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Abstract: [AAE]X composed of amino acid ester cations is a sort of typically “bio-based” protic ionic
liquids (PILs). They possess potential Brønsted acidity due to the active hydrogens on their cations.
The Brønsted acidity of [AAE]X PILs in green solvents (water and ethanol) at room temperature
was systematically studied. Various frameworks of amino acid ester cations and four anions were
investigated in this work from the viewpoint of structure–property relationship. Four different ways
were used to study the acidity. Acid dissociation constants (pKa) of [AAE]X determined by the OIM
(overlapping indicator method) were from 7.10 to 7.73 in water and from 8.54 to 9.05 in ethanol. The
pKa values determined by the PTM (potential titration method) were from 7.12 to 7.82 in water. Their
Hammett acidity function (H0) values (0.05 mol·L−1) were about 4.6 in water. In addition, the pKa

values obtained by the DFT (proton-transfer reactions) were from 7.11 to 7.83 in water and from
8.54 to 9.34 in ethanol, respectively. The data revealed that the cationic structures of [AAE]X had
little effect and the anions had no effect on the acidity of [AAE]X. At the same time, the OIM, PTM,
Hammett method and DFT method were reliable for determining the acidic strength of [AAE]X in
this study.

Keywords: protic ionic liquids; Brønsted acidity; amino acid ionic liquids; bio-based ionic liquids

1. Introduction

Protic ionic liquids (PILs) are an important subset of ionic liquids (ILs). PILs possess
strong dissolvabilities, high thermal stabilities, designable structures and broad electrochem-
ical windows [1,2]. They play important roles in fuel cells, electrochemistry, liquid-liquid
extraction, gas capture, biological media and so on due to their acidity [3–7]. For the
existence of active hydrogen in amino acid cations, proton dissociation occurs in different
solvents to varying degrees [8]. Therefore, PILs have been considered as acidic catalysts for
the replacement of hazardous acids in many catalytic reactions, including the esterification
reaction, biomass conversion, transformation of CO2 and Diels-Alder reaction. [9–12].

Bio-based ILs have been paid more attention in recent years due to their preferable green
characters [13]. Some natural materials, including carboxylate salts, amino acids and sugars
or sugar derivatives, have been employed as IL precursors in a green way [14]. Among
these natural materials, amino acids and their derivatives are the most abundant natural
sources containing quaternary nitrogens. Amino acid ionic liquids (AAILs) are fascinating
for chemists in view of their close associations with chirality and biomolecules [15,16]. Some
research has found that AAILs may be useful as potential solvents, catalysts, absorbents
and selectors, etc. [17,18]. At the same time, AAILs can be used as acidic catalysts in
the esterification of renewable valeric acid, styrene carbonate synthesis under CO2, the
alkylation of indoles and so on [19–21]. Moreover, [AAE]X (AAE means the amino acid
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ester cations, and X means the corresponding anions) AAILs have higher thermostabilities
and lower melting points, as well as lower viscosities than those of their [AA]X (cations are
amino acid) analogs and, hence, broader prospects in acid-involving processes [22].

In general, water and ethanol are considered as green media for acidic catalytic
reactions, which is one of the “twelve principles” of green chemistry [23–26]. Acidic
properties in solvents are very important to industrially relevant reactions [27,28]. The
common PILs, such as imidazolium salts and quaternary ammonium salts, have been
studied in many acidic catalytic reactions in solvents [29,30]. However, the precursors of
[AAE]X are more abundant and bio-based compared to common PILs, which also possesses
Brønsted acidity. Therefore, the proton dissociation of [AAE]X ILs in green solvents are
interesting and important for their applications. However, the acidic characteristics of
[AAE]X AAILs in solvents are still lacking. The acid dissociation constant (pKa) is one of
the most significant physiochemical parameters. An accurate pKa value is important to
select reaction conditions in catalytic chemistry [27,31–33]. Determining the acidity of ILs
in water and ethanol has become an intriguing topic, since water and ethanol are promising
media for green chemistry [30,34–37]. Herein, four different methods were employed to
study the Brønsted acidity of [AAE]X PILs with different amino acid ester cations and
anions in water and ethanol carried out.

2. Results
2.1. Overlapping Indicator Method (OIM)

The overlapping indicator method (OIM) is a mature method to determine the pKa
values [38,39]. The acid dissociation reaction of [AAE]X in water and ethanol can be
simplified by the expression in Scheme 1.
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The chemical equilibrium constant (Ka) can be obtained by the equation:

Ka =
Ka(HA+

)
Ka(HIn)

=
[A][HIn][

HA+
]
[In−]

, (1)

The acidic dissociation constant (Ka) of HA+ can be written as:

pKa(HA+) = pKa(HIn) − lg
[A][HIn][

HA+
]
[In−]

, (2)

where pKa (HIn) is the pKa value of the 4-nitrophenol indicator in water (7.15) and 2,4-
dinitrophenol indicator in ethanol (8.21) [40,41]. It is easy to get the relationship between
the UV/Vis absorption intensity and concentration of the indicator by the Lambert Beer law.
Therefore, the concentrations of HIn, In−, HA+ and A can be measured by the absorbed
change of the indicator after adding the quantitative determinant.

The pKa value is a quantitative parameter to insure the strength of the Brønsted acids.
The lower pKa values means the stronger acidity of the PILs. The UV/Vis spectral absorbance
of the indicator (sodium 4-nitrophenolate) after every titration in water is illustrated in Figure 1.
(The other UV-Vis spectra of the titration of [AAE]X is illustrated in Figures S1–S18). Figure 1a,c
respectively represent the absorption spectra of the indicator after adding a quantitative
indicator to the alkali liquor (sodium hydroxide). Figure 1b,d respectively represent the
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absorption spectra of the indicator after adding the quantitative [AAE]X of [GlyC1]NO3
and [PheC1]NO3. The absorption intensity at the maximum absorption wavelength of the
4-nitrophenolate anion continually decreased after quantificationally adding [AAE]X in the
solvents. The pKa values were obtained by the change of the absorption intensity at the
maximum absorption wavelength. The pKa values of [AAE]X and the contrastive compounds
in water by OIM according to Equation (2) are listed in Table 1.
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Figure 1. Absorption spectra of 4-nitrophenolate anion for various adding amounts of the indicator or
[AAE]X during the titration in water. (a) Adding the indicator before the titration of [GlyC1]NO3. (b)
Adding [GlyC1]NO3 during the titration. (c) Adding the indicator before the titration of [PheC1]NO3.
(d) Adding [PheC1]NO3 during the titration.

Table 1. The acid dissociation constant (pKa) values of [AAE]X and the contrastive compounds in water.

Compound pKa SD

[GlyC1]NO3 7.67 0.02
[GlyC2]NO3 7.73 0.02
[ValC1]NO3 7.54 0.03
[SerC1]NO3 7.23 0.04
[SerC2]NO3 7.10 0.02
[PheC1]NO3 7.20 0.01
[PheC2]NO3 7.26 0.04

[MIM]+ 7.13 (a) /
Gly 9.78 (b) /
Phe 9.31 (b) /

EAN 10.43 (c) /
[Et2N]NO3 10.68 (c) /
[Et3N]NO3 10.55 (c) /

[Pyri]+ 5.17 (d) /

Conditions: 25.0 (±0.1 ◦C). (a) Reference [42]. (b) Reference [43]. (c) Reference [44]. (d) Reference [45].
SD: standard deviation.
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To obtain the influence of the anions on the Brønsted acidity, Cl−, NO3
−, NTf2

− and
ClO4

− were checked. The impact of the conformation of the cations on the Brønsted acidity
of [AAE]X was also studied by the OIM. (Table 2)

Table 2. The pKa values of [AAE]X with different anions and cations.

Compound pKa Average pKa SD
1 2 3 4 5

[PheC1]Cl 7.25 7.26 7.26 7.25 7.24 7.25 0.01
[PheC1]NO3 7.21 7.20 7.21 7.21 7.20 7.20 0.01
[PheC1]NTf2 7.23 7.25 7.24 7.24 7.23 7.24 0.01
[PheC1]ClO4 7.21 7.20 7.16 7.20 7.21 7.20 0.02

[PheC1]Cl 7.25 7.26 7.26 7.25 7.24 7.25 0.01
[D-PheC1]Cl 7.17 7.16 7.18 7.16 7.18 7.17 0.01
[PheC1]NO3 7.21 7.20 7.21 7.21 7.20 7.20 0.01

[D-PheC1]NO3 7.16 7.15 7.18 7.20 7.18 7.17 0.02

2.2. Potential Titration Method (PTM)

To confirm the accuracy of the pKa values determined by the OIM, the potential
titration method (PTM) was also used to measure the pKa as a comparative method [46].
All solutions are electrically neutral, i.e., the sum of all positive charges must equal the sum
of all negative charges; thus,

[HA+] + [K+] + [H+] = [OH−] + [X−]. (3)

Since all salts are considered as being completely ionized, [K+] equals the concentration
of potassium hydroxide (after considering the dilution by the solution). Hence,

[HA+] + [KOH] + [H+] = [OH−] + [X−]. (4)

The total concentration of acid taken is present in two forms, HA+ and A. Consequently,

c0 = [X−] = [HA+] + [A]. (5)

By combining Equation (4),

[HA+] = c0 + [OH−] − [KOH] − [H+]. (6)

In these equations, [KOH] represents the concentration that the alkali would achieve
by dilution if no other substance was present in the solution. The concentration of [AAE]X
is 0.100 mol·L−1, so we can ignore the activity coefficient. Then pKa can be obtained by
combining Equations (3) and (10):

pKa(HA) = − lg(
a(H+)a(A)

a(HA+)

) = pH−
c0 − [HA+]

[HA+]
. (7)

The pKa values of [AAE]X by PTM are presented in Table 3.
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Table 3. The pKa values of a part of [AAE]X by the overlapping indicator method (OIM) and potential
titration method (PTM).

Compound pKa SD

OIM PTM

[GlyC1]NO3 7.67 7.67 0.00
[GlyC2]NO3 7.73 7.82 0.09
[PheC1]NO3 7.20 7.19 0.01
[PheC2]NO3 7.26 7.21 0.05

[PheC1]Cl 7.25 7.19 0.06
[SerC1]NO3 7.23 7.24 0.01
[PheC1]NTf2 7.24 7.12 0.12

Conditions of PTM: [AAE]X (0.100 mol·L−1) and KOH (0.500 mol·L−1), 25.0 (±0.1) ◦C.

2.3. pKa Values Measured by the OIM in Ethanol

To ulteriorly study the acidity of [AAE]X, the pKa values in ethanol were measured
by the OIM with 2,4-dinitrophenol as the indicator. The principle of measuring the
pKa values in ethanol is the same to that in water. The UV/Vis spectral absorbances of
sodium 2,4-dinitrophenolate after titration every time in ethanol are illustrated in Figure 2.
Additionally, the pKa values of [AAE]X PILs and the contrastive compounds in ethanol are
shown in Table 4.
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Table 4. The pKa values of [AAE]X and the contrastive compounds in ethanol.

Compound pKa SD

[GlyC1]NO3 9.05 0.02
[ValC1]NO3 8.86 0.04
[SerC1]NO3 8.88 0.03
[PheC1]NO3 8.54 0.01
[PheC2]NO3 8.61 0.03
[PheC1]NTf2 8.61 0.03

[D-PheC1]NO3 8.59 0.01
[EtNH3]+ 12.0 (a) /
[Et2NH2]+ 10.7 (a) /
[Et3NH]+ 10.22 (b) /
[MIM]+ 7.50 (b) /
[Pyri]+ 4.30 (a) /

Conditions: 25.0 (±0.1 ◦C). (a) Reference [47]. (b) Reference [48].

2.4. Hammett Acidity

The Brønsted acidity associated with the Hammett acidity function (H0) of [AAE]X was
investigated in water to confirm the acidic strength of [AAE]X determined by the PTM and
OIM [49]. Sodium 2,4-dinitrophenolate was used as an indicator for the determination of
the Hammett acidity function by UV/Vis spectroscopy. For insuring the Brønsted acidity of
[AAE]X, the protonated extent of the charged indicator bases (sodium 2,4-dinitrophenolate)
in an aqueous solution (5× 10−5 mol·L−1), in terms of the measurable ratio [In−]/[HIn], needs
to be evaluated. In water, the Hammett acidity function can be expressed as the equation:

H0 = pKa(HIn) + lg(
[In−]
[HIn]

), (8)

where pKa (HIn) is the pKa value of the 2,4-dinitrophenol indicator in water (4.12) [50],
and [In−] and [HIn] are the molar concentrations of the unprotonated and protonated forms
of the 2,4-dinitrophenolate indicator, separately.

The Hammett acidity functions (H0) of some [AAE]X and the contrastive compounds
in water are listed in Table 5, Tables S1 and S2.

Table 5. The Hammett acidity functions (H0) and pKa values of some [AAE]X and the contrastive
compounds in water.

Compound H0 pKa (a)

[ValC1]NO3 4.37 7.54
[PheC1]NO3 4.33 7.20

Phe 6.44 9.31
[MIM]Cl 4.35 7.13 (c)

EAN u.d. (b) 10.43
[Et2N]NO3 u.d. (b) 10.68
[Et3N]NO3 u.d. (b) 10.55

(a) Measured by the OIM. (b) Undetected. (c) Reference [42].

2.5. pKa Values Calculated by DFT

The theoretical and experimental pKa values of [AAE]+ in water and ethanol are
summarized in Table 6. The pKa values of [AAE]+ are from 7.11 to 7.83 in water and 8.54 to
9.34 in ethanol, separately. Additionally, the pKa values of [AAE]X determined by the OIM
are from 7.10 to 7.73 in water and from 8.54 to 9.05 in ethanol, separately. The theoretical
values of [AA]X obtained are consistent with their experimental values. Therefore, the DFT
method is fast and convenient to calculate the acidity of [AAE]X.
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Table 6. The theoretical and experimental pKa values of [AAE]+ in water and ethanol.

[AAE]+ pKa(Cal) (a) pKa(Exp) (b) pKa(Cal) (c) pKa(Exp) (d)

[GlyC1]+ 7.11 7.67 8.54 9.08
[GlyC2]+ 7.15 7.73 8.60 /
[ValC1]+ 7.83 7.54 9.34 8.85
[SerC1]+ 7.40 7.23 8.96 8.88
[SerC2]+ 7.69 7.10 9.27 /
[PheC1]+ 7.24 7.20 8.78 8.50
[PheC2]+ 7.46 7.26 9.05 8.61

[D-PheC1]+ 7.24 7.17 8.78 8.58

(a) The calculated pKa values in water. (b) The experimental pKa values in water. (c) The calculated
pKa values in ethanol. (d) The experimental pKa values in ethanol of [AAE]NO3.

3. Discussion

To systematically explore the acidity of [AAE]X, eight [AAE]+ and four anions
(including nitrate (NO3

−), chloride (Cl−), perchlorate (ClO4
−) and trifluoromethanesul-

fonate (NTf2
−)) were studied from the viewpoint of the structure–property relationship.

The cations and anions of [AAE]X used in this work are shown in Figure 3. All [AAE]X
PILs were synthesized and characterized by the referenced method [15]. Being convenient
for studying the structure–property relationship, the glycine methyl ester cation ([GlyC1]+)
was chosen as the fundamental [AAE]+ framework. Other cations, including the glycine
ethyl ester cation ([GlyC2]+), serine methyl ester cation ([SerC1]+), serine ethyl ester cation
([SerC2]+), phenylalanine methyl ester cation ([PheC1]+), phenylalanine ethyl ester cation
([PheC2]+), valine methyl ester cation ([ValC1]+) and D-phenylalanine methyl ester cation
([D-PheC1]+), could be viewed as the derivatives of [GlyC1]+.
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Figure 3. Structures and abbreviations of the [AAE]X cations and anions.

According to the pKa values of [AAE]X and the contrastive compounds in water
by the OIM, the acidic strength of [GlyC1]NO3 is the weakest in the studied [AAC1]X
(amino acid methyl ILs) and depends on the biggest pKa values. The acidic strengths of
[ValC1]NO3, [SerC1]NO3 and [PheC1]NO3 are stronger than that of [GlyC1]NO3, maybe
due to the steric effect of the side chains in [ValC1]NO3 and [PheC1]NO3 and the hydrogen
bonding in [SerC1]NO3. The acidic strength of [AAE]X has little difference in the same
magnitude range, since the side chain of [AAE]X may exist in hydrogen bonding or
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steric hindrance with the –NH3 group. The pKa values of [GlyC1]NO3, [GlyC2]NO3,
[SerC1]NO3, [SerC2]NO3, [PheC1]NO3 and [PheC2]NO3 are 7.67, 7.73, 7.23, 7.10, 7.20
and 7.26, respectively. The methyl ester and ethyl ester group hardly affects the acidity
of [AAE]X due to the low maximum difference (0.23) between methyl ester and ethyl
ester. The pKa values of [AAE]X range from 7.10 to 7.73, which are smaller than those
of glycine (Gly, 9.78), phenylalanine (Phe, 9.31), ethylammonium nitrate (EAN, 10.43),
diethylammonium nitrate ([Et2N]NO3, 10.68) and triethylammonium nitrate ([Et3N]NO3,
10.55). The electron-withdrawing inductive effect of the ester group may result in the
stronger acidity of [AAE]X than those of their precursors (amino acids), EAN, [Et2N]NO3
and [Et3N]NO3, whose acidity also depend on the protonated amino group.

The pKa values of [AAE]X range from 7.10 to 7.73 in water, which are almost equal
to that of imidazolium ([MIM]+, 7.13) salts. The acidic strength of [AAE]X is between
pyridinium ([Pyri]+, 5.17) salts and EAN (10.43), [Et2N]NO3 (10.68) and [Et3N]NO3 (10.55).

The pKa values of [PheC1]Cl, [PheC1]NO3, [PheC1]NTf2 and [PheC1]ClO4 are 7.25,
7.20, 7.24 and 7.20 by the OIM, respectively. The pKa values of [PheC1]X with different
anions are almost the same, to some extent. It seems like anions have insignificant effects on
the acidity of [AAE]X PILs. In other words, the cation and anion of [AAE]X in water may
be dissociated, because water is a typical high-polar solvent (ε = 80.100) [43]. Different from
anions, the pKa values of [L-PheC1]NO3, [D-PheC1]NO3, [L-PheC1]Cl and [D-PheC1]Cl
are similar.

For the same [AAE]X, we found that the 4pKa by the PTM obtained by two different
determination methods are near to zero. For example, the pKa value of [GlyC1]NO3
determined by the OIM are the same (7.67) to that from the PTM. The data suggest that
both the PTM and OIM are reliable to obtain the pKa values of [AAE]X in water.

To ulteriorly study the acidity of [AAE]X, we measured the pKa values in ethanol by
the OIM with 2,4-dinitrophenol as the indicator. The pKa values of [AAE]X in ethanol are
between 8.54 and 9.05, which are obviously bigger than those in water (7.10 to 7.73). It may
be generated by the weaker basicity of ethanol, which means that the weaker intermolecular
interactions between the active hydrogens and solvent molecules lead to bigger pKa values.
The pKa values of [GlyC1]NO3, [ValC1]NO3, [SerC1]NO3 and [PheC1]NO3 are 9.05, 8.86,
8.88 and 8.54, separately. There is also a tiny difference of the pKa values that may be due
to the side chain of [AAE]X. The pKa values of [AAE]X are smaller than [EtNH3]+ (12.0),
[Et2NH2]+ (10.7) and [Et3NH]+ (10.22) and bigger than [Pyri]+ (4.30). Therefore, the acidic
strength of [AAE]X in ethanol is between [Pyri]+ and [EtNH3]+, [Et2NH2]+ and [Et3NH]+.
The acidic strength of [AAE]X is slightly weaker than [MIM]+ (7.50) in ethanol, depending
on the pKa values.

To confirm the acidic strength of [AAE]X determined by the PTM and OIM, the Brønsted
acidity associated with the Hammett acidity function (H0) of [AAE]X was investigated
in water. The maximum absorption peak of sodium 2,4-dinitrophenolate decreased as
the acidity of the solution increased. The H0 values of [ValC1]NO3, [PheC1]NO3 and
phenylalanine (Phe) are 4.37, 4.33 and 6.44 in water, separately. This means the acidic
strength of [AAE]X is almost same and is stronger than that of their precursors (amino
acids). The acidity of EAN, [Et2N]NO3 and [Et3N]NO3 are so weak that the decrease of the
indicator’s absorbance was not detected. The H0 of [AAE]X is almost the same as [MIM]Cl
(4.35) in water. Therefore, the acidic strength of [AAE]X may be almost the same as [MIM]+

salt and stronger than the amino acid, EAN, [Et2N]NO3 and [Et3N]NO3. The results are
matched well with the results of the pKa values in water determined by the PTM and OIM.

The relationship between the acidity and concentration is important for many appli-
cations, such as catalysis [9,37,51]. The H0 of [ValC1]NO3 and [PheC1]NO3 in aqueous
solutions at various concentrations were measured. In the UV/Vis spectra, a noticeable de-
crease of the maximum absorption peak was found, accompanied with adding [ValC1]NO3
and [PheC1]NO3 (Figure 4). The H0 reduced when the concentration increased. The re-
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lationship between the concentration of [ValC1]NO3 and [PheC1]NO3 and the H0 can be
obtained using the fitting equations. Their fitting equations are:

H0 = −1.982lg
(
c0.5

)
+3.014 R2 = 0.993 and (9)

H0 = −1.471lg
(
c0.5

)
+3.319 R2 = 0.991. (10)
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Figure 4. (a) The UV/Vis spectra of [ValC1]NO3 with different concentrations in water according
to the Hammett method at 25.0 (±0.1) ◦C. (b) The UV/Vis spectra of [PheC1]NO3 with different
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2,4-dinitrophenolate 5.0 × 10−5 mol·L−1.

Their nonlinear fittings are shown in Figure 5. The H0 of [AAE]X gradually lowered
with the concentration of [AAE]X rising. Based on these, the desired acidic strength can be
obtained by choosing the appropriate concentrations.
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4. Materials and Methods

General methods: All [AAE]Cl were purchased from Energy Chemical (Shanghai,
China). Ethylamine (EAN) and ethanol (EtOH) were purchased from Sinopharm Chem-
ical Reagent Co., Ltd. (Shanghai, China). All chemicals were obtained commercially
as analytical-grade materials and used as received. Solvents were dried by standard
procedures. [AAE]X PILs were synthesized according to a literature procedure by the
ion exchange reaction of [AAE]Cl precursors with corresponding salts. The synthesized
[AAE]X PILs needed to be dried firstly and kept in vacuum before use.
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The standard deviation (SD) was calculated by the equation:

SD =

√(
A1 −A

)2
+

(
A2 −A

)2
+ · · ·+

(
Ai −A

)2

i− 1
; A =

A1 + A2 + · · ·+ Ai

i
. (11)

pKa determination by the PTM: A stock solution (0.010 mol·L−1) of [AAE]X PILs was
prepared in ultrapure water. Then, the solution was titrated with aqueous KOH solution
(0.100 mol·L−1). The electric potential (E) (±1 mV) of the solution was obtained using an
Ag–AgCl/glass combination electrode on an OHAUS Starter 2100 pH meter at 25.0 (±0.1) ◦C.
Three standard buffer solutions with the pH values of 4.00, 6.86 and 9.18, respectively, were
used to adjust the instrument before titration.

pKa determination by OIM: The method determined the pKa of an “unknown” acid
relative to that of an “indicator” acid (whose pKa was known) by monitoring the changes
of UV/vis absorption of the indicator during titrations under standard conditions. (The
indicators (In) here should show different UV/Vis absorbance between the HIn+ and In
species. Besides, in order to produce moderate changes in the titration, the pKa of HIn+

should be close to the measured substance in each solvent.) There were two steps measuring
the pKa values by the OIM. Firstly, the linear relation between the concentration of the
indicator and absorbance could be achieved by adding the indicator to the alkali solution
until the indicator was slightly excessive compared to the alkali. Secondly, an “unknown”
acid was quantitatively added to the above solution to achieve the concentrations of HIn,
In−, HA+ and A. The UV/vis absorption (A) (±0.0001) of the indicator during the titrations
was obtained using a BFRL UV-1601 UV/VIS spectrophotometer 25.0 (±0.1) ◦C.

Hammett acidity function: The Hammett acidity function of the ILs was investigated
on a BFRL UV-1601 UV/VIS spectrophotometer. Samples were measured in sealed 1-cm
quartz cuvettes (Helma). The dyes of sodium 2,4-dinitrophenolate were used as the indicator
and molecular probe for the determination of the H0 with 5.0 × 10−5 mol·L−1. Absorbance
values of the indicator after adding acid in an aqueous solution were recorded between 330
and 500 nm at 25.0 (±0.1) ◦C. The concentration of [AAE]X PILs was 0.050 mol·L−1.

Computational methods: The Brønsted acidity of [AAE]X coming from the –NH3 group
was determined by the above experimental data. In order to obtain a better understanding
of the Brønsted acidities of [AAE]X PILs, the pKa values of [AAE]X were calculated by the
density functional theory (DFT) using the Gaussian 09 suite program [52]. It was verified
that the anions would have hardly any effect on the acidity of [AAE]X in water or ethanol
by the experimental data. Therefore, the calculated acidity of [AAE]+ could be considered
as a simple and approximate method for determining the acidity of [AAE]X. The pKa
values by theoretical calculation could be carried out by using the proton-transfer reaction
(Scheme 3) [53,54]:
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where the solution-free energy was calculated by:

4G∗sol = 4G∗g + 4G∗sol
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HRef+

)
+ 4G∗sol(AAE) −4G∗sol

(
[AAE]+

)
−4G∗sol(Ref). (12)
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Then, it led to the following equilibrium in Equation (13):

Ka =
[AAE][HRef+

][
[AAE]+

] = e
−4G∗sol

RT . (13)

The calculation of the pKa was obtained from Equation (14):

pKa
(
[AAE]+

)
=
4G∗sol

2.303RT
− lg(Ref). (14)

The final expression for the pKa can be written as

pKa
(
[AAE]+

)
=
4G∗sol

2.303RT
−K, (15)

where K was a correction value dependent on the experimental values. The structures of
[AAE]+, AAE, H2O, H3O+, Et2OH and Et2OH2

+ were optimized in the gas phase at the
B3LYP/6-311++G(d,p) level [55–57]. On the basis of the optimized structures, the solvation-
free energies of [AAE]+ and AAE in water or ethanol were calculated with the polarizable
continuum model (PCM) at the B3LYP/6-311++G(d,p) level [53,58]. The liquidus Gibbs-free
energies of AAEH+ and AAE were obtained from the sum of the total electronic energies in
water or ethanol and the thermal corrections to the gaseous Gibbs-free energies (Gcorr).

5. Conclusions

The proton dissociation of [AAE]X PILs as a kind of Bio-PIL was systematically studied
in green solvents, water and ethanol for the first time. The pKa values of [AAE]X PILs were
from 6.99 to 7.52 in water and from 8.54 to 9.05 in ethanol by the OIM, respectively. The
acidity of [AAE]X determined by the PTM, Hammett method and DFT method coincided
with those by the OIM. All the methods revealed that the acidic strength of [AAE]X was
the almost same to [MIM]+ and between [Pyri]+ and [EtNH3]+ in water. Additionally,
the acidic strength of [AAE]X was slightly weaker than [MIM]+ and between [Pyri]+ and
[EtNH3]+ in ethanol. The certain Brønsted acidity of the bio-PILs [AAE]X will help them to
be considered as feasible acidic catalysts with green and recoverable features. This insight
into the proton dissociation will prompt PILs being applied widely.

Supplementary Materials: The following are available online. Table S1. The Hammett functions for
[ValC1]NO3 in water. Table S2. The Hammett functions for [PheC1]NO3 in water. Figure S1. (a) The
increasing absorbance during the deprotonation of the acid indicator (4-nitrophenol) by the base.
(b) The decreasing absorbance of the acid indicator anion (4-nitrophenolate) during the titration of
[GlyC1]NO3 in water. Figure S2. (a) The increasing absorbance during the deprotonation of the acid
indicator (4-nitrophenol) by the base. (b) The decreasing absorbance of the acid indicator anion (4-
nitrophenolate) during the titration of [GlyC2]NO3 in water. Figure S3. (a) The increasing absorbance
during the deprotonation of the acid indicator (4-nitrophenol) by the base. (b) The decreasing
absorbance of the acid indicator anion (4-nitrophenolate) during the titration of [ValC1]NO3 in
water. Figure S4. (a) The increasing absorbance during the deprotonation of the acid indicator (4-
nitrophenol) by the base. (b) The decreasing absorbance of the acid indicator anion (4-nitrophenolate)
during the titration of [SerC1]NO3 in water. Figure S5. (a) The increasing absorbance during the
deprotonation of the acid indicator (4-nitrophenol) by the base. (b) The decreasing absorbance of
the acid indicator anion (4-nitrophenolate) during the titration of [SerC2]NO3 in water. Figure S6.
(a) The increasing absorbance during the deprotonation of the acid indicator (4-nitrophenol) by the
base. (b) The decreasing absorbance of the acid indicator anion (4-nitrophenolate) during the titration
of [PheC1]NO3 in water. Figure S7. (a) The increasing absorbance during the deprotonation of
the acid indicator (4-nitrophenol) by the base. (b) The decreasing absorbance of the acid indicator
anion (4-nitrophenolate) during the titration of [PheC2]NO3 in water. Figure S8. (a) The increasing
absorbance during the deprotonation of the acid indicator (4-nitrophenol) by the base. (b) The
decreasing absorbance of the acid indicator anion (4-nitrophenolate) during the titration of [PheC1]Cl
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in water. Figure S9. (a) The increasing absorbance during the deprotonation of the acid indicator (4-
nitrophenol) by the base. (b) The decreasing absorbance of the acid indicator anion (4-nitrophenolate)
during the titration of [D-PheC1]Cl in water. Figure S10. (a) The increasing absorbance during the
deprotonation of the acid indicator (4-nitrophenol) by the base. (b) The decreasing absorbance of the
acid indicator anion (4-nitrophenolate) during the titration of [D-PheC1]NO3 in water. Figure S11.
(a) The increasing absorbance during the deprotonation of the acid indicator (4-nitrophenol) by the
base. (b) The decreasing absorbance of the acid indicator anion (4-nitrophenolate) during the titration
of [PheC1]NTf2 in water. Figure S12. (a) The increasing absorbance during the deprotonation of
the acid indicator (4-nitrophenol) by the base. (b) The decreasing absorbance of the acid indicator
anion (4-nitrophenolate) during the titration of [PheC1]ClO4 in water. Figure S13. (a) The increasing
absorbance during the deprotonation of the acid indicator (2,4-dinitrophenol) by the base. (b) The
decreasing absorbance of the acid indicator anion (2,4-dinitrophenolate) during the titration of
[GlyC1]NO3 in ethanol. Figure S14. (a) The increasing absorbance during the deprotonation of the
acid indicator (2,4-dinitrophenol) by the base. (b) The decreasing absorbance of the acid indicator
anion (2,4-dinitrophenolate) during the titration of [ValC1]NO3 in ethanol. Figure S15. (a) The
increasing absorbance during the deprotonation of the acid indicator (2,4-dinitrophenol) by the base.
(b) The decreasing absorbance of the acid indicator anion (2,4-dinitrophenolate) during the titration
of [SerC1]NO3 in ethanol. Figure S16. (a) The increasing absorbance during the deprotonation of the
acid indicator (2,4-dinitrophenol) by the base. (b) The decreasing absorbance of the acid indicator
anion (2,4-dinitrophenolate) during the titration of [PheC1]NO3 in ethanol. Figure S17. (a) The
increasing absorbance during the deprotonation of the acid indicator (2,4-dinitrophenol) by the base.
(b) The decreasing absorbance of the acid indicator anion (2,4-dinitrophenolate) during the titration
of [PheC2]NO3 in ethanol. Figure S18. (a) The increasing absorbance during the deprotonation of the
acid indicator (2,4-dinitrophenol) by the base. (b) The decreasing absorbance of the acid indicator
anion (2,4-dinitrophenolate) during the titration of [D-PheC1]NO3 in ethanol. Figure S18. (a) The
increasing absorbance during the deprotonation of the acid indicator (2,4-dinitrophenol) by the base.
(b) The decreasing absorbance of the acid indicator anion (2,4-dinitrophenolate) during the titration
of [PheC1]NTf2 in ethanol. Optimized geometry coordinates.
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