquisition rate of two images per second. (b) Microtubule 
growth events were expressed as the deviation from the mean angle 
 (depicted as the sum vector in bold) in VHL-positive and -negative cells. 
A representative experiment of five independent analyses is shown. 
(c) Tracking paths were measured in one to two square fi elds (256 μm2) 
positioned in the cytosol in a total of 10 independent experiments (VHL 
negative and positive). As a measure for directed or nondirected move-
ment, the deviation of the individual growth angles from the mean angle 
was calculated in each square. Statistical analysis was performed for 
VHL-positive and -negative cells using the two-tailed t test (**, P < 0.01). 
Error bars represent the SEM.
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aPKC in vivo (Fig. 5 c). Moreover, aPKC (PKCζ) colocalized 

with pVHL in the monocilia of MDCK cells (Fig. 5 d). Collec-

tively, these data suggest that Par3– Par6–aPKC and pVHL may 

operate in the same pathway to regulate the cortical growth of 

microtubules and the formation of cilia.

Recently, the Par3–Par6–aPKC polarity proteins have 

been shown to localize to cilia and interact with the anterograde 

IFT motor kinesin-2, linking polarity proteins with IFT, micro-

tubules, and the formation of cilia (Fan et al., 2004). However, 

the exact mechanisms of how ciliogenesis, IFT, and polarity 

proteins may be intertwined remained elusive. We now show 

that pVHL also localizes to cilia, interacts with Par3–Par6–

aPKC, and controls ciliogenesis. Although we failed to detect 

kinesin-2 components in the complex (unpublished data), our 

data demonstrating a critical role for pVHL in controlling the 

growth direction of microtubules suggest a common function of 

pVHL, polarity proteins, and IFT in controlling microtubular 

orientation and dynamics. This adds another aspect to an impor-

tant role for pVHL in regulating the microtubule cytoskeleton in 

cells. Previous studies showed that pVHL stabilizes microtu-

bules (Hergovich et al., 2003) and infl uences microtubule dy-

namics at the periphery of living cells (Lolkema et al., 2004). 

We now demonstrate that pVHL is critically involved in regulat-

ing the orientation of microtubular growth at the cell periphery. 

Because pVHL also interacts with Par6, which is a key regula-

tor of microtubule–cortex interactions and the coordinated 

growth of cortical microtubules (Etienne-Manneville and Hall, 

2003), it is conceivable that pVHL and Par6 are in a common 

pathway to regulate microtubule orientation. Well-regulated 

microtubule orientation is a prerequisite for ciliogenesis, so 

the function of pVHL in controlling cilia formation may be the 

result of a common function of pVHL, polarity proteins, and 

IFT in controlling microtubule dynamics in the cell. Future 

studies will have to address the question of how pVHL, polarity 

proteins, and IFT regulate microtubule dynamics independently 

of ciliogenesis.

These data assign a novel role for the tumor suppressor 

pVHL and have important implications for the understanding of 

VHL disease. A critical role of pVHL in regulating ciliogenesis 

has also been documented by others (Esteban et al., 2006; Lutz 

and Burk, 2006) and could explain why VHL patients can de-

velop polycystic kidney disease. Although much has been learned 

about the function of pVHL in tumorigenesis at the molecular 

level, the pathogenesis of premalignant kidney cysts in VHL pa-

tients has remained elusive (Kaelin, 2004). Thus, our fi nding that 

pVHL plays a critical role in ciliogenesis sheds new light on the 

pathogenesis of premalignant kidney cysts in VHL patients.

Materials and methods
Plasmids and antibodies
HA- and FLAG-tagged human VHL constructs were provided by S.A. 
Karumanchi (Harvard Medical School, Boston, MA). Human VHL was 
cloned into pLenti6.V5/Dest and pLenti4/TO/V5/Dest (Invitrogen) using 
GATEWAY cloning technology. Mouse VHL (coding sequence and 3′ UTR) 
was PCR cloned from the full-length clone IRAV-6402536 (Open Biosys-
tems) into a modifi ed GATEWAY pENTR1A vector, and recombination was 
performed into pcDNA3.1.nV5.Dest to obtain V5.mVHL. GATEWAY vec-
tors and lentiviral constructs were obtained from Invitrogen or were provided 
by T. Tuschl and M. Landthaler (Rockefeller University, New York, NY), D. 
Trono (University of Geneva, Geneva, Switzerland), and L. Naldini (Uni-
versity of Torino, Torino, Italy). EB1-GFP was provided by Y. Mimori-Kiyosue 
(KAN Research Institute, Kyoto, Japan; Mimori-Kiyosue et al., 2000). Site-
directed mutagenesis was performed using the QuikChange Site-Directed 
Mutagenesis Kit (Stratagene). All plasmids were verifi ed by automated 
DNA sequencing. Antibodies were obtained from Sigma-Aldrich (anti-
FLAG, antiacetylated tubulin, and anti-PKCζ), Santa Cruz Biotechnology, 
Inc. (anti-myc, anti-HA, anti-VHL pAb, and anti-Par6), Oncogene Research 
Products (anti-VHL mAb), Serotec (anti-V5 mAb), Covance (anti-HA pAb), 
and Roche Biochemicals (anti-HA mAb).

Cell culture and transfections
HEK 293T cells were cultured in DME supplemented with 10% FBS. For 
transfection experiments, cells were grown until 60–80% confl uence and 

Figure 5. pVHL interacts with the Par3–Par6–aPKC polarity 
complex. (a) VHL coprecipitates with Par6. FLAG-tagged Par6 
(F.Par6) or a control protein (F.GFP) were coexpressed with 
HA-tagged VHL (HA.VHL) in HEK 293T cells and precipitated 
with anti-FLAG antibody. Western blot analysis was per-
formed with anti-HA antibody (top). Expression levels of 
HA.VHL in the lysates are shown (bottom). (b) pVHL precipi-
tates the Par3–Par6–aPKC protein complex. V5-tagged Par6 
(V5.Par6), Par3 (150-kD isoform; V5.Par3), and aPKC 
(V5.PKCζ) were coexpressed with FLAG-tagged VHL or a con-
trol protein (F.EPS) in HEK 293T cells. pVHL and the control 
protein were precipitated with anti-FLAG antibody, and co-
precipitating Par3, Par6, and PKCζ were visualized with anti-
V5 antibody on Western blots (right). Expression levels of all 
proteins in the lysates are shown (left and bottom). (c) Native 
pVHL from mouse kidney lysates coprecipitates the Par3–
Par6–aPKC protein complex. Freshly isolated mouse kidneys 
were perfused with ice-cold PBS, lysed, and subjected to 
 immunoprecipitation with control or anti-pVHL antibodies. Pre-
cipitated pVHL and coprecipitating proteins were detected 
with specifi c antibodies. (d) Colocalization of pVHL and aPKC 
(PKCζ) in primary cilia of MDCK cells. MDCK cells were 
grown on Transwell fi lters (0.4-μm pore size; polyesther; 
Corning) at 100% confl uence and cultured for 5 d before the 
experiment to allow full polarization and cilia formation.
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transfected with plasmid DNA using a modifi ed calcium phosphate method 
as described previously (Benzing et al., 1999).

Coimmunoprecipitation
Coimmunoprecipitations were performed as described previously (Huber 
et al., 2001). In brief, HEK 293T cells were transiently transfected and 
lysed in a 1% Triton X-100 lysis buffer (1% Triton X-100, 20 mM Tris-HCl, 
pH 7.5, 50 mM NaCl, 50 mM NaF, 15 mM Na4P2O7, 2 mM Na3VO4, 
and protease inhibitors) for 15 min on ice. After centrifugation at 15,000 g 
for 15 min and ultracentrifugation at 100,000 g for 30 min (both at 4°C), 
cell lysates containing equal amounts of total protein were precleared with 
protein G–Sepharose and incubated for 1 h at 4°C with the appropriate 
antibody followed by incubation with 40 μl protein G–Sepharose beads 
for �3 h. The beads were washed extensively with lysis buffer, and bound 
proteins were resolved by 10% SDS-PAGE. For precipitation of endoge-
nous proteins, mouse kidneys were perfused in situ with ice-cold PBS and 
homogenized in 1 ml of lysis buffer (20 mM Tris-HCl, pH 7.5, 1% Triton 
X-100, 25 mM NaF, 12.5 mM Na4P2O7, 0.1 mM EDTA, 50 mM NaCl, 
2 mM Na3VO4, and protease inhibitors). After centrifugation to remove 
cellular debris, the supernatant was subjected to an ultracentrifugation 
at 100,000 g for 30 min followed by extensive preclearing with protein 
G–Sepharose. Immunoprecipitation was performed as described previ-
ously (Benzing et al., 2001). Coprecipitating proteins were detected after 
12% SDS-PAGE of the precipitates and immunoblotting.

Immunofl uorescence staining of MDCK, mIMCD3, and human respiratory 
epithelial cells
MDCK (strain II) or mIMCD3 cells were seeded on coverslips at 100% con-
fl uence and cultured for 5–7 d before the experiment. After washing with 
ice-cold PBS, cells were fi xed using 4% PFA, pH 7.5, and 0.05% Triton 
X-100 for 15 min at room temperature. Cells were washed three times with 
PBS, and double immunofl uorescence staining was performed sequentially 
with the antibodies as indicated. After washing, slides were incubated with 
the secondary antibody, Cy2- or AlexaFluor488-labeled anti–rabbit, and 
Cy3-labeled anti–mouse IgG, washed again, mounted in a commercially 
available antifade kit (DakoCytomation), and subjected to immunofl uores-
cence microscopy with a microscope (Axiovert200) equipped with the ap-
otome system and a CCD camera (Jena; all were obtained from Carl Zeiss 
MicroImaging, Inc.) or to confocal microscopy. Confocal images were 
taken using a laser-scanning microscope (LSM5) equipped with a 100× oil 
immersion objective (both were obtained from Carl Zeiss MicroImaging, 
Inc.). The appropriate controls were performed without the fi rst and/or 
second primary antibodies. In some experiments, the primary antibody 
was mixed with a 10-fold excess of blocking peptide to proof specifi c stain-
ing. Human respiratory epithelial cells were obtained by transnasal brush 
biopsy using a cell collector (Cytobrush Plus; Medscand Malmö) and were 
suspended in RPMI 1640 without supplements. Samples were spread onto 
glass slides. Cells were fi xed with 4% PFA in PBS for 15 min and were per-
meabilized with 0.2% Triton X-100 in PBS for 5 min before blocking with 
0.5% skim milk in PBS overnight. Cells were incubated with primary anti-
bodies and secondary antibodies as described in Results.

To detect GFP-EB1 in cilia, fl uorescence images (1,024 × 1,024 
pixels) were recorded with a confocal scanning microscope (LSM NLO; 
Carl Zeiss MicroImaging, Inc.) equipped with a C-Apo 100× NA 1.3 oil 
immersion objective (Carl Zeiss MicroImaging, Inc.). The scanning speed 
was set to 0.12 s per image, corresponding to a pixel time of 1.60 μs. The 
usual pixel size was 0.06 μm in x/y, and the confocal pinhole was set 
to achieve an optical slice thickness of 0.9 μm. GFP-EB1 was excited at 
514 nm, and fl uorescence emission was collected above 516 nm.

Immunoelectron microscopy
Freshly isolated mouse trachea was cut into small pieces and immediately 
transferred to 2.5% PFA in PBS, pH 7.2, for 30 min, washed three times for 
10 min in 50 mM ammonium chloride in PBS, and permeabilized with 
0.15% Triton X-100 in PBS for 5 min. Incubation with rabbit anti-VHL pAbs 
for 4 h was followed by washing in PBS four times for 10 min and over-
night incubation with the secondary antibodies coupled to 5-nm gold parti-
cles (diluted 1:3 in PBS; GE Healthcare). Unbound antibodies were 
removed by several washings with PBS, and the cells were fi xed with glu-
taraldehyde (2.5%; 50 mM cacodylate buffer, pH 7.2) for 30 min at 4°C. 
Thereafter, cells were postfi xed with 2% OsO4 for 60 min at 4°C, rinsed 
with water, dehydrated with ascending alcohol concentrations and propyl-
ene oxide, and processed for embedding in Epon. Ultrathin sections were 
cut with a microtome (Reichert-Jung) and examined with an electron micro-
scope (EM 10A; Carl Zeiss MicroImaging, Inc.).

RNA interference experiments
shRNAs were designed based on the prediction of publicly available 
 prediction programs (Yuan et al., 2004), which are summarized in Table I. 
shRNAs were cloned into the transient micro-RNA expression vector 
pcDNA6.2-GW/emGFP/miR (Invitrogen), which coexpresses the shRNA 
surrounded by miR-155–fl anking sequences together with emGFP. To moni-
tor the effi ciency of shRNA-mediated knockdown, we created a luciferase 
reporter construct using psicheck2 (Promega) in which the coding sequence 
and the 3′ UTR of VHL were fused to the coding sequence of R. reniformis 
luciferase as an artifi cial 3′ UTR. In addition to R. reniformis luciferase, this 
construct expresses fi refl y luciferase for internal control. 50 ng of the 
 reporter plasmid was cotransfected with 50 ng of the respective pcDNA6.2-
GW/emGFP/miR shRNA construct into HEK 293T cells in a 96-well format 
using LipofectAMINE 2000 (Invitrogen) as a transfection reagent. R. reniformis 
luciferase and fi refl y luciferase activities were measured by a dual-luciferase 
reporter assay system (Promega) in a luminometer (Mithras LB940; 
Berthold) 24 h after transfection. Transfections and measurements were 
performed in triplicate. Selected hairpins were GATEWAY cloned into 
pLenti4/V5/TO/Dest for stable lentiviral expression in mIMCD3 cells.

Confocal laser-scanning microscopy
For fast live cell imaging, cells were seeded on custom-built 35-mm glass-
bottom dishes and analyzed the next morning at subconfl uent stages. Fluo-
rescence images (512 × 512 pixels) were recorded with a confocal slit 
scanning microscope (LSM5 LIVE; software 4.0; Carl Zeiss MicroImaging, 
Inc.) with a C-Apo 63× NA 1.4 oil immersion objective (Carl Zeiss Micro-
Imaging, Inc.) on a heating stage at 37°C in nonperfused condition for 30 s. 
The scanning speed was set to 0.12 s per image, corresponding to a pixel 
time of 232 μs; a delay of 500 ms was used between each image. 
The usual pixel size was 0.2 μm in x/y, and the confocal pinhole was set 
to achieve an optical slice thickness of 0.9 μm. EB1-GFP was excited at 
488 nm, and fl uorescence emission was collected above 505 nm. For 
quantifi cation of the growth direction of microtubules, tracking paths were 
analyzed for 10 s using MetaMorph software (Universal Imaging Corp.). 
Tracking paths were measured in one to two square fi elds (256 μm2) posi-
tioned in the cytosol in a total of 10 independent experiments (VHL nega-
tive and positive). As a measure for directed or nondirected movement, the 
deviation of the individual growth angles from the mean angle was calcu-
lated in each square. For better visualization of EB1-GFP dots in the videos, 
γ adjustment was performed. Statistical analysis was performed for VHL-
positive and -negative cells using the two-tailed t test.

Online supplemental material
Videos 1 and 2 show representative time-lapse tracings of EB1-GFP 
fl uorescence in VHL-positive (Video 1) and -negative (Video 2) A498 
RCC cells. For the mode of data acquisition, refer to the previous 
 section. Fig. S1 shows that pVHL localizes to cilia in respiratory epithelial 
cells. Fig. S2 shows that cytosolic GFP does not enter the ciliary com-
partment. Fig. S3 shows that the knockdown of pVHL inhibits the 
formation of monocilia. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200605092/DC1.

We thank Christina Engel, Stefanie Keller, Petra Dämisch, and Charlotte Meyer 
for excellent technical assistance and members of the Benzing and Walz labo-
ratories for helpful discussions. We thank Dr. S.A. Karumanchi (Harvard Medi-
cal School, Boston, MA), Dr. D. Trono, Dr. Y. Mimori-Kiyosue, and Dr. L. 
Naldini for providing cDNAs. We are very grateful to Dr. T. Tuschl and Dr. M. 
Landthaler for helpful advice in RNA interference experiments and for provid-
ing cDNAs and to Dr. J. Eisfeld for help with the imaging experiments.

This study was supported by DFG grants BE 2212, SCHE 1562, SFB 
592, and WA 517.

Submitted: 15 May 2006
Accepted: 13 October 2006

References
Benzing, T., and G. Walz. 2006. Cilium-generated signaling: a cellular GPS? 

Curr. Opin. Nephrol. Hypertens. 15:245–249.

Benzing, T., R. Brandes, L. Sellin, B. Schermer, S. Lecker, G. Walz, and E. Kim. 
1999. Upregulation of RGS7 may contribute to tumor necrosis factor-
 induced changes in central nervous function. Nat. Med. 5:913–918.

Benzing, T., P. Gerke, K. Hopker, F. Hildebrandt, E. Kim, and G. Walz. 2001. 
Nephrocystin interacts with Pyk2, p130(Cas), and tensin and triggers 
phosphorylation of Pyk2. Proc. Natl. Acad. Sci. USA. 98:9784–9789.



JCB • VOLUME 175 • NUMBER 4 • 2006 554

Esteban, M.A., S.K. Harten, M.G. Tran, and P.H. Maxwell. 2006. Formation 
of primary cilia in the renal epithelium is regulated by the von Hippel-
Lindau tumor suppressor protein. J. Am. Soc. Nephrol. 17:1801–1806.

Etienne-Manneville, S., and A. Hall. 2003. Cdc42 regulates GSK-3beta 
and adenomatous polyposis coli to control cell polarity. Nature. 
421:753–756.

Fan, S., T.W. Hurd, C.J. Liu, S.W. Straight, T. Weimbs, E.A. Hurd, S.E. Domino, 
and B. Margolis. 2004. Polarity proteins control ciliogenesis via kinesin 
motor interactions. Curr. Biol. 14:1451–1461.

Fukata, M., T. Watanabe, J. Noritake, M. Nakagawa, M. Yamaga, S. Kuroda, 
Y. Matsuura, A. Iwamatsu, F. Perez, and K. Kaibuchi. 2002. Rac1 and 
Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell. 
109:873–885.

Gnarra , J.R., K. Tory, Y. Weng, L. Schmidt, M.H. Wei, H. Li, F. Latif, S. Liu, 
F. Chen, F.M. Duh, et al. 1994. Mutations of the VHL tumour suppressor 
gene in renal carcinoma. Nat. Genet. 7:85–90.

Gundersen, G.G., E.R. Gomes, and Y. Wen. 2004. Cortical control of microtu-
bule stability and polarization. Curr. Opin. Cell Biol. 16:106–112.

Hergovich, A., J. Lisztwan, R. Barry, P. Ballschmieter, and W. Krek. 2003. 
Regulation of microtubule stability by the von Hippel-Lindau tumour 
suppressor protein pVHL. Nat. Cell Biol. 5:64–70.

Huber, T.B., M. Kottgen, B. Schilling, G. Walz, and T. Benzing. 2001. 
Interaction with podocin facilitates nephrin signaling. J. Biol. Chem. 
276:41543–41546.

Igarashi, P., and S. Somlo. 2002. Genetics and pathogenesis of polycystic kidney 
disease. J. Am. Soc. Nephrol. 13:2384–2398.

Iliopoulos, O., A. Kibel, S. Gray, and W.G. Kaelin Jr. 1995. Tumour suppression 
by the human von Hippel-Lindau gene product. Nat. Med. 1:822–826.

Jaffe, A.B., and A. Hall. 2005. Rho GTPases: biochemistry and biology. Annu. 
Rev. Cell Dev. Biol. 21:247–269.

Kaelin, W.G., Jr. 2003. The von Hippel-Lindau gene, kidney cancer, and oxygen 
sensing. J. Am. Soc. Nephrol. 14:2703–2711.

Kaelin, W.G., Jr. 2004. The von Hippel-Lindau tumor suppressor gene and 
 kidney cancer. Clin. Cancer Res. 10:6290S–6295S.

Lolkema, M.P., N. Mehra, A.S. Jorna, M. van Beest, R.H. Giles, and E.E. Voest. 
2004. The von Hippel-Lindau tumor suppressor protein infl uences micro-
tubule dynamics at the cell periphery. Exp. Cell Res. 301:139–146.

Lubensky, I.A., J.R. Gnarra, P. Bertheau, M.M. Walther, W.M. Linehan, and Z. 
Zhuang. 1996. Allelic deletions of the VHL gene detected in multiple mi-
croscopic clear cell renal lesions in von Hippel-Lindau disease patients. 
Am. J. Pathol. 149:2089–2094.

Lutz, M.S., and R.D. Burk. 2006. Primary cilium formation requires 
von hippel-lindau gene function in renal-derived cells. Cancer Res. 
66:6903–6907.

Mandriota, S.J., K.J. Turner, D.R. Davies, P.G. Murray, N.V. Morgan, H.M. 
Sowter, C.C. Wykoff, E.R. Maher, A.L. Harris, P.J. Ratcliffe, and P.H. 
Maxwell. 2002. HIF activation identifi es early lesions in VHL kidneys: 
evidence for site-specifi c tumor suppressor function in the nephron. 
Cancer Cell. 1:459–468.

Mimori-Kiyosue, Y., N. Shiina, and S. Tsukita. 2000. The dynamic behavior 
of the APC-binding protein EB1 on the distal ends of microtubules. 
Curr. Biol. 10:865–868.

Nauli, S.M., F.J. Alenghat, Y. Luo, E. Williams, P. Vassilev, X. Li, A.E. Elia, 
W. Lu, E.M. Brown, S.J. Quinn, et al. 2003. Polycystins 1 and 2 medi-
ate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 
33:129–137.

Palazzo, A.F., T.A. Cook, A.S. Alberts, and G.G. Gundersen. 2001. mDia 
 mediates Rho-regulated formation and orientation of stable microtubules. 
Nat. Cell Biol. 3:723–729.

Pan, J., Q. Wang, and W.J. Snell. 2005. Cilium-generated signaling and cilia-
related disorders. Lab. Invest. 85:452–463.

Praetorius, H.A., and K.R. Spring. 2003a. Removal of the MDCK cell primary 
cilium abolishes fl ow sensing. J. Membr. Biol. 191:69–76.

Praetorius, H.A., and K.R. Spring. 2003b. The renal cell primary cilium func-
tions as a fl ow sensor. Curr. Opin. Nephrol. Hypertens. 12:517–520.

Ratcliffe, P.J. 2003. New insights into an enigmatic tumour suppressor. Nat. Cell 
Biol. 5:7–8.

Rosenbaum, J.L., and G.B. Witman. 2002. Intrafl agellar transport. Nat. Rev. Mol. 
Cell Biol. 3:813–825.

Salaycik, K.J., C.J. Fagerstrom, K. Murthy, U.S. Tulu, and P. Wadsworth. 2005. 
Quantifi cation of microtubule nucleation, growth and dynamics in wound-
edge cells. J. Cell Sci. 118:4113–4122.

Schoenfeld, A., E.J. Davidowitz, and R.D. Burk. 1998. A second major native 
von Hippel-Lindau gene product, initiated from an internal translation 
start site, functions as a tumor suppressor. Proc. Natl. Acad. Sci. USA. 
95:8817–8822.

Snell, W.J., J. Pan, and Q. Wang. 2004. Cilia and fl agella revealed: from fl a-
gellar assembly in Chlamydomonas to human obesity disorders. Cell. 
117:693–697.

Srayko, M., A. Kaya, J. Stamford, and A.A. Hyman. 2005. Identifi cation and 
characterization of factors required for microtubule growth and nucle-
ation in the early C. elegans embryo. Dev. Cell. 9:223–236.

Watanabe, T., S. Wang, J. Noritake, K. Sato, M. Fukata, M. Takefuji, M. 
Nakagawa, N. Izumi, T. Akiyama, and K. Kaibuchi. 2004. Interaction 
with IQGAP1 links APC to Rac1, Cdc42, and actin fi laments during cell 
polarization and migration. Dev. Cell. 7:871–883.

Yuan, B., R. Latek, M. Hossbach, T. Tuschl, and F. Lewitter. 2004. siRNA 
Selection Server: an automated siRNA oligonucleotide prediction server. 
Nucleic Acids Res. 32:W130–W134.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /UseDeviceIndependentColor
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue true
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 599
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 599
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


