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Abstract
Background  Ficolins were originally identified as proteins that bind to transforming growth factor-β1 (TGF-β1). They 
are capable of activating the complement system through lectin pathway for immune system protection. Ficolin-2 
and 3 have been identified in patients with interstitial lung diseases (ILD) and their function in these diseases is 
currently being explored. In contrast, the functional role of ficolin-1 in pulmonary fibrosis is still elusive and remains to 
be elucidated.

Methods  The expression of ficolin-1 in the plasma of idiopathic pulmonary fibrosis (IPF) and connective tissue 
disease (CTD)-ILD patients was first determined. As the orthologue of human ficolin-1, ficolin-B knockout and 
ficolin-B overexpression were used to establish bleomycin (BLM)-induced pulmonary fibrosis mouse model. 
Co-immunoprecipitation, immunofluorescence and RNA sequencing were utilized to explore and expound on the 
expression and the functional mechanism of ficolin-1 in pulmonary fibrosis.

Results  Compared with healthy controls, plasma ficolin-1 was significantly decreased in patients with IPF and CTD-
ILD. In the bleomycin (BLM)-induced mice model, ficolin-B deficiency aggravated lung injury and fibrosis. There was 
also observed increase in TGF-β1 levels and enhanced downstream signaling. However, the overexpression of ficolin-B 
showed preventative and therapeutic efficacy against lung fibrosis. Furthermore, coimmunoprecipitation studies 
revealed the direct interaction between ficolin-1 and TGF-β1 in human plasma, which was further confirmed by the 
colocalization of ficolin-1 and TGF-β1 in lung tissues.

Conclusions  Ficolin-1 inhibits pulmonary fibrosis by directly binding to the key profibrogenic factor TGF-β1, marking 
it as a potential target for therapy in the treatment of fibrotic lung diseases.
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Background
Idiopathic pulmonary fibrosis (IPF) is a debilitating inter-
stitial pneumonia with a rising incidence and a median 
survival of just 2–3 years from diagnosis. It is a chronic, 
progressive and irreversible fibrotic lung disease of 
unknown cause. It is marked by altered cellular compo-
sition and aberrant fibrotic remodeling of the distal lung 
tissue [1–3]. Despite variable underlying pathogenesis, it 
shares common pathophysiological pathways with other 
interstitial lung diseases (ILD), such as connective tissue 
disease (CTD)-related ILDs (CTD-ILD) and present sim-
ilar clinical signs of interstitial fibrosis [4, 5]. The current 
available therapeutic drugs such as antifibrotic drugs, pir-
fenidone and nintedanib, cause detrimental side effects 
involving the decline of lung function over time while 
not halting the disease progression [6–8]. Therefore, it 
is imperative that we better understand the molecular 
mechanisms of pulmonary fibrosis for the development 
of new, essential and improved antifibrotic strategies.

Ficolins were originally documented as transforming 
growth factor (TGF)-β1 binding proteins, a crucial pro-
fibrotic factor in the fibrosis progress [9]. Three types 
of human ficolins have been identified to date, namely, 
ficolin-1 (M-ficolin), ficolin-2 (L-ficolin) and ficolin-3 
(H-ficolin). Ficolin-1 is thought to function locally follow-
ing synthesis and secretion from monocytes and granu-
locytes, with relatively low serum concentrations [10, 
11]. On the other hand, ficolin-2 and ficolin-3 are mainly 
expressed in the liver and present in the circulation as 
serum lectins [12]. Though three ficolins have been dis-
covered in humans, only two have been described in 
mice, which include ficolin-A and ficolin-B. A phyloge-
netic tree analysis has indicated that ficolin-A is regarded 
as the murine orthologue of human ficolin-2, while 
mouse ficolin-B is the orthologue of human ficolin-1 [13]. 
The mouse homologue of the ficolin-3 gene exists as a 
pseudo-gene. Ficolin-A is therefore functionally equiva-
lent to ficolin-2, and just like in humans, it is mainly con-
sidered to be a serum protein derived from the liver and 
macrophages, whereas ficolin-B is stored and released 
from myeloid cells locally, and therefore considered func-
tionally equivalent to ficolin-1 in humans [14].

Accumulating evidence has indicated that ficolins 
could form complexes with mannose-binding lectin-
associated serine proteases (MASPs) to initiate the acti-
vation of the complement lectin pathway [15]. Several 
studies have linked pulmonary fibrosis to the comple-
ment system. In particular, complement factor 5 (C5) was 
shown to play an anti-inflammatory role during the acute 
phase, and a profibrotic role during the chronic stage in 
a murine model of bleomycin (BLM)-induced pulmonary 
fibrosis [16]. Another study revealed that C3 expression 
was higher in IPF patients than in healthy controls, and 
C3-deficient mice were protected from BLM-induced 

lung injury [17]. Hongmei et. reported a positive feed-
back crosstalk between TGF-β1 and complement acti-
vation, leading to epithelial injury in pulmonary fibrosis 
[18].

It is hypothesized that ficolins may be involved in the 
pulmonary fibrosis process. Lower ficolin-2 plasma lev-
els were reported in IPF patients, which were inversely 
correlated with the forced vital capacity, whereas there 
was no observed difference in ficolin-3 [19]. Moreover, 
high ficolin-2 concentration was associated with better 
progression-free survival in IPF patients [20]. However, 
whether or not ficolin-1 plays a role in IPF remains to be 
confirmed.

To determine the functional role of ficolin-1 in pulmo-
nary fibrosis, we initially had to establish the expression 
of ficolin-1 in the plasma of IPF and CTD-ILD patients. 
A mouse model was developed using ficolin-B knock-
out (Fcnb−/−) mice, the results from the model showed 
that ficolin-B deficiency exacerbated pulmonary fibro-
sis in BLM treated mice. In contrast, the overexpression 
of ficolin-B through delivery of adeno-associated virus 
(AAV)-FcnB remedied BLM-induced pulmonary fibrosis. 
Furthermore, co-immunoprecipitation assay was utilized 
to confirm the direct interaction between ficolin-1 and 
TGF-β1. Consistent with the findings from the present 
study, we can surmise that ficolin-1 may be a promising 
target for the development of improved therapeutic strat-
egy for pulmonary fibrosis.

Materials and methods
Human samples
The diagnosis of IPF was done in accordance with the 
American Thoracic Society (ATS)/European Respira-
tory Society (ERS) consensus diagnostic criteria [21]. 
The classification criterias for CTD-ILD were conducted 
according to the American College of Rheumatology 
classification criteria for rheumatoid arthritis (RA), sys-
temic sclerosis (SSc), Sjogren’s disease [22–24], and for 
other CTD we used current relevant criteria for diagno-
sis. Age- and sex-matched healthy people were included 
as control subjects. We recruited 20 healthy control 
subjects, 20 patients with IPF and 18 patients CTD-
ILD. Blood samples from each subject, and lung explant 
material from IPF patient were collected. All subjects 
provided written informed consent for participation in 
the study prior to study onset, and the ethics committee 
of Tongji Hospital, Huazhong University of Science and 
Technology (Wuhan, China), reviewed and approved the 
study (IRB ID: 20150503). The clinical information was 
included in supplemental Table 1.

Murine model
All mice were housed in a specific-pathogen-free ani-
mal facility at the Tongji Hospital (Wuhan, China). The 
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sample size of each group is 6–15. Mice were randomly 
assigned to different groups. The accessing process was 
conducted by an assessor blind to treatment allocation. 
All mice were eight-to-ten weeks male C57BL/6.

Ficolin-B knockout (Fcnb−/−) mice were generated by 
GemPharmatech (Nanjing, China), and the littermates 
were as the control. In this project we used CRISPR/
Cas9 technology to modify Fcnb gene (exon2-exon9, 
Chr2), gRNA was target Fcnb DNA gene site. To generate 
mice with lung-specific transgenic expression of ficolin-
B (OE-Fcnb), adeno-associated virus 6 (AAV6)-CMV-
Fcnb-3xFlag-P2A-tWPA (OBIO, China) was delivered 
into mice via intratracheal instillation. The control mice 
were injected with AAV6-CMV-3xFlag-P2A-tWPA. The 
mice were all maintained in a specific pathogen-free ani-
mal center at the Tongji Hospital under a 12 h light-cycle 
environment with clean water and irradiated food. To 
avoid confounding factors, we randomly assigned mice 
to the experimental and control groups, and in order to 
observe mortality, the sample size of mice in the BLM 
group was 2–3 times that of the normal saline group. All 
the experiments were approved by the Animal Care and 
Use Committee of Tongji Hospital (TJH-202105013).

The mice were anesthetized by isoflurane inhalation 
and then treated with BLM or normal saline for the con-
trol group via intratracheal instillation. The bodyweight 
was recorded twice a day. At 21 days, the mice were 
anesthetized with 1% pentobarbital sodium. The lung 
function test was then performed using the FlexiVent 
system (SCIREQ, Canada). The BALF was collected from 
BLM-induced mice and the control group. The superna-
tant of BALF samples was stored at -80℃ and the total 
cells were counted. The right lungs were frozen in liq-
uid nitrogen immediately and stored at -80℃ for subse-
quent measurements. The left lungs were soaked in 4% 
paraformaldehyde.

Regents and antibodies
Bleomycin (Catalog Number: HY-17565 A, dosage: 2 mg/
kg) and human recombinant TGF-β1 (Catalog Number: 
HY-P73616, dosage:10ng/ml) were obtained from Med-
ChemExpress. Primary antibodies were used as follows: 
Anti-human Ficolin-1 (Catalog Number: MBS2015772), 
mouse Ficolin-b (cat. MBS2028168) from MYBioSource, 
diluted 1:1000 for western blot and 1:50 for immu-
nofluorescence. Anti-Fibronectin (Catalog Number: 
15613-1-AP), β-Actin (Catalog Number: 20536-1-AP), 
Fsp1(Catalog Number: 16105-1-AP), Epcam (Catalog 
Number: 21050-1-AP) from Proteintech, diluted 1:2000 
for western blot and 1:50 for immunofluorescence. Anti-
TGF-β1(Catalog Number: sc-52893) from Santa cruz, 
diluted 1:500 for western blot and 1:50 for immuno-
fluorescence. Anti-proSPC (Catalog Number: AB3786) 
from Millipore, diluted 1:200 for immunofluorescence. 

Anti-mouse/rabbit FITC and anti-mouse/rabbit Cy3 anti-
body from Boster, diluted 1:50 for immunofluorescence. 
ELISA kits were applied as follows: Human/mouse TGF-
β1 ELISA (Catalog Number: DB100C) from R&D Sys-
tems. Human Ficolin-1 ELISA (Catalog Number: HK357) 
from Hycult Biotech. Hydroxyproline Colorimetric Assay 
Kit were from Biovison, Milpitas. RNA extraction kit and 
SYBR Premix Ex Taq were from Takara. Protein G Mag-
netic beads was from Cell Signaling Technology.

Histological analysis
The left lung was fixed and then subjected to Masson’s 
trichrome staining to detect pulmonary interstitial fibro-
sis of mice. Two pathologists who were blinded to the 
study assessed the degree of interstitial fibrosis using the 
Ashcroft scoring system [25]. Each group must contain at 
least six samples.

Hydroxyproline analysis
The content of hydroxyproline in the lung was used to 
quantify the collagen in whole mouse lungs. It was deter-
mined using a Hydroxyproline Colorimetric Assay Kit 
following the manufacturer’s instructions. Briefly, the 
vacuum-dried lung tissue was cracked with concentrated 
hydrochloric acid at 120℃. After adding the detection 
reagents to the supernatant, the absorbance was detected 
using a microplate reader at a wavelength of 560 nm.

Enzyme-linked immunosorbent assay
Human Ficolin-1 and active TGF-β1 were measured using 
ELISA kits according to the manufacturers’ instructions. 
The human serum samples were obtained and diluted 
at 1:50 while there was no dilution of bronchoalveolar 
lavage fluid (BALF) samples obtained from BLM-induced 
mice. The lower detection limit of the assays was 31.3 pg/
ml for TGF-β1 and 3.1 ng/ml for Ficolin-1.

Western blot analysis
Western blotting was performed by first extracting 
protein from cultured cells or lung tissues from BLM-
induced mice. The protein was then separated by elec-
trophoresis and then transferred onto PVDF membranes. 
The samples were incubated with the appropriate pri-
mary antibodies and secondary antibodies, followed by 
visualization using the GelDoc XR + System from Bio-
Rad, employing established methodologies [26].

Quantitative RT-PCR
Total RNA was extracted from mouse lung tissues or cell 
lysates using Trizol total RNA extraction kit and then 
the mRNA was reverse transcribed using reverse tran-
scription kit. Quantitative RT-PCR was performed using 
SYBR Premix Ex Taq. The primers of the target genes are 
shown in Table 1 and 2. Relative mRNA expression was 
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calculated using the 2−ΔΔCT method with β-actin as the 
endogenous control.

Immunofluorescence
Mouse and human lung tissue sections were fixed and 
paraffin-embedded then stained with primary antigens. 
The nuclei were counter-stained with DNA with 4′,6 
diamidino-2-phenylindole (DAPI). All immunofluo-
rescence images were captured using a Nikon inverted 
fluorescence microscope (Nikon Eclipse C1) and dis-
played through the professional analysis software (Nikon 
DS-U1). The quantification of recruited inflammatory 
cells was performed by visualizing sections under mag-
nification 400×. Count the total number of cells and 
the number of cells that show double positivity in each 
image, then calculate the double positive cell percentage 
by dividing the number of double positive cells by the 
total number of cells and multiplying by 100.

RNA sequencing and bioinformatics
RNAs from WT and Fcnb−/− lung tissues were both 
extracted using an RNA isolation kit. RNA deep sequenc-
ing (RNA-seq) libraries were multiplexed and loaded into 
the Illumina HiSeq flow cell v3. All sequencing protocols 
were carried out as per the manufacturer’s instructions 
using the Illumina HiSeq 1000 system and HiSeq con-
trol software. In the DEG analysis, genes with a P-value 
of ≤ 0.05 and a fold change (FC) of ≥ 2 were considered 
significantly differentially expressed. To investigate genes 
of TGF-β1 signaling, 108 TGF-β1 signaling-related genes 
were extracted from the Gene Ontology and GO Annota-
tions (https:/​/www.eb​i.ac.uk​/Qui​ckGO/), which provides 
detailed annotations of genes.

Co‑immunoprecipitation assay
Co-immunoprecipitation experiments were performed 
according to a standard protocol. Total plasma protein 
was extracted and pre-cleared with 20 µL Protein G 
Magnetic beads for 2  h. Then the pre-cleared superna-
tants were incubated with primary antibodies and shaken 
slowly overnight at 4  °C to form an immunocomplex. 
The immunocomplex solution was then transferred into 
a tube containing pre-washed magnetic beads and incu-
bated rotated for 3–4 h at 4 °C. Finally, the immunocom-
plex was washed five times with 500 µL of 1×cell lysis 
buffer and analyzed by western blotting analysis.

Statistical analysis
There were no specific statistical tests done to predeter-
mine the sample size. Comparisons among the different 
groups were performed using the GraphPad Prism 8 soft-
ware (GraphPad, San Diego, CA). Data were expressed as 
the mean ± SEM values. Student’s t-test or ANOVA were 
used to compare normally distributed data. Mann-Whit-
ney U-test was performed to compare the data that were 
not normally distributed. Pearson’s correlation was used 
to determine correlation analysis. Kaplan-Meier analy-
sis was applied for the evaluation of survival analysis. A 
two-sided p-value of < 0.05 was considered statistically 
significant.

Results
Ficolin-1/ ficolin-B was downregulated in pulmonary 
fibrosis
Ficolins are capable of activating the complement system 
through the lectin pathway. In recent studies, the expres-
sion of the other two ficolins described in humans, fico-
lin-2 and 3 expressions have been explored in patients 
with ILD. However, the functional role of ficolin-1 in pul-
monary fibrosis still remains to be studied. To examine 
and describe its role, the expression levels of ficolin-1 in 
the plasma of patients with ILD was examined and noted. 
It was discovered that IPF patients (median, 616.6 pg/ml; 
IQR, 430.7-745.8 pg/ml) and CTD-ILD patients (median, 
666.1 pg/ml; IQR, 484.9-950.9 pg/ml) expressed sig-
nificantly lower levels of ficolin-1 compared to the con-
trol group (median, 895.5 pg/ml; IQR, 724.4–1043.0 pg/
ml) (Fig.  1A). On the other hand, the expression levels 
of TGF-β1 were increased in patients with IPF patients 
(median, 16527 pg/ml; IQR, 4770–31235 pg/ml) and 
CTD-ILD patients (median, 16436 pg/ml; IQR, 6981–
25455 pg/ml), comparing with healthy control (median, 
5695 pg/ml; IQR, 3041–7944 pg/ml) (Fig. 1B). The clini-
cal information was included in supplemental Table 1.

In the same way, the lungs obtained from BLM-
induced mice also exhibited lower expression levels of 
ficolin-B than that of the control group, while fibronec-
tin was upregulated in the fibrotic lungs (Fig.  2A and 

Table 1  RT-PCR mouse primers of genes
Fibronectin Forward ​A​A​T​G​G​T​G​C​C​T​T​G​T​G​C​C​A​C​T​T​C​C
Fibronectin Reverse ​A​T​G​T​T​G​T​C​C​C​G​C​C​T​A​C​C​C​T​C​A
Collagen I Forward ​G​C​T​C​A​G​A​G​G​C​G​A​A​G​G​C​A​A​C​A​G
Collagen I Reverse ​G​A​T​G​G​G​C​A​G​G​C​G​G​G​A​G​G​T​C
Tgfb1 Forward ​C​T​C​C​C​G​T​G​G​C​T​T​C​T​A​G​T​G​C
Tgfb1 Reverse ​G​C​C​T​T​A​G​T​T​T​G​G​A​C​A​G​G​A​T​C​T​G
β-Actin Forward ​G​G​C​T​G​T​A​T​T​C​C​C​C​T​C​C​A​T​C​G
β-Actin Reverse ​C​C​A​G​T​T​G​G​T​A​A​C​A​A​T​G​C​C​A​T​G T
Fcnb Forward ​C​C​C​G​A​A​T​T​C​C​C​A​G​C​C​A​T​G​G​C​C​C​T​G​G​G​A​T​C​T
Fcnb Reverse ​C​C​C​C​T​C​G​A​G​C​T​A​G​A​T​G​A​G​C​C​G​C​A​C​C​T​T​C​A​T

Table 2  Mouse primers of targeted knock-out genes
KO Forward ​C​T​A​C​T​T​T​G​T​G​G​C​T​G​C​C​A​C​A​T​C​C 391 bp
KO Reverse ​T​C​G​A​C​A​G​G​G​T​T​T​C​T​C​T​G​A​A​T​A​G​C​C
WT Forward ​T​C​A​T​T​C​C​C​A​A​G​C​A​G​T​C​C​C​A​C​T​C 455 bp
WT Reverse ​G​T​C​A​A​G​G​C​A​T​C​T​G​G​T​G​T​C​A​C​G​G

https://www.ebi.ac.uk/QuickGO/
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C). The expression of fibrosis-related genes (Acta2, Fn1 
and Tgfβ1) revealed that they were negatively correlated 
to the expression of ficolin-B (Fig. 2D and F). Addition-
ally, the co-immunostaining results further reinforced the 
conclusion that ficolin-B (red) was highly expressed in 
pro-Spc + alveolar epithelium (Fig. 2G) but not in Fsp1+ 
(green) myofibroblasts (Supplemental Fig.  1A). Taken 
together, our data indicate that pulmonary fibrosis is 
characterized by low ficolin-1/ficolin-B expression and 
high fibrosis markers.

Ficolin-B deficiency exacerbated pulmonary fibrosis in 
BLM-treated mice
To further investigate the role of ficolin-B in pulmonary 
fibrosis, we generated ficolin-B knockout (Fcnb−/−) mice, 
and their wild-type (WT) littermates were used as the 
control group. The PCR analysis of Fcnb−/− mice DNA 
isolated from the lung showed that Fcnb was knocked 
out in mice (Supplemental Fig.  2A). The same results 
were obtained in RNA transcription level (Supplemen-
tary Fig. 2B). These results were further confirmed by co-
immunostaining of lung sections (Supplemental Fig. 2C).

Considering frailty as an independent risk factor for 
pulmonary fibrosis, we first assessed the changes in body 
weight of the mice. At 21 days following the BLM treat-
ment, Fcnb−/− mice presented with weight loss (Fig. 3A) 
indicating the debilitating effect of ficolin-B depletion 
in pulmonary fibrosis. The significantly decreased lev-
els of ficolin-B greatly curbed mouse survival (Fig.  3B). 
Masson staining which is representative of tissue fibro-
sis showed immensely aggravated lung tissue injury and 
fibrosis in Fcnb−/− mice compared to the control group 
(Fig.  3C). Phenotypically, the Ashcroft score was much 
higher in Fcnb−/− mice compared with the WT group 
(Fig. 3D). Moreover, the parameters of lung compliance, 
lung elastance, and inspiratory capacity were significantly 
decreased in BLM-treated mice. In accordance with these 

observations, ficolin-B deficiency further exacerbated 
BLM-induced lung function loss in mice (Fig. 4A and E). 
Furthermore, WT mice showed lower hydroxyproline 
content in comparison with Fcnb−/− mice (Fig.  5A). The 
number of inflammatory cells (maingly macrophage) in 
the BALF and the amount of Fibronectin and Collagen 
I in lung tissue of BLM-treated Fcnb−/− mice were much 
higher than that in the WT mice (Fig.  5B and D). Col-
lectively, these data support that the deletion of ficolin-B 
exacerbated lung injury and fibrosis.

Depletion of ficolin-B amplified TGF-β1 signaling
To outline more detailed mechanisms by which ficolin-
B deficiency drives pulmonary fibrosis, RNA-seq was 
employed to compare the expression patterns of genes 
(Supplemental Fig.  3A). By comparing gene expression 
profiles between BLM-treated Fcnb−/− mice and BLM-
treated WT mice, a total of 1684 differentially expressed 
genes (DEGs) were identified. Among these genes, 875 
of them were upregulated and 809 were downregulated 
(Supplemental Fig.  3A, Supplemental Table 2). Given 
that TGF-β1 was associated with ficolin-1/ficolin-B, we 
embarked on confirming the expression levels of TGF-
β1 downstream signaling molecules. As expected, the 
expression levels of the downstream molecules were 
changed sharply after the depletion ficolin-B (Fig.  6A, 
Supplemental Table 3), as evidenced by the ELISA anal-
ysis of TGF-β1 in BALF. Our data concomitantly sug-
gested that the depletion of ficolin-B amplified TGF-β1 
signaling.

Lung-specific transgenic expression of ficolin-B protected 
mice against pulmonary fibrosis
Subsequently, to further validate the above findings, we 
generated mice with lung-specific transgenic expres-
sion of ficolin-B via intratracheal instillation of AAV6-
Fcnb (Supplemental Fig.  4A). Western blot and RT-PCR 

Fig. 1  Expression of Ficolin-1 and TGF-β1 in pulmonary fibrosis patients. (A-B) Elisa analysis of A) FCN1 and B) TGF-β1 expression in the serum of control 
subjects and pulmonary fibrosis patients (n = 18–20 per group). Data are presented as median ± IQR. *p < 0.05, **p < 0.01, ***p < 0.001 by Mann-Whitney’s 
unpaired non-parametric test (A-B). FCN1, ficolin-1; Fcnb, ficolin-B
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analysis showed that ficolin-B was overexpressed in the 
Fcnb-overexpressed lung (Supplemental Fig. 4B and 4 C). 
The bodyweight of the mice was significantly improved 
by the overexpression of ficolin-B (Fig. 7A) as well as sig-
nificantly improved BLM-induced pulmonary injury and 
fibrosis, as shown by histological analysis (Fig. 7B) and the 
Ashcroft score (Fig. 7C). Mice with lung-specific overex-
pression of ficolin-B also displayed reduced inflamma-
tory cell infiltration (Fig.  8A) and decreased expression 
of fibrosis markers (Fig.  8B and C). Moreover, TGF-β1 
transcriptional levels were also downregulated following 
prophylactic overexpression of ficolin-B in BLM-treated 
mice (Fig. 8D). These findings signify that ficolin-B over-
expression in the lung might alleviate pulmonary fibrosis 

and its symptoms and therefore should be targeted as 
treatment option for pulmonary fibrosis.

Ficolin-1 interacted with TGF-β1 in pulmonary fibrosis
Studies have shown that ficolins were originally described 
to bind TGF-β1 in porcine uterus [9], but very little 
research has been done to confirm its interaction with 
TGF-β1 in humans. Our study has confirmed for the 
first time that this combination also existed in human 
by co-immunoprecipitation (Fig.  9A). Immunofluores-
cence analysis confirmed the co-localization of TGF-β1 
and ficolin-1 in the lung sections of a patient with IPF 
(Fig.  9B). Importantly, the expression of ficolin-1 was 
decreased in a dose-dependent manner upon TGF-β1 
stimulation (Fig. 9C and D). From the above findings, we 

Fig. 2  Expression of Fcnb in pulmonary fibrosis mice with bleomycin (BLM) induction. (A-B) Western blot analysis of Fcnb and fibronectin expression 
in the lungs of mice after BLM induction (n = 4 per group). (C) RT-PCR analysis of Fcnb in the lungs of mice after BLM treatment (n = 6–12 per group). (D-
F) RT-PCR analysis of the correlation between Fcnb and D) Acta2, F) Fn1, F) Tgfb1 expression after BLM induction (n = 12 per group). (G) Representative 
results for co-immunostaining of Fcnb and pro-Spc (alveolar epithelium marker) in lung sections from BLM-induction mice. The nuclei were stained blue 
using 4′,6-diamidino-2-phenylindole (DAPI), and the images were taken under original magnification ×400. Data are presented as mean ± SEM. *p < 0.05, 
**p < 0.01, ***p < 0.001 by student’s unpaired t-test (B and C). Fcnb, ficolin-B
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can confirm the regulatory role of ficolin-B in vivo. The 
expression of TGF-β1 showed a negative correlation with 
the expression of ficolin-B (Fig.  2F). We found that the 
level of TGF-β1 was markedly increased in the lungs of 
BLM-treated mice, and further elevated in Fcnb−/− mice 
(Fig.  6B). Further, the expression of TGF-β1 signaling 
core genes (Thbs1, Nog, Myc, Hamp, Smad2, Smad3, 
Tgfbr1, Tgfbr2) were significantly changed in Fcnb−/− 
mice (Supplementary Fig.  5A), while this change was 
reversed in the ficolin-B-overexpressed mice (Supple-
mentary Fig. 5B). Taken together, Ficolin-1 directly inter-
acted with TGF-β1, thus leading to amplified TGF-β1 
signaling in pulmonary fibrosis (See Fig. 10).

Discussion
Pulmonary fibrosis is an endpoint pathological change 
that occurs in the lungs in many chronic respiratory 
diseases due to chronic lung injury. It is associated with 
an atypical immune response which tends to lead to 
aberrant wound healing and the continuous deposition 
of extracellular matrix [27]. Fundamentally, our study 
revealed that plasma ficolin-1 was significantly decreased 
in patients with IPF and CTD-ILD when compared with 
healthy controls. Correlatively, the expression levels of 
ficolin-B were also observed to be downregulated in 
bleomycin-induced pulmonary fibrosis mouse model. 
Furthermore, Fcnb−/− mice presented with aggravated 
pulmonary fibrosis along with an elevated expression of 
TGF-β1 levels and enhanced downstream signaling, this 

Fig. 3  Fcnb deficiency exacerbated pulmonary fibrosis in BLM-treated mice. (A) Work flow of murine models. (B) The body weight change during BLM 
treatment was monitored (n = 6–12 per group). (C) Survival studies were conducted in the BLM lung fibrosis model (n = 6–12 per group). (D) The lungs 
from WT and Fcnb−/− mice were stained with Masson’s trichrome (n = 6–10 per group). (E) Histological analysis of the severity of lung fibrosis in mice after 
BLM induction (n = 6–10 per group). Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 by one-way ANOVA (D), two-way ANOVA (A) or 
Kaplan-Meier (B). Fcnb, ficolin-B
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finding reveals a regulatory relationship between fico-
lin-1/ficolin-B and TGF-β1, a key profibrogenic mol-
ecule. It points to the fact that the downregulation of 
ficolin-1/ficolin-B in pulmonary fibrosis leads to the 
elevated expression of TGF-β1, thereby making TGF-β1 
a driver of pulmonary fibrosis and ficolin-1/ficolin-B a 
preventer or limiter of the onset or progression of pul-
monary fibrosis. This relationship has been previously 
been described in porcine uterus and our results from 
the colocalization of ficolin-1 and TGF-β1 in lung tissues 
have confirmed the direct interaction between ficolin-1 
and TGF-β1 in human plasma. This observation is note-
worthy and is further confirmed in bleomycin-induced 
pulmonary fibrosis mouse model, where the overexpres-
sion of ficolin-B improved pulmonary compliance, and 
reduced pulmonary fibrosis related genes, including Col-
lagen I and fibronectin.

It is commonly accepted that ficolins are vital trig-
gers of the complement lectin pathway. They are mainly 
involved in protective roles against various bacterial, fun-
gal, and viral pathogens [28–35]. However, other studies 
such as those conducted by Jarlhelt L et al. and Wu X et 
al. showed that the levels of both ficolin-A and B were 
significantly increased in LPS-induced acute lung injury 
(ALI) model. The extent of lung injury and local inflam-
mation in the acute phase were aggravated [36, 37], and 
this was also accompanied by attenuated complement 
activation observed only in FcnA−/− but not FcnB−/− mice 
[37]. The same group also reported that ficolin-A exacer-
bated severe H1N1 influenza virus infection-induced ALI 
via excessive complement activation, whereas ficolin-B 

deficiency showed no effect in either the lung injury or 
complement activation [38]. One particular observation 
to note was that ficolin-A and B showed different expres-
sions in the lungs of the two ALI mouse models men-
tioned above [37, 38], indicating that these two mouse 
ficolins may have distinct physiological functions. Even 
more interestingly, it was observed that ficolin-B defi-
ciency led to the delayed repair of LPS-induced local 
lung injury [37]. In view of all these findings pertaining 
to the key role played by ficolins in chronic lung injury 
in pulmonary fibrosis, it may be worth noting that the 
repair process dysregulation in FcnB−/− mice may partly 
contribute to exacerbated pulmonary fibrosis, which was 
further confirmed in our study.

Although TGF-β1 has long been considered a key pro-
fibrotic mediator in organ fibrosis, few studies exploring 
the role of ficolins, initially found as TGF-β1 binding pro-
teins, in pulmonary fibrosis have been reported. Lower 
ficolin-2 plasma levels were observed in IPF patients 
[19], whereas higher ficolin-2 levels were associated with 
interstitial lung involvement in patients with systemic 
sclerosis [39, 40]. It is presumed that ficolin-2 expression 
was reversely affected in the pulmonary fibrosis process 
shared by IPF and SSc-ILD, as well as the pathogenesis 
of SSc itself. In terms of ficolin-3, despite of no differ-
ence between SSc patients and healthy controls, SSc 
patients with decreased ficolin-3 levels tended to have a 
higher prevalence of ILD. Besides, serum ficolin-3 levels 
inversely correlated with ground-glass opacity score on 
chest computed tomography in SSc-ILD patients [41]. 
Curiously, there was no difference in ficolin-3 expression 

Fig. 4  Lung function following prophylactic deletion of Fcnb in BLM-treated mice. (A-E) The pressure-volume-loops (PV-loops), inspiratory capacity, 
respiratory system elasticity (Ers), static compliance (Cst), and respiratory system compliance (Crs) of mice were measured (n = 6–10 per group). Data are 
presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 by one-way ANOVA (B-E) or two-way ANOVA (A). Fcnb, ficolin-B
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between IPF and healthy subjects [19]. Unlike ficolin-2 
and 3, we firstly reported that plasma ficolin-1 concentra-
tions were decreased both in IPF and CTD-ILD patients, 
accompanied with increased TGF-β1 levels, which can 
be partly explained by the direct interaction between 
ficolin-1 and TGF-β1 in human plasma, suggesting that 
ficolin-1 may play a protective role against pulmonary 
fibrosis. Besides, ficolin-1 decreased with TGF-β1 stimu-
lation in type II alveolar epithelial cells (AECII) in a time-
dependent manner, as another explanation for the low of 
ficolin-1 expression in patients with lung fibrosis.

Ficolin-B is considered the ortholog of human fico-
lin-1 in mice, and consistently with ficolin-1, it was sig-
nificantly downregulated in BLM-treated mice, just as in 
patients with pulmonary fibrosis. The location of ficolin-
B remains unclear, it has nonetheless been reported to be 
primarily stored and released locally from macrophages 
and neutrophils with very low serum concentrations, 
which is just as similar as ficolin-1 in human [14]. In our 

study, ficolin-B was further confirmed to be detected in 
the lungs, especially in AECIIs and fibroblasts, playing 
vital roles in the initiation and development of IPF. We 
further observed and reported that pulmonary fibrosis 
appeared to be aggravated in BLM-treated FcnB−/− mice, 
and progressed alongside elevated levels of TGF-β1 levels 
and augmented downstream signaling.

In contrast with our results, Xu and colleagues reported 
elevated ficolin-1 levels in ILD patients, and profibrotic 
role of ficolin-B in BLM-induced lung injury model [42]. 
It should be emphasized that ILD consists of a group of 
pulmonary disorders, and different types of ILD have 
distinct pathophysiology, clinical manifestations, and 
prognoses. Given the high heterogeneity of ILD, a simple 
comparison of ficolin-1 levels between ILD patients and 
healthy controls may not be appropriate, especially with 
relatively small sample size [42]. In their animal experi-
ments, 10 mice were divided into each group, and the 
survival rate of BLM-induced WT mice was < 50% [42]. 

Fig. 5  Fibrotic gene expression following prophylactic deletion of Fcnb in BLM-treated mice. (A)The content of hydroxyproline in the right middle lung 
was measured ((n = 6 per group). (B) The BALF total cells were counted (n = 6–10 per group). (C-D) RT-PCR analysis of Fibronectin (Fn1), Collagen I (Col1a2) 
(n = 4–9 per group). Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 by one-way ANOVA (A-D). Fcnb, ficolin-B
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Fig. 7  Lung-specific transgenic expression of Fcnb protected mice against lung fibrosis. (A) Work flow of murine models. (B) The body weight change 
during BLM treatment was monitored (n = 6–15 per group). (C) The lungs from WT and OE-Fcnb mice were stained with Masson’s trichrome (n = 6 per 
group). (D) Histological analysis of the severity of lung fibrosis in mice after BLM induction (n = 6–15 per group). Data are presented as mean ± SEM. 
*p < 0.05, **p < 0.01, ***p < 0.001 by one-way ANOVA (C) or two-way ANOVA (A). Fcnb, ficolin-B

 

Fig. 6  Depletion of Fcnb amplified TGF-β1 signaling. (A) Heatmap of TGF-β1 signaling genes after BLM treated. (B) Elisa analysis of TGF-β1 expression in 
the BALF of WT and Fcnb−/− mice (n = 6–10 per group). Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 by one-way ANOVA (B). Fcnb, 
ficolin-B
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As ficolin-B treatment was reported to exacerbate bleo-
mycin-induced lung injury [42], which may lead to lower 
survival rate, whether survived mice were sufficient for 
statistical analysis was an important concern.

Under the intervention of Fcnb, the most significantly 
changed genes in the TGF-β1 signaling pathway are 
Thbs1 and Nog. Synthesized by various cellular sources 
such as endothelial cells, smooth muscle cells, and fibro-
blasts, Thbs1 contributes to the cell-matrix interactions, 
blood vessel formation, and tissue repair processes [43, 
44]. In our previous study, we identified Thbs1 as an 
aging-associated core gene in the development of pul-
monary fibrosis [45]. But Micheal ect. demonstrated that 
Thbs1 deficiency did not protect mice from systemic 
bleomycin challenge [46]. The relationship of Thbs1 and 
aged pulmonary fibrosis was worth deep-investigation. 
The Nog gene encodes the Noggin protein, which plays an 
important role in the development of many body tissues, 
including neural tissues, muscles, and bones [47]. Noggin 
may affect the repair and fibrotic processes of lung tissue 

by regulating the BMP signaling pathway in pulmonary 
fibrosis [48, 49]. However, the specific role and mecha-
nism of Nog in pulmonary fibrosis still require further 
research to elucidate.

The causal relationship between decreased ficolin-1 
and the development of pulmonary fibrosis is not yet 
completely determined. However, the in vitro experimen-
tal results of this study show that TGF-β1 intervention 
inhibits the expression of ficolin-1 in a time-dependent 
manner, we can therefore speculate that the occurrence 
of pulmonary fibrosis is more likely to act as a driving 
factor for the downregulation of ficolin-1 expression. The 
reduced expression of ficolin-1 leads to a reduction in its 
competitive binding with TGF-β1, which consequently 
causes excessive activation of the downstream signaling 
pathway of TGF-β1, forming a feedback loop which pro-
motes the progression of pulmonary fibrosis.

In conclusion, we established the association between 
decreased ficolin-1 expression and the lung fibrosis pro-
cess. Using ficolin-B, the ortholog of human ficolin-1 in 

Fig. 8  Fibrotic gene expression following prophylactic overexpression of Fcnb in BLM-treated mice. (A) The BALF total cells were counted (n = 6–15 
per group). (B-D) RT-PCR analysis of Fibronectin (Fn1), Collagen I (Col1a2) and Tgfb1 (n = 5–9 per group). Data are presented as mean ± SEM. *p < 0.05, 
**p < 0.01, ***p < 0.001 by one-way ANOVA (A-D). Fcnb, ficolin-B
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vivo, we were able to determine that ficolin-B deficiency 
exacerbated BLM-induced pulmonary fibrosis. The sup-
pressed levels of ficolin-B were accompanied by elevated 
TGF-β1 expression and signaling. When overexpressed, 
ficolin-B exerted an antifibrotic effect and alleviated pul-
monary fibrosis. From the results obtained in patients 
with IPF and the mouse model, we can draw that ficolin-1 
competitively binds to TGF-β1, and when its expression 
is repressed just as in pulmonary fibrosis, the expres-
sion of TGF-β1 becomes elevated and pulmonary fibrosis 
becomes exacerbated.

Fig. 9  FCN1 interacted with TGF-β1 in pulmonary fibrosis. (A) Co‑immunoprecipitation analysis of TGF-β1 and FCN1 in serum of IPF patients. (B) Rep-
resentative results for co-immunostaining of FCN1 and TGF-β1 in lung sections derived from lung explant material from an IPF patient. The nuclei were 
stained DAPI, and the images were taken under original magnification ×400. (C-D) Western blot analysis of FCN1 expression in A549 cells after TGF-β1 
induction (n = 3 per group). Data are presented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 by one-way ANOVA (D). FCN1, ficolin-1; Fcnb, ficolin-B
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