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Abstract: Honey is known for its content of biomolecules, such as enzymes. The enzymes of
honey originate from bees, plant nectars, secretions or excretions of plant-sucking insects, or from
microorganisms such as yeasts. Honey can be characterized by enzyme-catalyzed and non-enzymatic
reactions. Notable examples of enzyme-catalyzed reactions are the production of hydrogen peroxide
through glucose oxidase activity and the conversion of hydrogen peroxide to water and oxygen
by catalase enzymes. Production of hydroxymethylfurfural (HMF) from glucose or fructose is an
example of non-enzymatic reactions in honey.

Keywords: glucose oxidase; catalase; carbohydrates; amino acids; dicarbonyl compounds; HMF

1. Introduction

Honey is a sweet honeybee product which is mainly composed of sugars and water.
Biomedical activities of honey are mostly due to its minor components, which include
proteins, amino acids, organic acids, dicarbonyl molecules, hydrogen peroxide, pheno-
lic acids, flavonoids, and enzymes [1–3]. Honey enzymes originate from three major
sources: plant nectars and secretions, honeybees, and excretions of plant-sucking insects.
Biochemical reactions can be divided to two types: enzyme-catalyzed and non-enzymatic
reactions [4]. Enzyme-catalyzed reactions in honey are known to affect its quality and
biological activities [5–7]. Enzymes present in honey include the diastase, invertase,
glucose oxidase, catalase, glucosylceramidase, α-amylase, α-glucosidase, β-glucosidase,
and proteases [6,8].

Enzymatic reactions in honey include the conversion of oligosaccharides and disac-
charides (sucrose and maltose) to glucose and fructose by diastase and invertase enzyme
activity. Glucose is converted to gluconic acid and hydrogen peroxide by glucose oxi-
dase. Moreover, hydrogen peroxide is degraded to water and oxygen by catalase enzymes.
Honey samples which exhibit high catalase activity are low in hydrogen peroxide [9].
Honey samples with high hydrogen peroxide concentrations are known to be useful for the
treatment of wounds, and are characterized by a high activity of glucose oxidase and low
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activity of catalase [10]. Furthermore, honey and other honeybee products are character-
ized by enzyme-catalyzed reactions such as the proteases, glucosylceramidase and acid
phosphatase [6,11].

Classic non-enzymatic reactions in honey are the production of HMF from glucose
or fructose, the formation of diacarbonyl molecules such as methylglyoxal from the dihy-
droxyacetone of nectar, transglycosylation, and the formation of amino sugars (Maillard
reaction) [12–15].

In this review, we tried to confine the enzymatic and non-enzymatic reactions or
pathways that occur in honey. The biochemical reactions or pathways in honey play a key
role in determining the quality and biological activity of honey samples.

This review article illustrates the biochemical reactions and their substrates, intermedi-
ates and products that occur in honey. The intermediates and products of the biochemical
reactions are responsible for the biological activities of honey, such as the hydrogen per-
oxide, methylglyoxal, organic acids, HMF and melanoidins. Moreover, to the best of the
authors’ knowledge, this article is the first review concerning the enzymatic and non-
enzymatic biochemical reactions in honey.

2. Enzymatic Reactions in Honey
2.1. Production and Degradation of Hydrogen Peroxide

Hydrogen peroxide is produced as a product of glucose oxidation by glucose oxidase
and by the non-enzymatic autoxidation of polyphenols [16,17]. Glucose oxidase is secreted
by honeybees; some studies have reported its production by plants, honey fungi, yeast, and
bacteria [18–21]. Glucose oxidase catalyzes the conversion of glucose to gluconic acid and
hydrogen peroxide, using molecular oxygen and vitamin B2 as cofactors (FAD) (Figure 1).
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Figure 1. Production and degradation of hydrogen peroxide in honey. Hydrogen peroxide is
produced from glucose by the action of glucose oxidase and non-enzymatically by polyphenols.
Hydrogen peroxide is degraded to water and oxygen by enzymes and vitamin C, whereas it is
degraded to hydroxyl and superoxide radicals through the Fenton reaction [16–23].
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Honey hydrogen peroxide is degraded by enzymatic and non-enzymatic reactions.
The major catabolic enzyme of hydrogen peroxide is Fe+3-dependent catalase, which cat-
alyzes the conversion of two H2O2 molecules to two water molecules and one oxygen
molecule. Plant nectar and the microorganisms in honey are the major sources of catalase in
honey [16,22,23]. Other metal-containing enzymes (metalloenzymes) are capable of convert-
ing hydrogen peroxide to water following a different mechanism of action. Metalloenzymes
include peroxidases and superoxide dismutase (Figure 1) [24].

Non-enzymatic reactions responsible for the degradation of hydrogen peroxide are the
vitamin C and Fenton reactions. Vitamin C (hydro ascorbic acid) donates two protons and
two electrons to hydrogen peroxide, reducing it to water and oxygen. It is reported that
the addition of vitamin C to honey samples leads to decreased hydrogen peroxide levels,
which reinforces the suggestion that vitamin C degrades hydrogen peroxide [16,25]. The
second non-enzymatic reaction that depletes hydrogen peroxide from honey is the Fenton
reaction. Fenton reactions involve the reaction of hydrogen peroxide with Fe+2 and/or
polyphenols to produce hydroxide ions, oxygen, and hydroxyl and superoxide radicals.
The hydroxyl and superoxide free radicals contribute to the antibacterial activity of honey
because of their powerful damaging effect on the bacterial cells and DNA (Figure 1) [26,27].

Hydrogen peroxide generation in honey is influenced by its colloidal structure, which
is due to the interactions between its macromolecules. Macromolecules in honey involved
in the formation of the colloidal structure include oligo-sugars, proteins, and polyphenols.
Colloidal particles of honey are composed of complexes of proteins, polyphenols, and
melanoidins. The colloids of honey are compact and stable, with multiple layers. Colloidal
honey samples are characterized by the generation of hydrogen peroxide, and antibiotic
and antioxidant activities. Moreover, the colloidal structure of honey increases in dark and
medium-color honeys, whereas it is not a character of the light color honeys [16,28].

Most of the antibacterial activity of honeys is due to the hydrogen peroxide concen-
tration, high sugar concentration, and the low pH, due to the content of organic acids in
honey, such as gluconic acid. Hydrogen-peroxide-producing honeys are used in wound
and burn dressings, either alone or in combination with other medicines such as calcium
alginate [16,28,29] (Table 1).

Table 1. Honey reactions and their biological activities.

Reaction Enzyme Products Biological Activity Ref.

1 Production of
hydrogen peroxide Glucose oxidase Hydrogen peroxide and

gluconic acid
Antibacterial and wound and

burn dressings [16,28,29]

2 Production of
short peptides Proteases Short peptides Antimicrobial, antioxidant,

antitumor and weight loss inducers [30–35]

3 Degradation
of amylose Diastase Glucose and maltose Honey quality parameter that

indicates storage conditions [1]

4 Degradation of sucrose Invertase Glucose and fructose Indicator for honey
storage conditions [36]

5 Degradation of
organic phosphates Acid phosphatase Inorganic phosphate Marker of honey floral origin and

indicator of honey fermentation [37–39]

6 Trans-glycosylation Non-enzymatic Disaccharides
Oligosacharides

Artificial sweeteners,
increase bone mineral density in

postmenopausal women
(fructooligosaccharides), and

classified as prebiotic molecules

[40–43]
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Table 1. Cont.

Reaction Enzyme Products Biological Activity Ref.

7
Production and

degradation
of dicarbonyls

Enzymatic
(dihydroxyacetone
phosphatase) and

non-enzymatic

Dicarbonyls (glyoxal,
methylglyoxal and

3-deoxyglucosone), methional
and methylbutanal, AGEs

and nucleoside AGEs
and melanoidins

1-Antibacterial, antitumor,
antioxidant and contribution to the

honey color, flavor and odorant.
2-High level of dicarbonyl

molecules are reported to be with
some toxicity to the humans such as

tumerigenic, negative impact on
blood vessels and induction of

diabtes and uremia

[44–52]

8 Production and
degradation of HMF Non-enzymatic

HMF, formic and levulinic
acids, soluble HMF polymers

and insoluble humins

Threatening honeybee life, human
hepatorenal toxicity, induction of

neoplastic changes, and irritation of
mucous membranes

HMF has positive impacts on
human health, such as antioxidant,
anti-carcinogen, anti-allergenic, and

anti-hyperuricemic activities

[53–60]

9 Maillard reaction Non-enzymatic

Complexes of sugars and
amino acids, amino aldoses

and ketoses, dicarbonyls,
enediols,

2-amino-2-deoxy-ald-oses
and melanoidins

Antibacterial and antioxidant [14,61–64]

10 Caramelization Non-enzymatic

Deoxyosones, furan and
pyran derivatives, HMF,

hydroxydimethylfuranone
(HDF) and

hydroxyacetilfuran (HAF)

Contribution to the color, aroma,
and flavor of honey

and antioxidants
[65–68]

2.2. Proteases

Proteases are responsible for the degradation of proteins to produce amino acids
and short peptides according to the type of protease. According to their substrate pref-
erence, proteases are classified as endopeptidases and exopeptidases [69,70]. Unifloral
honey samples are reported to contain serine protease enzymes, which contribute to their
quality and biological activities [6]. A Croatian study reported the presence of three ser-
ine proteases in honey: trypsin, chymotrypsin, and elastase [37]. Trypsin cleaves the
peptide bonds formed by the carboxyl groups of arginine and lysine [71]. The sites of chy-
motrypsin cleavage are peptide bonds formed by the carboxyl groups of aromatic amino
acids (tyrosine, phenylalanine, and tryptophan) and leucine [72]. Elastase is associated
with breakdown of the peptide bonds formed by the short aliphatic amino acids such as
glycine, alanine, and valine [73]. The major products of honey proteases are short peptides
that function as antioxidants, antitumor, and antimicrobials, and are used as weight loss
inducers (Figure 2). Alaerjani et al. (2021) published an article which proved the presence
of short peptides in honey samples from Saudi Arabia. They analyzed five honey samples
using LC–MS and concluded that short peptides in honey samples are of floral origin and
storage-dependent [30] (Table 1).
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Amino acids and their sequences in short peptides are responsible for their activity.
Short peptides that contain cysteine, methionine, tyrosine, lysine, histidine, and tryptophan
are known to act as antioxidants [31–33]. Short peptides rich in hydrophobic amino acids,
such as glysine, alanine, valine, leucine, and isoleucine, are active antimicrobial peptides
because of their ability to disrupt the plasma membrane of the microbes [30,34]. Short and
cyclic peptides are active as antitumor, antimicrobial, antioxidant, and weight loss inducers,
according to their amino acid contents and sequences [35]. Assessments of the amino acid
contents, sequences, and concentrations of short peptides in food are carried out using
LC–MS techniques [30,74] (Table 1).

3. Enzymes in Honey as Quality Parameters and Indicators for Floral Origin,
Honeybee Disease and the Presence of Yeast
3.1. Diastase and Invertase

Diastase (α- and β-amylases) and invertase (α-glucosidase) are hydrolytic enzymes
secreted by honeybees to help ripen nectar to produce the mature honey. Diastase is
responsible for the conversion of nectar polysaccharides (amylose) to glucose, whereas
invertase converts the sucrose of the nectar into fructose and glucose. Diastase enzymes
are included as honey quality parameters and indicators for assessing honey storage
conditions in all honey standards [1]. Invertase is not adopted as a honey quality parameter;
however, it is suggested to be a useful quality parameter in the European standards for
honey [36]. Although diastase and invertase originate from honeybees, they can be used as
indicators for honey floral origins because the concentration of the substrates affects the
enzyme activity [75]. Some studies used the activities of diastase and invertase as quality
parameters to predict the floral origin of honey samples through adopting chemometric
analysis (principal component analysis (PCA) and clustering analysis) [76–78] (Table 1).

3.2. β-Glucosidase

β-glucosidase is an enzyme responsible for the breakdown of β-glucosidic bonds,
such as those of cellulose and cellobiose. The β-glucosidase enzyme can be isolated from
the ventriculus, honey sac, and hypopharyngeal glands of the Apis malifera [79]. Honey
samples have been reported to exert β-glucosidase activity [77].
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3.3. Glucosylceramidase (Glucocerebrosidase or Ceramide Glucosidase)

Glucosylceramidase catalyzes the hydrolysis of glucosylceramide (glycolipid) to glu-
cose and ceramide [80]. Glucosylceramidase is reported to be present in buckwheat honey.
Deficiencies of glucosylceramidase in insects lead to the accumulation of glucosylceramide,
which is associated with abnormalities in memory and movement. Moreover, deficiencies
of glucosylceramide in insects and honeybees lead to neurodegeneration and a shorter
lifespan (Figure 3) [8].
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3.4. Acid Phosphatase

Acid phosphatase is a hydrolytic enzyme which catalyzes the production of inorganic
phosphate from organic phosphate. Organic phosphates which act as substrates for acid
phosphatase include ATP, phosphatidic acid, and phosphate monoester [81–83].

The sources of acid phosphatase in honey are pollens, nectar, and yeast. The enzyme
could be used as a marker for the botanical origin of honey and as an indicator of honey
fermentation [37–39] (Table 1). The activity of acid phosphatase in honey is affected by the
pH and climate conditions [39].

4. Non-Enzymatic Reactions in Honey
4.1. Non-Enzymatic Trans-Glycosylation

The formation of di- and oligosaccharides in honey is proved to be through non-
enzymatic trans-glycosylation. Trans-glycosylation reactions in honey are promoted by the
high concentration of sugars, low moisture percentage, and acidic environment. The disac-
charides which are formed through trans-glycosylation are maltose, isomaltose, inulobiose,
sophorose, and gentiobiose, whereas the oligosaccharides include 1-kestose, melezitose,
and panose [13,84]. Oligosaccharides are classified to four classes according to their struc-
tural units. The four oligosaccharides are maltoligosaccharides, fructooligosaccharides,
chitanooligosaccharides, and galactooligosaccharides. Fructooligosacchrides constitute
0.75% of honey [85]. Fructooligosaccharides are used as artificial sweeteners, and are char-
acterized by their low caloric values [40]. Fructooligosaccharides with calcium supplements
are useful in increasing the bone mineral density in postmenopausal women [41] (Table 1).

The oligosaccharides of honey are active as prebiotic molecules. Prebiotics are non-
digestible foods which have functional effects on the gastrointestinal tracts of animals
through stimulating the growth of intestinal flora (bifidobacteria and lactobacilli). The
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intestinal flora is capable of fermenting the oligosaccharides, leading to a decrease in pH,
the production of short-chain fatty acids, and reductions in fat absorption and ammonia
production [42,43] (Table 1).

4.2. Production and Degradation of Dicarbonyl Compounds

Dicarbonyl compounds are formed in thermally processed foods from the oxidation
and degradation of sugars, the Maillard reaction, degradation of lipids, and degradation
of vitamin C [86]. Dicarbonyl compounds found in honey samples of different floral
origins include glyoxal, methylglyoxal, glucosone, 3-deoxyglucosone, 2,3-butanedione,
3-deoxypentulose, 1,4-dideoxyhexulose, and 3,4-dideoxyglucoson-3-ene (3,4-DGE) [87,88].
Adams et al. (2009) proved that the methylglyoxal of Manuka honey originated from
dihydroxyacetone from the flowers of the Manuka tree (Leptospermum scoparium). Dihy-
droxacetone is non-enzymatically converted to methylglyoxal at a temperature of 37 ◦C [89].
Dihydroxyacetone of the Manuka tree nectar is mostly obtained from dihydroxyacetone
phosphate (the glycolysis intermediate) through hydrolysis reactions. The conversion
of dihydroxyactone phosphate to dihydroxyacetone may occur enzymatically through
dihydroxyacetone phosphatase, such as reactions in the Corynebacterium glutamicum [90],
or through non-enzymatic hydrolysis (Figure 4).
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Dicarbonyl molecules are catabolized through variable non-enzymatic reactions to
volatile aroma compounds and food-browning molecules [44]. Small dicarbonyl molecules
(glyoxal and methylglyoxal) can react with amino groups of free amino acids such as
methionine and leucine to form methional and methylbutanal, respectively. Methional
and methylbutanal contribute to food flavors and odorants [45]. Moreover, the dicarbonyl
molecules can bind the amino and guanido groups of lysine, nucleosides, and arginine
residue on protein or nucleosides to form complexes such as advanced glycation end
products (AGEs) and nucleoside AGEs [46,47]. The presence of sodium chloride in foods
leads to the conversion of dicarbonyl molecules to furfurals, whereas reactions of the
dicarbonyl compounds with phenolic molecules form complexes responsible for food
browning, such as melanoidins [48,49].
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Dicarbonyl molecules are major contributors to the antibacterial activity of honey, such
as methylglyoxal of Manuka honey [50,51]. High blood levels of dicarbonyl compounds
are reported to be associated with diabetes, uremia, and negative effects on the blood
vessels, whereas glyoxal exhibits tumorigenic activity [44,52]. Some studies have reported
that methylglyoxal exhibits tumorigenic and antitumor activities. Antitumor activities
of methylglyoxal include the induction of cancer cell apoptosis and inhibition of the
proliferation and invasion of colon cancer, leukemia, and breast cancer cells in vitro and
in vivo [44]. The tumorigenic activity of methylglyoxal is possibly through different modes
of actions, such as the depletion of ATP through activating glycation reactions on specific
arginine residues on ATP-producing enzymes, the glycation of nucleosides on DNA, and
the glycation of histones [44]. The presence of methylglyoxal in foods with creatine or
ascorbic acid supports its anticancer activity [44] (Table 1).

4.3. Production and Degradation of HMF

HMF is a six-carbon cyclic compound with two functional groups: aldehyde and
hydroxymethyl. HMF is produced from the non-enzymatic degradation of glucose or fruc-
tose. HMF is considered to be an intermediate product of the Maillard reaction (browning
of food). Glucose is converted to fructofuranose through isomerization reactions, and
fructofuranose undergoes three dehydration reactions and enolization to produce HMF
(Figure 5) [14,91,92].
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The formation of HMF in honey is induced by the pH, acidity, minerals, and hexose
sugars. Storage and processing conditions are known to increase the production rate of
HMF, i.e., a high temperature and long storage duration (even at room temperature) [93–96].
The storage of honey at low temperatures (below 25 ◦C) does not facilitate the excessive
production of HMF, which exceeds the range of international honey standards [97,98].

HMF is degraded non-enzymatically to produce formic and levulinic acids, in addition
to soluble polymers and insoluble humins [92,99] (Figure 5).
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Two studies have suggested that high HMF concentrations are not an indication for
honey storage at a temperature range of 21–50 ◦C [100,101]. Fallico et al. (2008) proved that
the degradation rate of HMF in citrus and chestnut honey is greater than its production
rate at temperatures between 25 ◦C and 50 ◦C [100]. Moreover, Khan et al. (2021) reported
that freshly harvested honey samples are characterized by high HMF concentrations com-
pared with honey stored at room temperature (21–36 ◦C) for one year [53]. The findings
of Fallico et al. (2008) and Khan et al. (2021) illustrated that stored honey, or honey sam-
ples treated at temperatures between 21 ◦C and 50 ◦C, are characterized by low HMF
concentrations [100,101]. Consequently, Fallico et al. (2008) suggested the removal of HMF
from the honey standards because it is not an indicator for honey storage or treatment [100].
The findings of Fallico et al. (2008) and Khan et al. (2021) contradict the well-established
fact that HMF production in honey increases during storage and heat processing. The
major scientific fact behind their findings is the production and degradation rates of HMF
in a temperature range of 21–50 ◦C.

HMF in honey threatens the life of honeybees [53,54]; moreover, it has negative
and positive effects on human health. Negative effects of HMF on human health in-
clude hepato-renal toxicity, decreased glutathione levels in the cells, inductions of neo-
plastic changes, and irritation of the mucous membranes of the upper respiratory tract,
eyes, and skin [55–57]. Positive effects of HMF on human health include antioxidant,
anti-carcinogenic, anti-allergenic, and anti-hyperuricemic activities [58–60] (Table 1).

The toxic level of HMF for humans is not yet clarified, because the metabolism of
HMF is health-condition-dependent. However, humans can ingest from 30 to 150 mg of
HMF daily from different food sources, and it is reported that HMF is completely cleared
from human bodies within 24–48 h, even if taken at a level of 240 mg/day [91]. From the
researched literature, it is obvious that honey is very safe for human consumption.

4.4. Maillard Reaction in Honey

The Maillard reaction is associated with reactions of sugars and amino acids in water.
It is responsible for food browning during heating processes. The Maillard reaction is
defined as an interaction between the carbonyl groups of sugars and groups of amino acids,
proteins, or other nitrogenous compounds, leading to the production of brown compounds
known as melanoidins [102]. The Maillard reaction has three stages: early, advanced, and
final stage. The early stage of the Millard reaction involves a combination of sugars and
amino groups, which leads to the formation of Amadori products (complexes of sugars
and amino acids) such as N-(1-Deoxy-1-fructosyl) phenylalanine, which has recently been
found in heated acacia honey samples [103]. In the advanced or intermediate stage, the
Amadori products are broken down to different compounds including the amino aldoses
and ketoses. The amino aldoses are further degraded to form deoxy dicarbonyls and
enediols, while amino ketoses are converted to 2-amino-2-deoxy-aldoses through Heyns
rearrangement. The intermediate-stage reactions are acid-catalyzed [104]. The final stage
of the Millard reaction is associated with the formation of melanoidin polymers, which
are formed from sugar fragments, amino products, polyphenols, quinones, and proteins.
Generally, melanoidins are associated with food browning [14,105,106] (Figure 6).

Brudzynski et al. (2013) stated that the storage of honey at different temperatures
decreased the concentration of honey proteins and led to the formation of complexes of
proteins–polyphenols and proteins–quniones [106].

Hellwig et al. (2017) found that samples of Manuka honey were characterized by high
concentrations of Maillard reaction products, such as methylglyoxal-derived hydroimida-
zolone 1 (MG-H1) and carboxyethyllysine (CEL) [15].
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The Maillard reaction is induced by different factors such as the water activity, ini-
tial pH, amino group, oxygen, sugar temperature, and heating time [61]. Many stud-
ies have reported that Maillard reaction products act as antioxidant and antibacterial
agents [14,62–64] (Table 1).

4.5. Caramelization in Honey

Caramelization is the heating of any sugar using high temperatures (≥180 ◦C) until its
color is changed to brown–black. It is a non-enzymatic process involving the dehydration of
sugars under dry or concentrated solutions. Caramelization produces solid, semi-solid, and
liquid products, with colors ranging from light brown to medium and dark. The products
of caramelization depend on the temperature used. To obtain a light brown color, the sugar
or food is heated to 180 ◦C; a medium color can be achieved by heating at 181–187 ◦C; and
a dark color is obtained through heating at 188–204 ◦C [107–109].

Rahardjo et al. (2020) obtained light, medium, and dark caramel colors of honey by
heating at 107 ◦C, 180–182 ◦C, and 188–190 ◦C, respectively [107]. The products of the
caramelization reaction included deoxyosones, furan and pyran derivatives, HMF, hydrox-
ydimethylfuranone (HDF), and hydroxyacetilfuran (HAF). The products of caramelization
reactions contribute to the color, aroma, and flavor of honey, in addition to exerting antioxi-
dant activity [65–68] (Table 1).
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5. Conclusions

This review summarized, for the first time, the biochemical reactions in honey, includ-
ing enzymatic and non-enzymatic reactions. The substrates, intermediates, and products
of the biochemical reactions in honey are major contributors to the biological activities
of honey.
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