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ABSTRACT
◥

Whole-genome sequencing of primary breast tumors enabled the
identification of cancer driver genes and noncoding cancer driver
plexuses from somatic mutations. However, differentiating driver
from passenger events among noncoding genetic variants remains a
challenge. Herein, we reveal cancer-driver cis-regulatory elements
linked to transcription factors previously shown to be involved in
development of luminal breast cancers by defining a tumor-
enriched catalogue of approximately 100,000 unique cis-regulatory
elements from 26 primary luminal estrogen receptor (ER)þ pro-
gesterone receptor (PR)þ breast tumors. Integrating this catalog
with somatic mutations from 350 publicly available breast tumor
whole genomes, we uncovered cancer driver cistromes, defined as
the sum of binding sites for a transcription factor, for ten tran-

scription factors in luminal breast cancer such as FOXA1 and ER,
nine of which are essential for growth in breast cancer with four
exclusive to the luminal subtype. Collectively, we present a strategy
to find cancer driver cistromes relying on quantifying the enrich-
ment of noncoding mutations over cis-regulatory elements
concatenated into a functional unit.

Implications: Mapping the accessible chromatin of luminal breast
cancer led to discovery of an accumulation of mutations within
cistromes of transcription factors essential to luminal breast cancer.
This demonstrates coopting of regulatory networks to drive cancer
and provides a framework to derive insight into the noncoding
space of cancer.

Introduction
Breast cancer is the second leading cause of death in women in

North America (1). Currently, treatment decisions rely on the histol-
ogy and the expression of three proteins: estrogen receptor (ER) a,
progesterone receptor (PR), and HER/neu (HER2; ref. 1). Approxi-
mately 80% of all breast cancers are of the luminal (ERþ) subtype with
luminal B (ER/PRþ HER2þ) being the most proliferative and aggres-
sive and luminal A (ER/PRþ, HER2�) being the most predominant.
Sixty-five percent of luminal breast tumors are ERþPRþ; together, this
luminal subtype makes up 52% of all breast cancers (2, 3). Large-scale
analysis of whole-genome sequencing (WGS) in breast tumors has
identified 99 driver genes with recurrent protein-coding altera-

tions (4, 5) as well as a high number ofmutations within the noncoding
genome (4). Noncoding mutations can alter the transcription factor
binding to the DNA and affect enhancer–promoter interactions to
perturb gene expression (6–12). However, the inclusion of noncoding
mutations to find cancer drivers remains a challenge in ERþPRþ

luminal breast cancer that needs to be addressed to comprehensively
resolve the role of genetic variants in oncogenesis.

The noncoding genome is known to harbor many of cis-regu-
latory elements, defined as binding sites for transcription factors
involved in transcriptional regulation by serving as promoters,
enhancers, or anchors of chromatin interactions (13). In luminal
breast cancer, cis-regulatory elements are bound by key transcrip-
tion factors, including ER, FOXA1, and GATA3 which have a role
in maintaining the luminal phenotype as well as the growth and
differentiation of breast epithelium (14). Disruption of either of
these transcription factors or their binding sites can affect their
binding to the chromatin (15), which can modulate downstream
gene expression. A subset of transcription factors active in luminal
breast cancer are classified as driver genes due to an enrichment of
mutations within protein coding regions (16–18).

Mutations within regulatory elements of enhancers and promoters
can be responsible for the development of disorders with the same
magnitude as mutations affecting protein-coding genes (6, 19–24). A
classic example of this is the TERT promoter which is frequently
mutated across several cancer types as a mechanism for telomerase
reactivation (25); it has been observed in 71% of sporadic melanoma
and 60% to 75% of glioblastomas (6, 19–24). Variants within theTERT
promoters also lead to an increased risk of breast and ovarian cancer
development (26). Analysis of the Pan-Cancer Analysis of Whole
Genomes (PCAWG) project showed that the long tail of infrequent
noncoding mutations in promoters and distal regulatory elements
converged to pathways and molecular interaction networks of onco-
genic processes (10). Zhu and colleagues found frequently mutated
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regulatory elements in cancer genomes that interact with target genes
via long-range chromatin interactions (10).

The sum of all regulatory elements bound by a transcription factor
in a given cell-type has been referred to as a “cistrome” (27). Analysis of
mutations across the cistromes of prostate cancer revealed a high
frequency of mutations within the binding sites of key transcription
factors including FOXA1, HOXB13, and androgen receptor (AR;
ref. 7). In luminal breast cancer, Bailey and colleagues found 7
functionally validated mutations within the cis-regulatory elements
of ESR1 that altered gene expression (8), while Cowper-Sallari and
colleagues found that risk-associated SNPs in the cistrome of FOXA1
modulated the expression of downstream target genes (15). These
studies highlight the key, albeit underappreciated role that cis-regu-
latory elements and cistromes play in tumorigenesis.

Within this study, we drew parallels to the approaches to finding
driver mutations between the coding and noncoding genome. In
keeping with the terminology established by The Cancer Genome
Atlas (TCGA) and the PCAWGwe define cancer drivers as units of the
genome that are enriched in mutations more than expected by
chance (5, 28). Similar to looking for hotspots of mutations within
individual exons, wefirst focused on individual cis-regulatory elements
across accessible chromatin regions. Proceeding to a broader scale,
akin to looking at multiple exons that make up a gene, we explore for
mutations across the cistromes of transcription factors in accessible
chromatin regions of luminal breast cancer. Together, our study
identified cancer driver cistromes assigned to transcription factors
essential to luminal breast cancer.

Material and Methods
Patient tumor samples

Twenty-six primary tumors with cancer cell content higher than
60% estimated by a central pathologist using hematoxylin and eosin
(H&E) stainingwere obtained from surgical specimens of patientswith
ERþPRþ invasive ductal carcinoma. Patients’ consent and tumor
stratification were obtained through University Health Network
(UHN) living biobank under REB # 16–5524.

Tumor processing and Assay for Transposase-Accessible
Chromatin using sequencing library preparation

Breast tumors were minced into small pieces and digested at 37�C,
in mammary Epicult (STEMCELL Technologies,) media supplemen-
ted with 10% FBS (WISENT) and collagenase (STEMCELL Technol-
ogies), and further dissociated in 5 mg/mL dispase for 2 minutes. Cells
were counted and live cells sorted into two populations, immune and
malignant cells enriched using sytox blue (ThermoFisher Scientific)
and anti-CD45 antibody (ThermoFisher Scientific). Five to 50,000
were used for Assay for Transposase-Accessible Chromatin using
sequencing (ATAC-seq) library preparation as described previous-
ly (29). Briefly, cells were lysed for 5 minutes followed by transposase
reaction and library amplification usingNexteraDNALibrary PrepKit
(Illumina). Libraries were then size-selected (240–360 bp) using
PippinHT (Sage Science) and sequenced (NextSeq 550) using 50 bp
single reads at a coverage of 40 to 80 million reads (Supplementary
Table S1).

ATAC-seq and data analysis
Reads were aligned to hg19 using bowtie2/2.0.5 using default

parameters. Aligned reads were then filtered by removing duplicated
and mitochondrial reads using samtools/0.1.18. We then used
MACS2/2.0.10 (30) to call accessible chromatin peaks using the

following parameters: macs2 callpeak -t {input.bam} -g hs –keep-
dup all -n {sample-name} -B –nomodel –SPMR -q 0.005 –outdir
{OutputDir}. Peaks from all of the samples were thenmerged to create
a catalog of accessible chromatin using bedtools merge using the
following parameters: cat �_peaks.narrowPeak | bedtools sort -i stdin
| bedtools merge -i stdin > Catalogue.bed.

We then generated a signal matrix by mapping the max peak signal
from each sample to the full catalog of accessible chromatin using the
map tool from bedtools v2.27.1.

Enrichment of genomic features in accessible chromatin regions
The accessible chromatin regions from ATAC-seq, represented

using a BED file, were used as input for cis-regulatory element
annotation system (CEAS) v1.0.2 (31) along with hg19 refGene,
running the default chromatin immunoprecipitation (ChIP) Region
Annotation and Gene-centered Annotation modules. Similarity
between ATAC-profiles was estimated using all unique peaks in a
pair-wise comparison between samples. A cosine similarity was used to
negate the differences in global peak amplitudes and compare the
relative amplitudes.

Motif enrichment
We analyzed motif enrichment using CentriMo from the Meme-

suite tool version 4.9.0_4 and as a reference, we used the JASPAR_-
CORE_2016.meme database. This analysis was run on multiple cat-
alogs. First, we run PM-Lum and TCGA_Lum catalogues using as a
background a catalogue of publicly available DNaseI sensitive sites
identified in several cell lines. The DNaseI sensitive sites were down-
loaded from the Encyclopedia of DNAElements (ENCODE). Next, we
ran the same analysis on PM_Lum accessible chromatin regions that
overlapped mutations from International Cancer Genome Consor-
tium (ICGC)_EU and ICGC_US datasets using as a background the
full PM_Lum Catalogue.

Hotspot of cis-regulatory, significantly-mutated elements
In order to identifymutation enrichment within noncoding regions,

we developed an algorithm that uses an exact binomial test for each
region of interest against a sample-wide noncoding background
mutation rate (https://github.com/pughlab/BCa_ATACSEQ_Pro-
ject/tree/main/HoRSE). We first define the search space as the overlap
between cis-regulatory elements and the ATAC catalog, as well as
separate variants into noncoding and coding based on the University
of California Santa Cruz (UCSC) hg19 known gene annotations. By
tiling a 5 kb window across the cis-regulatory elements for the search
space, we fit the number of variants found within the tiled cis-
regulatory elements to a poisson model to estimate the average
background mutation rate. We also used a 5 kb sliding window
approach to identify the loci within each cis-regulatory element with
the highest mutation burden. The highest mutation burdens were
compared with the background mutation rate using an exact binomial
test and corrected for multiple hypothesis testing using an FDR
correction.

Mutation enrichment at motif sites
To analyze the enrichment of mutations at motif sites, we used a

modified version of the previously published tool mutation enrich-
ment at motif sites (modMEMOS; https://github.com/pughlab/
BCa_ATACSEQ_Project/tree/main/modMEMOS; ref. 7; Supplemen-
tary Fig. S3). First, similar to the previous version, we scanned formotif
sites using either the PM_Lum ATAC-seq Catalog or PM_Lum
ATAC-seq Catalog that overlap publicly available ChIP sequencing
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(ChIP-seq) data run on MCF7 using MOODS/1.9.2 tool (32). The
previously published version of MEMOS assumed a normal distribu-
tion of number of mutations, however, due to the low number of
mutations within cis-regulatory elements, we adopted a poisson
distribution to better fit our data. Additionally, MEMOS established
the null distribution of mutation enrichment by randomly sampling
from the entire genome followed by adding a flanking region, resulting
in the potential for the background region to include the target regions.
We address this by adding the maximum flanks (1,000 bp) to all motif
recognition sites first, and then restricting sampling to all regions that
do not overlap the ENCODE blacklist regions as well as all original
motifs � 1,000 bps. Finally, MEMOS estimates its P value for motif
enrichment by calculating the distance of the number of mutations
within the target cistromes from the standardized mean of the null
distribution. Due to the low number of mutations within some of our
cistromes, we opted for a confidence interval approach by resampling
the target and background regions, followed by calculating mutation
enrichment within the resampled regions and estimating the effect size
of enrichment using Cohen D.

From a technical perspective of modMEMOS, we added a flanking
region (0–1,000 bp) to Motif sites/ChIP peak centers using Bedtools
slop and resampled the resulting bedfiles 100 times, taking 80% of the
bedfiles each time. In parallel, we generated a background bedfile by
randomly shuffling all of themotif sites� 1,000 bp while excluding the
Motif sites/peak center � flanking region as well as the ENCODE
blacklist regions. Similar to Motif sites/ChIP peak centers, the back-
ground bedfile was resampled 100 times, taking 80% of the regions
each time. Taking into consideration our regions of interest and
background file we identified the regions that overlapped mutations
from ICGC-EU and US datasets, and counted the number of muta-
tions for each transcription factor site and flanking region. Finally, we
compared the mutation counts from the region of interest with the
background and calculated Cohen D using the following equation:
“Mean difference/pooled SD”. We determined the enrichment thresh-
old based on the Cohen D median.

Intra-genomic replicates
To predict the effect of single-nucleotide variant (SNV) on tran-

scription factors binding affinity, we run the Intragenomic replicates
(IGR) tool (15). In summary, IGR uses ChIP-seq data of the tran-
scription factor of interest to analyze the change in signal intensity in
regions harboring SNVs compared with surrounding regions. Herein,
we analyzed the binding affinity of the transcription factor that binds
sites found to be enriched inmutation. Our regions of interest were the
transcription factor binding sites � 100 bp flanking regions. We used
the ICGC-EU mutation dataset as the SNV file.

Essentiality screens
Project Achilles genome-wide short hairpin RNA (shRNA)

essentiality screen data was downloaded from the DepMap portal,
specifically the “Achilles” dataset (33, 34). The analysis was focused
on breast cancer cell lines that showed consistency in subtyping
according to all three genesets PAM50, SCMOD2, and SCMGENE.
The probability of essentiality was used as a score 1 being most
essential and 0 nonessential.

Identifying luminal-specific essentiality
Enrichment of essentiality for one breast cancer type comparedwith

the rest was calculated using an approach inspired by gene set
enrichment analysis (GSEA; ref. 35). The probability of essentiality
(Pe) values were assigned a direction based on whether they were part

of the cancer type of interest (COI; positive) or not (negative). A curve
was fitted to the ordered Pe list and the AUC was calculated. An exact
p value for each cancer type was calculated using a permutation test
(n_perm ¼ 1,000) where the cancer type index was randomized and
the AUCs recalculated. All p values were corrected for multiple testing
using FDR. The standardized AUC was calculated based on a min-
imum (min)/maximum (max) AUC range, where the min is defined
as Pe¼�1 for all non-COIs and Pe¼ 0 for all COIs, while the max has
Pe ¼ 0 for all non-COIs and Pe ¼ 1 for all COIs.

Ethics approval and consent to participate
The UHN Ethics Board operates in compliance with the Tri-

Council Policy Statement reviewed and approved this project REB
#16–5524.

Availability of data and material
TheATAC-seq raw data generated from our PM_Lum cohorts were

uploaded to European Genome-Phenome Archive (EGA) under
accession code: EGAS00001005235. Availability of codes: https://
github.com/pughlab/BCa_ATACSEQ_Project

Results
Comprehensive chromatin accessibility analysis in primary
ERþPRþ luminal breast cancer

To identify cis-regulatory elements, we used ATAC-seq (29, 36) to
map the accessible chromatin of 26 luminal primary ERþPRþ invasive
ductal carcinomas breast tumors freshly collected at the Princess
Margaret Cancer Centre (PM_Lum; n ¼ 26; Supplementary
Table S1). To enrich for malignant cells, we used flow cytometry to
sort cells from dissociated tumors using the anti-CD45RO (anti-
CD45) antibody (Fig. 1A). In the immune-depleted (CD45�) cancer
cells, we identified a catalogue of 99,516 (41.37 Mb) unique nondu-
plicated regions found in accessible chromatin as defined by ATAC-
seq peak coverage called using MACS2 (ref. 30; Supplementary
Table S2). Furthermore, we observed that 98% of peaks from our
catalog were found in more than half of the PM_Lum cohort (Sup-
plementary Fig. S1A). Moreover, we examined the size distribution of
regions of accessible chromatin in the PM_Lum samples compared
with our catalog, we show that the size distribution seen in catalog is
similar to the one seen in the individual samples (Supplementary
Fig. S1B, top). This similarity suggests that our catalog is recapitulating
an accurate ATAC-profile to those seen in our samples, rather than
being skewed to smaller peaks. To profile this similarity further, we
calculated the fraction of overlap between our catalogue and PM_Lum
cohort and show an average of 58.7%� 12.4% overlap (Supplementary
Fig. S1B, bottom).

To examine the quality of our data, we ran a similarity pair-wise
comparison between accessible chromatin profiles using cosine sim-
ilarity metric. Our data indicated a high degree of agreement of
accessible chromatin distributions between our PM_Lum samples
(Cosine similarity mSc ¼ 0.82 � 0.07; Cosine similarity; Fig. 1B). To
identify whether our catalog of accessible chromatin regions was
representative of other ERþPRþ breast tumors, we leveraged TCGA
ATAC-seq data derived from nonenriched bulk ERþPRþ tumor
tissues (n ¼ 41; TCGA_Lum; ref. 37). Compared with our cohort,
TCGA_Lum showed a higher number of unique accessible chro-
matin regions (272,291 peaks; 289.89Mb) that encompassed 93.6%
(93,172/99,516 peaks) of our PM_Lum catalogue. Of note, the
PM_Lum accessible chromatin regions represented only 34.2% of the
TCGA_Lum catalog (Fig. 1C), suggesting our depletion of immune
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Figure 1.

Identifying chromatin accessibility in ERþPRþ breast cancer.A, Primary tumors were minced and dissociated for subsequent flow sorting into immune and epithelial
cell populations, followed by ATAC-seq profiling. B, Heatmap showing similarities between ERþPRþ accessible chromatin profiles. Cosine similarity analysis was
calculated using comparing all chromatin accessibility of samples with each other. Bar plot showing number of called peaks per sample. C, Bar plot showing the
number of accessible chromatin regions fromTCGA_Lumdatasets that overlappedPM_Lum in blue and theones unique to each cohort in red.D,Agraph showing the
chromatin accessibility saturation curve. A nonlinear regressionmodel analysiswas performed using the number of unique ATACpeaks discovered in each sample to
estimate the percentage of accessible chromatin mapped in PM_Lum (Purple; n¼ 26 samples), TCGA_Lum (Blue; n¼ 41 samples), and luminal cell lines (MCF7 and
T47D, Orange; n ¼ 2). E, Percentage of distribution of mapped accessible chromatin regions within the genome. The cis-regulatory element annotation system
(CEAS) is utilized to performgenomic distribution analysis of the accessible chromatin regionmapped by ATAC-seq. ��p value <0.001, two-sided t test; The box plot
ranges are Q1, Median, and Q3; the whiskers are� 1.5x the IQR. F, Bar plot showing p values for cosine similarities between PM_Lum and TCGA_Lum in comparison
with immune cells’ accessible chromatin. Red dotted line represents p value ¼ 0.01, two-sided t test. G, Lollipop graph showing enriched motif families in ERþPRþ

breast tumors (p value < 0.01, Fisher exact test). The catalog of 26 ATAC-seq data was used. Enrichment of motifs within ATAC-seq regions against DNaseI
hypersensitive sites from several cell lines was computed. Motif families were obtained using the Jaspar database. The size of the circles represents the number of
target peaks for each motif.
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cells may have enhanced the signal specific to cancer cells. Consistent
with this observation, we estimated that our analysis led to the map-
ping of 88% of accessible chromatin within our cohort of 26 samples
while the TCGA_Lum cohort reached similar saturation (87%) with
41 samples (Fig. 1D). Thus, we established a catalog from our
PM_Lum cohort of high-confident accessible chromatin regions that
were found across our cohort and illustrate a high level of robustness by
being found almost entirely within the independent TCGA_Lum
catalog.

We next characterized the genomic distribution of accessible chro-
matin regions across different genomic features [e.g., promoters, distal
regions, coding exons untranslated regions (UTR), and intronic
regions) within the PM_Lum and TCGA_Lum catalogs. Using the
CEAS tool to estimate the relative enrichment level of accessible
regions in gene features (31), we found that on average 36% of cis-
regulatory elements mapped to promoters, 23% to introns, 23% to
intergenic regions, 14% to UTR, and 3% coding exons (Fig. 1E). Using
this same approach, we found that the accessible chromatin regions
captured in the ATAC-seq data from the TCGA_Lum cohort had
a similar distribution of intergenic regions (PM_Lum ¼ 23%,
TCGA_Lum ¼ 26%; P ¼ 0.10, two-sided t test) and coding exons
(PM_Lum ¼ 3%, TCGA_Lum ¼ 3%; P ¼ 0.42, two-sided t test).
However, in contrast to the PM_Lum cohort the TCGA_Lum shows a
higher distribution to introns (TCGA_Lum¼ 39%, PM_Lum¼ 23%;
P < 0.001, two-sided t test) and a lower distribution to promoters
(TCGA_Lum¼ 26%, PM_Lum¼ 36%; P< 0.001, two-sided t test) and
UTRs (TCGA_Lum ¼ 6%, PM_Lum ¼ 14%; P < 0.001, two-sided
t test; Fig. 1E). To assess the concordance of these patterns with two
widely used cell lines, we examined the genomic distribution of
accessible chromatin using DNase I hypersensitive sites from both
MCF7 and T47D lines. This analysis found, relative to both cohorts of
primary tumours, the cell lines had a higher percentage of open
chromatin regions in distal intergenic regions and lower percentage
in promoter regions (Fig. 1E). Since the accessible chromatin regions
differed significantly from our set of primary tumours, we did not
include them in subsequent analyses. Thus, our results highlight
that both PM_Lum and TCGA_Lum accessible chromatin catalogs
favor noncoding regions, where most accessible regions are found in
the promoter, intergenic, and intronic sequences as opposed to the
coding exons.

Considering that we used cell sorting to exclude immune cells from
our tumor samples using an anti-CD45 antibody, we examined
whether the difference in accessible chromatin profiles that we saw
between TCGA_Lum and PM_Lum was due to immune infiltration.
We tested for this immune infiltrate by comparing the similarity of the
PM_Lum and TCGA_Lum profiles to a known immune reference
comprised of publicly available chromatin accessibility data (DNaseI)
from 12 immune-cell types [trophoblast, CD1cþ, myeloid progenitors,
CD14þ monocytes, T helper17, T helper1, T helper2, CD8þa T cells,
naive thymocytes T cells, CD4þ a-b T cells, natural killer (NK) cells,
and B cells]. Our results showed that the TCGA_Lum chromatin
accessibility profile was significantly more similar to the accessible
chromatin profile for 9 of the 12 immune-cell types (trophoblast,
CD1cþ, myeloid progenitors, CD14þ monocytes, T helper17, T
helper1, T helper2, CD8þaT cells, naive thymocytes T cells) compared
with the PM_Lum profile (Fig. 1F; P < 0.001, one-sided t test). The
accessible chromatin profile for 3 of the 12 immune cells tested (CD4þ

a-b T cells, NK, and B cells) were not significant given the fact that
CD45RO is not expressed in CD4þ T cells, NK, and B cells (38).
Altogether, our data suggests that although there are similarities
between TCGA_Lum and PM_Lum, the cell sorting performed on

our PM_Lum cohort led to a depletion of immune cells, resulting in a
more cancer-cell–enriched accessible chromatin catalog.

Cis-regulatory elements work through the recruitment of transcrip-
tion factors that bind to unique DNA recognition sequences. We
therefore assessed the sequence composition of accessible chromatin
regions from ERþPRþ breast tumors through DNA recognition motif
enrichment analysis. Using the JASPAR database as a reference for
motif recognition sites and the pan-cancer ENCODE DNase I hyper-
sensitive sites as a background, we utilized the CentriMo method to
identify 40 significantly enriched DNA recognition motif families, 6 of
which are known to play an important role in luminal breast cancers:
AP-2 (TFAP2A), Forkhead (FOXA1), STAT (STAT3), C/EBP
(CREBBP), NR1 (RORA), GATA (GATA3; refs. 15, 39–41; P <
0.001; Fisher exact test; Fig. 1G; Supplementary Table S3.1). To
corroborate our findings, we performed a similar DNA recognition
motif enrichment analysis on the TCGA_Lum catalog. We identified
57 DNA recognition motif families enriched in this cohort; 33 of 57
overlapped with the motifs enriched in our PM_Lum catalogue, 24 of
57 were unique to the TCGA catalogue, and 7 of 40 (HSF,MyoD/ASC,
RHR, MADS, NFAT, NF, and, B-ATF) were found only in the PM-
Lum catalogue (Supplementary Fig. S1C; Supplementary Table S3.2).
All of which have been linked to breast cancer development, tumor
invasion, and drug resistance (39, 42–45). Together, these results
demonstrated that our PM_Lum catalog defines a broad spectrum
of motif recognition sites, 82.5% of which are also found in the
TCGA_Lum catalogue and 6 which are establishedmarkers of luminal
breast cancer biology, thus reflecting the luminal breast cancer spec-
ificity of our catalog.

Individual cis-regulatory elements are rarely recurrently
mutated

The enrichment of mutations within promoters and enhancers of
key breast cancer genes, such asTERT (6, 24) andFOXA1 (18), suggests
potential for recurrent mutations in additional regulatory regions. To
search for other mutations in cis-regulatory elements in ERþPRþ

breast cancer, we integrated our PM_Lum catalogue with somatic
mutations from 348 ERþPRþ breast cancers in two WGS breast
studies (ICGC-EU; ref. 4; n ¼ 306 and ICGC-US; ref. 46; n ¼ 42).
Of the 1,048,537 mutations found across WGS of ERþPRþ breast
cancer samples from ICGC-EU and ICGC-US, an average of 1.7%
(ICGC-US ¼ 1.76%; ICGC-EU ¼ 1.78%; 0.7%–3.4%; n_SNVs: min ¼
4,295, max ¼ 35,650) were detected within our PM_Lum catalog,
which comprises 1.3% of the genome (Fig. 2A). To identify whether
our PM_Lum catalog captured mutations specific to ERþPRþ breast
cancers, we compared the localization of mutations to 19 ICGCWGS
cancer cohorts (Supplementary Table S4). We found that these
additional 19 cancer types all had significantly lower fractions of
mutations overlapping our PM_Lum catalog as compared with
ERþPRþ breast cancer samples, with the exception of BOCA,
PAEN-AU, and PRAD-UK (Fig. 2A). We then performed the same
analysis using the TCGA_Lum catalog of accessible chromatin and
found similar results, with luminal breast tissue having a higher
percentage of mutations localized to this region when compared with
other tissues (P < 0.01, two-sided t test; Supplementary Fig. S2A).
These results highlight that mutations with luminal breast cancers are
predominantly found within our accessible chromatin catalog, thus
setting the stage for interpreting mutations in cis-regulatory elements
relevant to luminal breast cancer biology.

To identify highly mutated regulatory elements in ERþPRþ breast
cancer, we analyzed frequently mutated regulatory elements using the
ActiveDriverWGS method (10). Restricting our analysis to our
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PM_Lum catalog as the target regions, we found no driver mutations
aftermultiple testing correction using two separate datasets, ICGC-EU
(Supplementary Fig. S2B, Supplementary Table S5.1) and ICGC-US
(Supplementary Fig. S2C, Supplementary Table S5.2) WGS data
(q < 0.01; FDR). By running a similar analysis on the TCGA_Lum
catalog, ActiveDriverWGS identified one highly mutated distal region
(chr10:8115662–8116163) using ICGC-EU (Supplementary Fig. S2D)
and none using ICGC-US (Supplementary Fig. S2E). Although
ActiveDriverWGS is a robust tool for calling drivers in regulatory
elements, it takes a conservative one-to-one approach between muta-
tions and active elements, negating the cumulative effect of multiple
mutations within a hotspot region. To address these limitations,
we designed an algorithm Hotspot of cis-Regulatory, Significantly-
mutated Elements (HoRSE) that relaxes the stringency of Active-
DriverWGS by looking for clusters of hotspot mutations within
regulatory elements against a background of global and local so-
matic mutation rates (Supplementary Fig. S2F; Online methods).
Using HoRSE, we found 5 unique cis-regulatory elements enriched
for somatic mutations across ICGC-EU and -US (nICGC-EU ¼ 5,
nICGC_US ¼ 1; q < 0.01, exact binomial test) with PLEKHS1 being the
only cis-regulatory element significantly enriched in both WGS
cohorts (ICGC-EU: n ¼ 12/308; ICGC-US: n ¼ 6/42; Fig. 2B and
C; Supplementary Table S5.4). Two of the somatic mutations iden-
tified within the PLEKHS1 promoter are thought to be attributed
to APOBEC DNA-editing activity (4, 47). In the ICGC-EU dataset,
we identified 4 cis-regulatory elements enriched for somatic muta-
tion in addition to PLEKHS1 (Promoters of INTS2; n ¼ 6/308,

APLP1; n ¼ 6/308, and CCDC107/RMRP; ref. 18, 47; n ¼ 6/308, and
Distal Region: chr11:129512774–129513782; n ¼ 7/308; Fig. 2B and
C; Supplementary Table S5.3). We calculated the number of samples
within our cohort with ATAC-seq coverage of these mutationally
enriched regions and show that they are within accessible chromatin
seen across several samples (PLEKHS1; n ¼ 4/26; INTS2, n ¼ 15/26;
APLP1, n ¼ 15/26; CCDC107/RMRP, n ¼ 25/26; chr11:129512774–
129513782; n ¼ 15/26; Supplementary Table S6). Additionally, by
applying our algorithm on the regions covered by the TCGA_Lum
catalog, we revealed 19 significantly mutated regions in the ICGC-EU
dataset regions including CCDC107/RMRP (Supplementary Fig. S2G)
and 3 regions in ICGC-US (promoter: RARA and 2 distal regions:
chr8:98131092–98131993 and chr17:38603438–3860433; Supplemen-
tary Fig. S2H). Our results highlight the small number of recurrent
mutational hotspots across all the cis-regulatory elements of luminal
breast cancer. Thus, similar to how the search for driver genes is
hindered when focusing on single exons, our results show the hunt for
cancer drivers within individual cis-regulatory elements may be too
limiting resulting in the few observed recurrently mutated regions.

Noncoding mutations reveal cancer driver cistromes in luminal
breast cancer

The genome can be looked at as a collection of cis-regulatory
elements that can be organized into cistromes, based either on the
DNA recognition sequence content or on actual occupancy by tran-
scription factors. As our previous analysis highlights the limitations of
identifying drivers using individual cis-regulatory elements, our next
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Figure 2.

Mutation enrichment at cis-regulatory
elements in ERþPRþ breast cancer.
A, Box plot showing the percentage
of regions fromPM_Lumcatalog over-
lappingmutation calls fromWGS from
multiple cancer types. The box plot
ranges are Q1, Median, and Q3; The
whiskers are � 1.5x the IQR. B and
C, Manhattan plots indicating regula-
tory regions significantly enriched
in mutations using our in-house algo-
rithm. The PM_Lum catalogue was
used as accessible chromatin targets
and the ICGC_EUWGS (B) or ICGC_US
(C) was used as mutation calls. Dotted
lines indicate q ¼ < 0.01, exact bi-
nomial test.
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step was to assess the presence of cancer driver cistromes in ERþPRþ

luminal breast tumors. First, we measured the enrichment for DNA
recognition motifs within the PM_Lum catalog of cis-regulatory
elements found to be mutated in primary luminal breast tumors from
the ICGC-EU and -US studies. This revealed significant enrichment
for several DNA recognitionmotifs related to the JUN, FOS, Forkhead,
NFAT, POU, and REL families of transcription factors across both
ICGC dataset (Fig. 3A). The NF1, C2H2, IRF, and HD-CUT DNA
recognition motifs were uniquely enriched in cis-regulatory elements
mutated based on the ICGC-EU dataset (Fig. 3A).

To focus on DNA recognition motif-based cistromes relevant to
luminal breast cancer, we subdivided cis-regulatory elements from our
catalogue of accessible chromatin regions based on the presence of
DNA recognition motifs enriched in mutated cis-regulatory elements
across both ICGC-EU and ICGC-US datasets, namely JUN, FOS,
Forkhead, NFAT, POU, or REL. We calculated the frequency of
mutations across varying window sizes (0 to 1,000 bp) around the

cis-regulatory elements from each of the motif-based cistromes using
modMEMOS (modMEMOS and Flanking Regions; Supplementary
Fig. S3; Online methods; refs. 7, 18). We estimate the effect size of
mutation enrichment in DNA recognition motifs compared with a
background model using Cohen D, a statistical value that represents
the standardized difference between two means. Using a window of
50 bp flanking the motif recognition sites, as defined by the work from
Mazrooei and colleagues (7, 18), we found an enrichment for muta-
tions near the JUN, FOS, and Forkhead motif-based cistromes in both
ICGC-EU (Fig. 3B) and ICGC-US data sets (Fig. 3C). Additionally,
cis-regulatory elements proximal to POUmotif cistromewere found to
be enriched in mutations uniquely in the ICGC-EU dataset (Fig. 3B).
These results suggest that noncoding mutations preferentially accu-
mulate across cis-regulatory elements that harbor specific DNA rec-
ognition motifs, namely JUN, FOS, or Forkhead motifs.

Given that transcription factors of the same family can bind the
same DNA recognition motif, we explored the transcription factor–
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Figure 3.

Mutation analysis at recognition sites of motifs enriched in ERþPRþ breast cancer.A, Lollipop graph showing enrichedmotif families in PM_Lum catalog overlapping
SNVs from ICGC-EU (red) and ICGC-US (blue) against the total PM_Lum catalog (p value < 0.01; grey: p value > 0.01, Fisher exact test). B and C, graph (top) and
heatmaps (bottom) showing the enrichment of mutations at DNA recognition sites found to be significantly enriched in the PM_Lum catalog using ICGC-EU (B) and
ICGC-US (C) mutation calls. Cohen D was calculated based on resampling and the value indicates significant enrichment. The red dotted line indicates Cohen D
median.
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based cistromes to examine whether these variants are targeting
transcription factor–binding sites specific to breast tumors. We lev-
eraged the publically available collection of ChIP-seq datasets of
transcription factors (n¼ 48) and cofactors (n¼ 30) from the luminal
breast cancer cell line (MCF7; ref. 48) to identify luminal specific
transcription factor–based cistromes. We first clustered all cistromes
according to their similarity in ChIP-seq signal across our catalog of
cis-regulatory elements from luminal breast tumors and identified 7
distinct clusters (Supplementary Fig. S4), including one consisting of
the ER, FOXA1, and GATA3 transcription factors (TFs_1). We next
used modMEMOS to quantify the enrichment of mutations over these
cistromes. Using the mutation calls from the ICGC-EU dataset, we
identified 28 cancer driver cistromes (AHR, AR, CEBPB, CREBBP,
CTCF, ELF1, ER, FOSL2, FOXA1, FOXM1, GABPA, GATA3, JUND,
MAX, MYC, NR2F2, REST, TCF12, TEAD4, TFAP2A, TFAP2C, and
ZNF217; Fig. 4A). We further refine these transcription factor–based
cistromes by including only the cis-regulatory elements that harbor a
matched DNA recognition site for the designated transcription factor
family. Using modMEMOs on these DNA recognition site-specific
transcription factor–based cistromes, we identified 10 cancer driver
cistromes (CTCF, ELF1, ER, FOSL2, FOXA1, FOXM1GATA3, JUND,
TFAP2A, and TFAP2C) that are enriched in mutations in both the
ICGC-EU (Fig. 4B) and ICGC-US (Fig. 4C) datasets. Consistent
with the motif-based cistromes that we identified as cancer drivers
(Fig. 3B and C), we observed a similar enrichment of most, but not all
transcription factor–based cistromes that compose each motif family
(Forkhead, JUN, and FOS), with the exception of the RELmotif family
(Supplementary Fig. S5). Furthermore, we found that in the majority
of cases, not all transcription factor–based cistromes for a given
motif family defined cancer driver cistromes (e.g., Forkhead motif
family). Rather mutations were found to be enriched in specific tran-
scription factor–based cistromes (Supplementary Fig. S5). Altogether,
our results highlight that key transcription factor–based cistromes are
cancer drivers independent of their motif families or based on their
similarity to other cistromes, indicating the mutations are selectively
enriched within specific driver cistromes.

We next examined if the noncoding mutations within or flanking
(100 bp) the DNA recognition motif found within the cancer driver
cistrome for CTCF, TFAP2C, GATA3, FOXA1, ER, FOSL2, JUND,
TFAP2A, ELF1, and FOXM1 could alter transcription factor binding
to the chromatin. Using the IGR method (15) predicted that less than
40% of the noncoding mutations could alter the binding intensity of
any of these transcription factors to the chromatin (CTCF: Down ¼
36%, Up ¼ 15%; TFAP2C: 31%,28%; GATA3: 19%,10%; FOXA1:
14%,17%; ER: 18%,9%; FOSL2: 27%,13%; and JUND: 14%,5%;
TFAP2A: 32%,20%; ELF1: 33%,18%; FOXM1:20%,13%; Supplemen-
tary Fig. S6). These results argue that despite the enrichment of
mutations observed over transcription factor–based cistromes, only
a minority of these mutations can directly impact the binding affinity
of transcription factors to cis-regulatory elements.

Cancer driver cistromes correspond to transcription factors
essential to luminal breast cancer

To better understand why specific transcription factor–based cis-
tromes are enriched for noncodingmutations in luminal breast cancer,
we examined whether this enrichment reflected the dependency to
some as opposed to all transcription factors expressed in luminal breast
cancer. Using the genome-wide shRNA essentiality screen data from
luminal breast cancer cell lines generated as part of the DepMap
project (33, 34), we found that 4 of the 10 transcription factors linked to
cancer driver transcription factor cistromes were exclusively essential

in luminal breast cancers (GATA3, ESR1, FOXA1, TFAP2A) and 5
additional transcription factors were essential in all breast cancers,
regardless of subtype (CTCF, FOXM1, TFAP2C, JUND, and
FOSL2; Fig. 5, P < 0.05). ELF1 was the only transcription factor linked
to a cancer driver cistrome not essential in luminal breast cancer cells
(Fig. 5). While we found that the CREBBP and CEBPG transcription
factors were essential preferentially in luminal breast cancer, we did
not identify these transcription factor cistromes as cancer drivers as
they were only significantly enriched in mutations in the ICGC-EU
dataset. Altogether these results support the identification of cancer
driver cistromes based on transcription factors that are essential to the
growth of luminal breast cancer.

Discussion
Our study depicts the cancer driver cistromes specific to luminal

ERþPRþ breast cancers as identified by an enrichment of noncoding
mutations flanking DNA recognitionmotifs of cis-regulatory elements
accessible in luminal breast tumors. Using flow-sorting to enrich the
cancer cell population, we generated a robust catalogue of luminal-
enriched accessible chromatin regions. Within this catalogue, we
identified seven recurrentlymutated cis-regulatory elements that occur
at a low frequency. By expanding our search to transcription factor–
based cistromes, we identified 10 cancer drivers and showed that a
minority of the noncoding mutations can directly impact the tran-
scription factor binding to cis-regulatory elements. Finally, we show
that 9 out of the 10 transcription factor cistromes are essential to breast
cancer, and 4 of which are specific to luminal breast cancer.

Somatic variants and genomic rearrangements affecting the pro-
tein-coding regions of luminal breast cancers have been well charac-
terized (4, 5, 49, 50), these regions account for less than 2% of the
genome (51, 52). The importance of acquired genetic variants found in
cis-regulatory elements is highlighted in a luminal breast cancer study
by Bailey and colleagues (8) and acrossmultiple breast cancer subtypes
by Rheinbay and colleagues (18). Bailey and colleagues identified
several somatic mutations with functional consequences within the
promoters and enhancers that regulate theESR1 gene (8). The study by
Rheinbay and colleagues describes somatic mutations across several
promoters, including FOXA1, and their effect on gene expression (18).
Our analysis of the mutation burden within luminal ERþPRþ breast
cancer cis-regulatory elements yielded only seven significant hits.
Across both the ICGC-US and -EU cohorts, we found significant
enrichment of mutations in the PLEKHS1 promoter that is likely a
result of APOBECDNA-editing activity (4), however,mutationwithin
this region lead to an increase in PLEKHS1 gene expression (28) and
it’s also known as a genetic marker of aggressiveness for differentiated
thyroid carcinomas (53). Although significant, our results show that
the hunt for cancer drivers within individual cis-regulatory elements is
limiting at best, resulting in the few observed recurrently mutated
individual cis-regulatory elements. Discovering cancer driver muta-
tions in the noncoding space is challenging due to heterogeneity in the
cis-regulatory element and mutational space between individual
tumors, leading to a need of large datasets to identify rarely occurring
cancer driver mutations (52).

As individual cis-regulatory elements are functional units of the
cistrome, akin to how exons make up a gene, we expanded our search
for cancer drivers by partitioning our accessible chromatin region into
cistromes specific for luminal breast cancer. Genome-Wide Associa-
tion Studies (GWAS) have identified thousands of risk variants linked
to diseases including breast cancers (7, 8, 15, 18, 54). In luminal breast
cancer a number of these risk variants have been shown to accumulate
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at the cistromes of key transcription factors in luminal breast cancer,
namely ER and FOXA1 (8, 15, 55). The CTCF/cohesin binding sites,
regulators of the 3D structure of chromatin, are enriched in point
mutations in a highly stereotypic pattern across various cancer types
which may affect transcriptional regulation and result in genomic
instability (56). Additionally, Mazrooei and colleagues showed enrich-

ment of mutations within the cistrome of master regulators of prostate
cancer such as FOXA1, HOXB13, and AR (7). Our study provides a
look into another aspect of cancer-driver search by looking atmutation
load within motif and transcription factor–based cistromes. We
detected an enrichment of mutation at regions flanking the DNA
recognitionmotif in cistromes crucial to luminal breast cancer, namely
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High enrichment of mutations at cistromes of key transcription factors involved in ERþPRþ breast cancer. Heatmaps showing enrichment of mutations at ChIP-seq
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the cistromes of CTCF, TFAP2C,GATA3, FOXA1, ER, FOSL2, JUND,
TFAP2A, ELF1, and FOXM1. The biological significance of mutagenic
processes occurring at the flanking regions of cistrome over the active
binding sites is yet to be fully understood but is a phenomenon seen in
prostate cancer (7). While other studies in melanoma (57, 58),
lung (59), and colorectal (56) cancers have found the inverse true,
they have attributed this mutational enrichment to restricted DNA-
accessibility affecting repair machinery due to either chromatin con-
formation change, or occupancy of specific transcription binding sites
by proteins (60). Approximately 5% to 36% of these mutations are
predicted to impact transcription factor binding to the chromatin.

Altogether, we describe an increase of mutational burden at specific
cistromes defining them as cancer driver cistromes.

As validation of our cancer driver cistromes, we determined from
the DepMap project (33, 34) that 4 transcription factors associated
with our driver cistromeswere preferentially essential to luminal breast
cancers: GATA3, ESR1, FOXA1, andTFAP2A.Among those, GATA3,
ESR1, and FOXA1 have been widely shown to be involved in luminal
breast cancer development and resistance to endocrine therapy (61),
while TFAP2A is associated with the luminal breast phenotype (41).
Five additional transcription factors, CTCF, FOXM1, transcription
factor AP2C, JUND, and FOSL2, were essential across all breast
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Cancer driver cistromes are of transcription factors essential to
luminal breast tumors. A heatmap showing the probability of the
essentiality of the transcription factor in several breast cancer cell
lineswith different subtypes (Luminal, triple-negative breast cancers
(TNBC), and HER2). Column annotation indicates the enrichment of
mutations at binding sites � 50 bp, and rows annotation shows cell
line subtype.
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cancer cell lines. While not luminal exclusive, these transcription
factors have roles in breast cancer progression, aggressiveness, cell
motility, modulating cancer-cell proliferation, and response to
therapy (41, 62–66). In conclusion, our study provides new insights
to identifying cancer drivers beyond the protein-coding space to
benefit the development of precision medicine from cancer-driver
events applicable to breast and other cancer types.
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