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It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The 
genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell 
proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory 
and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenesis. Different 
signaling pathways play a part in the carcinogenesis that occurs in a cell. Among these pathways, 
the Wnt signaling pathway plays a predominant role in carcinogenesis and is known as a central 
cellular pathway in the development of tumors. There are three Wnt signaling pathways that are 
well identified, including the canonical or Wnt/β-catenin dependent pathway, the noncanonical or 
β-catenin-independent planar cell polarity (PCP) pathway, and the noncanonical Wnt/Ca2+ pathway. 
Most of the oncogenic viruses modulate the canonical Wnt signaling pathway. This review discusses 
the interaction between proteins of several human oncogenic viruses with the Wnt signaling pathway.
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Introduction
Viruses are known as one of the major agents of 

human cancers (1). Risk factors, such as chemical agents, 
radiations, mutations, genetic factors, and infection 
with oncogenic viruses can be considered as significant 
predisposing factors in carcinogenesis (2). Both DNA and 
RNA viruses in different virus families can cause cancer, 
however, oncogenic viruses are mostly DNA viruses (1). 
Oncogenic viruses have characteristics that can help 
them in the process of tumorigenesis, including the fact 
that these viruses usually cause chronic infections and 
carry oncogenes (2). The protein products of oncogenes 
have a direct impact on the process of tumorigenesis. In 
addition, nucleic acids and viral sequences are always 
present in cancerous cells and can be detected (3). In 
the process of carcinogenesis in a cell, there are various 
mechanisms involved, but it can be said that, in general, 
viral oncoproteins can directly or indirectly play a 
part in the activation of the signaling pathways in the 
carcinogenesis process through affecting and involving 
various cellular pathways, especially the regulatory and 
controlling pathways of the cell cycle. Additionally, viral 
oncoproteins can disrupt the cell cycle and the cellular 
regularity, which results in cellular transformation 
by producing cellular analogs such as anti-apoptosis 
proteins, inducing cellular proto-oncogenes, targeting 
cell cycle checkpoints, (eg, P53, RB, PP2A) and various 
transcription factors (4).

Review
Oncogenic viruses and cellular pathways

Viral Carcinogenesis is a time-consuming process 
in which various cellular pathways are involved (3). 
Many of oncogenic viruses establish a persistent 
infection, during the chronic stage of diseases, which 
enables them to subvert or activate these pathways 
(3, 4). The tumorigenic strategy of oncogenic viruses 
is similar so that these viruses target key cellular 
signaling pathways. Most oncogenic viruses modulate 
the cell cycle progression to rescue cells from apoptosis. 
The cellular targets for viral oncogenic proteins are 
generally the vital transcriptional factors involving 
tumorigenesis, such as pRb, c-myc, NF-κB, p53, AP-1 (4, 
5). In certain cancers, such as cervical cancer and HPV, 
viral infection causes a phenomenon called “hit and run”, 
in which the infection acts as a triggering effective blow 
in the tumorigenic process, and subsequently, cellular 
carcinogenesis pathways are activated. Carcinogenesis 
is driven by genetic and epigenetic changes that allow 
the cells to have uncontrolled growth and escape 
mechanisms that naturally regulate and differentiate 
cells (5). Many of these changes occur in cell signaling 
pathways that control growth, division, death, 
differentiation, and cell migration. This scenario results 
in alterations in the microscopic situation of the tumor, 
angiogenesis, inflammation, and mutations that convert 
proto-oncogenes to oncogenes (6).
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Wnt signaling pathways
The Wnt signaling pathways are a group of signal 

transmission pathways into the cell, which are made of 
proteins that pass signals into the cell via cell surface 
receptors. The Wnt proteins comprise a diverse range of 
proteins (7). There are about 16 types of these proteins 
in humans and mice, and they are also found in other 
organisms such as Xenopus, Zebrafish, Drosophila, and 
many other animal species (8). There are three Wnt 
signaling pathways that are well characterized. These 
pathways include the canonical Wnt pathway, the 
noncanonical planar cell polarity (PCP) pathway, and 
the noncanonical Wnt/Ca2+ pathway (7). As their names 
suggest, these pathways belong to either the canonical 
or the noncanonical categories. The difference between 
these two groups is that the canonical pathway involves 
the β-catenin protein, while the noncanonical pathway 
acts independently of β-catenin (9).

Activation of Wnt signaling pathways
The activation of  Wnt signaling pathways is initiated 

via binding a Wnt protein ligand to a Frizzled (Fz) family 
receptor that transduces the corresponding signal to the 
phosphoprotein Dishevelled (Dsh) protein inside the cell 
cytosol (8, 9). Dsh is a common mediator between the 
three Wnt signaling cascades. Typically, in the absence of 
Wnt proteins, β-catenin is not able to accumulate within 
the cytoplasm; because destruction complex (CK1α, 
APC, Axin, and GSK3) would target it, and subsequently 
would be digested via the proteasome. In the canonical 
pathway, activation is initiated via interaction between 
Wnt and Frizzled (Fz) receptor, induced by RSPO 
molecule and recruitment of Dsh and destruction of CK1, 
APC, AXIN, and GSK3β complex. This process leads to the 
accumulation of β-catenin in the cytoplasm. Subsequently, 
β-catenin translocates to the nucleus (10). In the nucleus, 
β-catenin binds TCF/LEF promoters that are driving 
expression of target genes, including AXIN2, C-myc, and 
CCND1 (9). The activation of β-catenin independent 
pathways including planar cell polarity (PCP) pathway 
and the calcium pathway is initiated via the ROR and 
different Wnt/FZD bindings and Ryk receptors. The 
calcium pathway contributes to the activation of Ca2+/
CAMKII, cell adhesion, NFAT, and CREB. The activation of 
the PCP pathway involves molecules such as Rac, RhoA, 
GTPases, and the JNK cascade. This results in processes 
including apoptosis, proliferation, and differentiation. In 
addition to their independent functions, these pathways 
overlap biological cellular processes and can also affect 
other cellular pathways. The Wnt signaling pathways 
are involved in important cellular processes such as 
embryonic development, axis patterning, cell fate 
specification, cell proliferation, insulin sensitivity, and 
cell migration, all of them having clinical implications 
and are considered as one of the most important and 
central pathways for carcinogenesis signaling (10). From 
the beginning of the discovery and identification of these 
pathways, when it was observed in a mouse model study 
that the first protein detected in this pathway (Wnt1) acts 
as a proto-oncogene in breast cancer, it was recognized 
that these pathways are related to cancer, especially 
breast cancer (11). In addition to breast cancer, the Wnt 
signaling pathways are associated with the formation 
and progression of other malignancies and cancers 
such as colorectal, melanoma, liver, prostate, lung, and 
lymphoma malignancies (12). 

Epstein bar virus (EBV) and Human herpesvirus-8(HHV-8) 
EBV and HHV-8 belong to the Herpesviridae family. 

These viruses have a coding-genomic double-stranded 
DNA for enzymes involved in replication, repair, and 
biosynthesis of viral nucleic acid. EBV and HHV-8 can 
establish latent infections within the lymphoid cells 
and tissues that can be activated when the host immune 
system is suppressed (13). EBV or human herpesvirus 4 
(HHV-4), is a ubiquitous virus, so that, more than 90% 
to 95% of adults around the world are infected with it. 
This virus infects the B lymphocytes and the epithelial 
cells. During primary infection, it causes acute infectious 
mononucleosis and during persistent infection, it is 
associated with Burkitt lymphoma, nasopharyngeal 
carcinoma (NCP), Hodgkin’s disease, non-Hodgkin 
lymphoma, and gastric carcinoma, especially in immune-
deficient individuals (14). Many studies have documented 
that among EBV proteins (Table 1), two latent membrane 
proteins (LPM1 and LMP2) play an important role in 
the EBV pathogenesis. LMP2A is critical for the efficient 
activation, survival, and proliferation of EBV-infected 
B cells; it can affect the efficient long-term growth of B 
cells (15). This protein can interact with various cellular 
pathways including activation of the canonical Wnt 
pathway (Figure 1). Researchers have demonstrated 

 

  Figure 1. The schematic representation for the possible interaction 
of viral oncogene proteins with various levels of Wnt/β-catenin cell 
signaling cascade. (HBV): (1) hypermethylation of E-cadherin, (2) 
SFRP1 and SFRP5 promoters via HBx protein; (3) dislocating of 
β-catenin from the destruction complex by binding to APC; (4) HBx-
mediated suppression of GSK3β by src kinases, (5) overexpression 
of URG7 and the final inactivation of GSK3β. (HCV): (6) HCV core 
protein mediated-hypermethylation of E-cadherin promoter down-
regulates E-cadherin expression and thereby β-catenin accumulation; 
(7) silencing of SFRP1expression by hypermethylation of its promoter; 
(8) upregulation of miR-155 gene and targeting of APC. (HIV): (9) 
Tat protein activates PI3K/AKT signaling pathway and inactivates 
GSK3β; (10) Nef protein compete for the similar site occupied by LEF/
TCF on β-catenin. (HTLV-1): (11) Tax protein interacts with DAPLE 
(disheveled-associating protein) to trigger the canonical Wnt pathway; 
(12) Tax raise PI3K/Akt activity, resulting in the phosphorylation 
and inactivation of GSK3β. (EBV): (12) LMP2A activates PI3K/Akt 
pathway, resulting in the phosphorylation and inactivation of GSK3β. 
(13) LMP1 inhibits Siah1 (an E3 ubiquitin ligase), which is involved in 
ubiquitination and proteasomal degradation of β-catenin; (HPV): (13) 
E6 oncoprotein inhibits Siah1, which is involved in ubiquitination and 
proteasomal degradation of β-catenin; (14) E6 binds to Dsh and disrupts 
the destruction complex (β-catenin stabilization). (HHV-8): (12) LANA 
protein promotes PI3K/Akt activity, resulting in the phosphorylation 
and inactivation of GSK3β
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Table 1. Effect of viral oncogenic proteins on the Wnt signaling pathway

 

References Molecular mechanism Viral oncogenic protein Virus 
 

(16, 17) 
 

-Inhibition of p53 and retinoblastoma protein. 
Accumulation of nuclear β-catenin via interaction with 
GSK3β. vGPCR-mediated up-regulation of β-catenin and 
Wnt7a in epithelial cells 

LANA HHV-8 

 
(18) 

- Inhibition of SIAH1 expression in B lymphoma cells 
and up-regulation of β-catenin. Increased cytoplasmic 
β-catenin and hyperplasia induction of epithelial cells 

LMP1 EBV 

 
(19-21) 

-Inhibition of epithelial cell differentiation. 
Accumulation of β-catenin is in the cytoplasm. The 
methylation of Wnt signaling proteins. Up-regulated 
viral miRNAs that target Wnt signaling. Expressed EBV- 
miR‐BARTs that target Wnt signaling 

LMP2  

 
(22-24) 

 
 

- Disintegration of the E-cadherin complex with β-
catenin, binding to APC and displacing β-catenin from 
the destruction complex, suppression of GSK3β activity, 
modulation of CTNNB1, APC, and AXIN1 gene 
expression. Silencing of SFRP1 and SFRP5 proteins. 
Insertion of the HBX gene into LINE1 elements and 
activation of Wnt signaling pathway 

HBx HBV 

 
(18, 25, 26) 

- Upregulation of the LEF-1, CCND1, and MYC genes; 
HBc can be bound to 41 Wnt pathway gene promoters  

HBc and other proteins 

 
(27-34)  

-Induced expression of Wnt signaling proteins via 
SFRP1 hyper-methylation. Downregulation of the Wnt 
gatekeepers such as DKK1, SFRP3, and SFRP5 

Core HCV 

 
(35-39) 

-Activation of the Wnt pathway via beta-catenin 
nucleus stability. Expressed c-myc proto-oncogen and 
DNA damaging. Modulation of cellular microRNA 
expressions such as miR-155. Epigenetic changes 
including Methylated DKK1 and SFRP2 genes, SFRP4 
and RUNX3 genes in HCV positive subjects 

NS5A  

 
(40-42) 

 

- Nuclear stability of beta-catenin. Activation of the Wnt 
pathway through interaction with the Wnt proteins 
such as Wnt5a and leucine-rich disheveled (Dvl)-
associated protein. Inhibition of GSK-3β 

Tax HTLV 

 
(41) 

- Upregulation of the DKK1 gene in epithelial cells. 
Upregulating the Wnt5a gene 

HBZ 

 
(43, 44) 

-Interaction with TCF4 and inhibition of Wnt signaling. 
Induced DKK gene expression. 

Tat HIV 

 
(45, 46) 

-Interaction with β-catenin proteins and T-cell 
transmigration 

Nef 

 
(46) 

-Upregulating BDNF expression in BV2 cells through 
the Wnt / β-catenin signaling 

gp120 

 
(47-53) 

 
 

- Interaction with Rb and P53 proteins. Stimulating or 
enhancing Wnt/β-catenin signaling. Inducing β-
catenin-TCF / LEF-mediated transcription. 
Upregulating proto-oncogenes MYC and CCND1. 
Dysregulation of the Wnt pathway via modulation of 
MYC, FZD, DKK, and WNT16 genes 

E6 and E7 HPV 

 
 

(54-58) 

- Promoted intestinal adenomatosis and CCND1 and 
nuclear β-catenin expression. Increased β-catenin 
independent of the Wnt pathway. Coding viral miRNAs 
that target the  β-catenin. Induced Wnt2 and WISP2, 
and reduced Wnt5a, LRP6, CCND1, MYC, and DKK gene 
expressions 

US28 CMV 

 
(59-61) 

-Dysregulation of the Wnt signaling pathway in 
fibroblast cells 

E1 Adenovirus 

 
(62) 

 

-Modulation of the Wnt pathway through regulated 
expression of miRNAs 

Type 1 Enterovirus 

 
(63) 

-Targeting LRP6 and WRCH1 and promotion of β-
catenin degradation 

 Coxsackievirus 
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that LMP2A activates β-catenin signaling in epithelial 
cells, their results have shown that the ITAM motif of 
EBV-LMP2A via interaction with Act and PI3K signaling 
leads to nuclear accumulation of β-catenin and targeting 
of the Wnt signaling pathway (20). Additionally, in 
an in vitro study on the several EBV-positive tumor 
cell lines including lymphoblastoid cell lines (LCL), 
compared to EBV-negative lines, it was shown that in 
contrast to epithelial cells, β-catenin accumulates in 
the cytoplasm but not in the nucleus (21). Further, the 
studies also suggested that LMP2A via upregulation 
of Wnt5 can activate non-canonical Wnt signaling. 
Reports have shown that LMP1 can lead to inhibition of 
SIAH1 (is involved in ubiquitination and proteasome-
mediated degradation) expression in B lymphoma 
cells and the upregulation of β-catenin. Furthermore, 
this protein increases cytoplasmic β-catenin levels and 
induces hyperplasia in epithelial cells (18). In addition, 
reports have shown that EBV-miR-BARTs via their 
negative effects on the Wnt signaling protein inhibitors 
are involved in the metastasis and progression of 
nasopharyngeal carcinoma (64). HHV-8 or human 
herpesvirus type 8, known as the Kaposi sarcoma 
tumor (KSHV) agent in HIV positive individuals, is a 
human herpesvirus associated with diseases such as the 
malignancy of the B-cell lymphoproliferative disorder, 
primary effusion lymphoma and the multi-centric 
Castleman’s disease (65). Studies have shown that HHV-
8 can interact with the Wnt signaling pathway (16, 18, 
64, 65), and this interaction is effective in the HHV-8 
carcinogenesis and latent infection (16). Observations 
have shown that one of the HHV-8 proteins known as 
LANA, acts as an oncoprotein and inhibits p53, and 
retinoblastoma protein also causes nuclear β-catenin 
accumulation through interaction with GSK3β (Figure 
1) (17). In these reports LANA trapping of GSK3β in the 
nucleus was observed resulting in cytoplasmic depletion 
of GSK3β, subsequently GSK3β entering the nucleus, 
leading to accumulation of β-catenin and activation 
of downstream the Wnt signaling transcriptional 
responses. Additionally, other studies have shown that 
HHV-8 may increase the expression of β-catenin and 
Wnt7a in epithelial cells via coding the chemokine 
receptor (vGPCR) homolog and interaction with the 
PI3K/Akt pathway (16-18, 64, 65).

Hepatitis B virus (HBV) and Hepatitis C virus (HCV)
HBV and HCV are well-known viral infections in all 

over the world. The worldwide prevalence of chronic 
HBV infection is between 240 and 350 million and more 
than 170 million are chronically infected with HCV. The 
chronic infections caused by these viruses after 2 to 3 
decades can lead to dangerous clinical consequences 
such as fibrosis, cirrhosis, and hepatocellular 
carcinoma (HCC) (66-68). HBV is a member of the 
Hepadnaviridae family, containing a partially double-
stranded DNA genome and several structural and 
soluble proteins. One of the most important proteins 
of HBV is HBx, considered as an oncoprotein because 
of its carcinogenic characteristics (69, 70). Several 
studies have demonstrated an association between the 
HBx oncoprotein and the HBV surface protein (HBsAg) 
with the Wnt signaling pathway, especially activation 
of canonical Wnt/β-catenin signaling (Figure 1). It has 

been demonstrated that the HBx protein can stimulate 
the expression of the MYC and CCND1 (coding beta-
1-catenin gene) genes, the targeted genes in the Wnt 
pathway, and nuclear ß-catenin aggregation in animal 
models (22, 71, 72). A study has shown that the genetic/
epigenetic aberration by HBV infection in the CTNNB1 
gene and the mutations of APC and AXIN1 genes 
play a crucial role in HBV-associated hepatocellular 
carcinoma (23). Researchers have reported that the HBx 
oncoprotein was associated with the hypermethylation 
of SFRP1 and SFRP5 proteins in HCC/HBV positive 
patients in vitro, which results in a substantial increase 
in the expression of the Wnt signaling pathway (24). 
In other studies, the association between the HBV 
proteins and the proteins of Wnt signaling pathway has 
been investigated (25, 73, 74). The results of various 
studies have shown, HBx is associated with repression 
of  SFRP1 and SFRP5 (two Wnt signaling antagonists), 
disintegration of the E-cadherin complex with β-catenin, 
binding to APC and displacing β-catenin from the 
destruction complex, suppression of GSK3β activity via 
activation of src kinases, and upregulation of expression 
of URG7(a protein with anti-apoptotic effects), which in 
turn activates the Wnt signaling either by transactivation 
of β-catenin or inactivation of GSK3β. The presence of 
HBV proteins leads to up-regulation of LEF-1, CCND1, 
and MYC; also HBcAg protein can be bound to 41 Wnt 
pathway gene promoters in an unknown mechanism, 
in vitro (18, 25, 26). Most studies and reports have 
confirmed the association between the HBx protein and 
Wnt signaling pathway (25, 26, 74). Some studies have 
been conducted on HBV and the Wnt signaling pathway 
using the immunohistochemical method in HBV-positive 
HCC patients, indicating β-catenin accumulation as an 
indicator of the activation of the Wnt signaling pathway 
(75, 76). Researchers have inserted the HBX gene into 
LINE1 elements in host cell chromosomes in HBV-
positive HCC patients, resulting in the activation of the 
Wnt signaling pathway (77).

 HCV is the most common cause of chronic liver 
infection, classified in the Flaviviridae family.  HCV 
contains several structural proteins (core, E1, and 
E2) and non-structural proteins (NS1, NS2, NS3, NS4, 
and NS5), associated with the pathogenesis of HCV 
(27, 78). Early studies showed Wnt signaling pathway 
is a key pathway in HCV-positive HCC (Figure 1), the 
function of SFRP4 and RUNX3 as Wnt inhibitors in 
HCV infection being specific (28-30, 34). Epigenetic 
changes such as the methylation of the SFRP2 gene 
have been observed in the pathogenesis of HCV positive 
HCC patients (31). Quan et al. (2014) have suggested 
that the HCV core protein increased the expression of 
Wnt signaling proteins, via hypermethylation of the 
SFRP1 promoter, resulting in epigenetic silencing of 
SFRP1 expression (32). HCV proteins can affect the 
expression of E-cadherin via modulation of the Wnt 
signaling and reducing E-cadherin (a cell adhesion 
molecule) expression at the transcriptional level. The 
transfection of HCV core protein in human hepatoma 
cell lines upregulated Wnt1 and the targeted genes 
of this pathway (79). HCV core protein is effective in 
activating β-catenin/Tcf-4-dependent expression and 
also enhances β-catenin expression level and nuclear 
stabilization of the protein, additionally core protein 
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induces gene expression of canonical Wnt ligands (Wnt-
proteins and LRP5/6 co-receptors) (33). 

In a preliminary study, it was shown that the NS5A 
protein as an important viral non-structural protein 
could result in β-catenin stability in the nucleus and the 
activation of the canonical Wnt pathway (29, 30, 38). 
This protein can also activate the expression of c-myc 
proto-oncogene (38). Furthermore, HCV proteins can 
interact with the cellular microRNA network and cause 
the modulation of microRNA expression and cellular 
pathways (35, 36, 39). It was found that HCV infection 
stimulates inflammation and the Wnt signaling pathway 
through induced expression of miR-155 gene, followed 
by the upregulation of CCND1, MYC, BIRC5, and nuclear 
β-catenin. It was observed that APC (a tumor suppressor 
gene that inactivates Wnt/β-catenin pathway) is the 
direct biological target of miR-155 (37). 

Human T-cell lymphotropic virus (HTLV) and Human 
Immunodeficiency Virus (HIV)

Retroviruses are a large viral carcinogenic family 
that can cause tumors in both humans and animals, 
therefore there are carcinogenic viral prototypes in 
this family (81-84). Human T-cell lymphotropic virus 
(HTLV) is one retrovirus that tends to affect human 
mature T lymphocytes. Several types of HTLV have 
been identified. In humans, HTLV1 is predominantly 
responsible for adult CD4+ T cell leukemia (85, 86). 
HTLV1 has an important viral protein called Tax, 
associated with many carcinogenic characteristics of 
the virus (40, 87-89). Reports indicate that Tax can 
interact with the Wnt signaling pathway (Figure 1) and 
plays a role in the nuclear stability of beta-catenin (41, 
42, 90). Researchers have found that the HTLV-1 Tax 
via activating the CREB signaling pathway can activate 
the PI3K/Akt pathway, subsequently phosphorylated 
Akt inhibits GSK3β.  Suppression of GSK3β prevents 
proteasomal degradation of β-catenin, resulting in 
translocation of β-catenin to the nucleus and binding to 
the Tcf promoter (90). Also it is observed, that Tax could 
activate the canonical Wnt signaling via interaction 
with a Wnt pathway-related protein, the leucine-rich 
disheveled (Dvl)-associated protein (a high-frequency 
leucine residue) (DAPLE), but result in downregulation 
of two transcription factors (TCF1 and LEF1), mainly 
expressed in T cells, suppress the trans-activating 
ability of Tax (88, 89). In other studies, it has been found 
that the HTLV-1 βZIP factor (HBZ) actually activates a 
noncanonical Wnt pathway via interaction with Wnt5a, 
which is an antagonized the canonical Wnt signaling 
pathway, such that knocking down Wnt5a in HTLV-1 
infected cells inhibits cell carcinogenicity. These results 
indicate that the dysregulation of the Wnt signaling 
pathway via HTLV1 Tax and HBZ may be related to 
adult T-cell leukemia. Furthermore, it is observed that 
Tax through activation of NF-ĸB signaling pathway 
induced miR-146a expression in T-cell lines increases 
the growth of HTLV-1-infected cells (41). Although HIV 
doesn’t trigger tumorigenicity directly, it creates the 
conditions for many tumors to be activated through a 
weakened immune system and immune deficiency (91-
95). Moreover, studies have shown that HIV proteins, 
such as Tat and nef, can interact with many pathways 
and cell regulatory networks (96-99). In spite of the 

fact that interactions (Figure 1) between the Wnt / 
β-catenin signaling pathways and HIV do not cause 
tumorigenicity, they have intense effects on HIV-caused 
neuropathogenesis (100). Weiser et al. (2013) showed 
that interactions between the nef virus and β-catenin 
proteins resulted in T-cell transmigration (45). Results 
of an in vitro study on the BV2 cells (a murine-derived 
microglial cell line) suggested that HIV infection and 
HIV-1 gp120 cause accumulation of Wnt3a and β-catenin 
and s activation of the Wnt/β-catenin signaling pathway 
(46). In another study, it was observed that the Tat 
protein interacts with TCF4 and inhibits Wnt signaling 
(43). Furthermore, Weiser reports a confirmed 
interaction between HIV nef and β-catenin (44). 

Human papillomaviruses (HPVs)
HPV is classified in Papillomaviridae (wart 

viruses) family. These viruses are equipped with 
several oncoproteins and are associated with some 
malignancies in humans and other species (101, 102). 
Many studies have shown that two HPV oncoproteins 
E6 and E7 are associated with the pathogenesis of 
cellular tumorigenesis. These proteins interact with 
two tumor suppressors Rb and P53, respectively (103, 
104). Alteration of the wnt signaling by HPV plays an 
important role in cervical cancer (Figure 1). Various 
reports have revealed that oncoproteins E6 and E7 can 
lead to dysregulation of the wnt signaling pathways. One 
of the mechanisms by which HPV E6/E7 oncoproteins 
can modulate the Wnt pathway is regulation of SIAH-1-
dependent ubiquitin/proteasome pathway for β-catenin 
degradation (47, 49, 105). During an in vivo study, it 
was observed that HPV16 E6 via interaction with Dvl2 
can lead to activation of the canonical Wnt/β-catenin 
pathway in skin epidermis (48). Evidence suggests 
that E6 together with E6AP or ubiquitin-protein ligase 
E3A (an enzyme that is involved in targeting proteins 
for proteasomal degradation within cells) prevent 
β-catenin proteasomal degradation (51). Suppressing 
the expression of two viral oncogenes E6 and E7 reduces 
the β-catenin level and the re-expression of these two 
important viral oncogenes increases the β-catenin-TCF/ 
LEF-mediated transcription (49). In a mouse model, it 
was demonstrated that HPV16 E6 can stimulate beta-
catenin expression and the two cellular proto-oncogenes 
MYC and CCND1 in skin cells (50). The profiling of genes 
induced by HPV18, such as the MYC, FZD, DKK, and 
WNT16 genes, has determined that HPV E6 can lead to 
the dysregulation of the Wnt pathway (52).

Other viruses 
The cytomegalovirus (CMV) is a member of the 

Herpesviridae DNA virus family and the beta virus genus. 
CMV causes latent viral infections in host lymphoid 
tissues that can retain lifelong latent infections. CMV is 
a very common virus such that 40 to 80% of the world’s 
population are infected with CMV, which is usually 
asymptomatic. CMV, especially in immunocompromised 
individuals, can cause serious clinical complications 
such as retinitis, hepatitis, pneumonia, colitis, and 
encephalitis, which may lead to high mortality. Infants 
with infected mothers can develop congenital infections 
(106, 107).

Although a direct association between CMV and 
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carcinogenicity has not been found, the evidence 
suggests that the virus can interfere with cellular 
pathways such as the Wnt signaling pathway (54, 108). 
The overexpression of the CMV-encoded chemokine 
receptor US28 in the transgenic mouse model has 
been shown to promote intestinal adenomatosis and 
accumulation of CCND1 and nuclear β-catenin. Further 
analyses have shown that US28 may increase β-catenin 
via the Rho-ROCK pathway (55). Another mechanism 
for the modulation of the Wnt pathway by CMV is the 
targeting of Wnt proteins via encoded viral miRNAs that 
target β-catenin (58). 

In addition, dysregulated Wnt signaling results in 
impurities in the fetus and its growth (108). Studies 
have also shown CMV US28 can upregulate Wnt2 and 
WISP2, and can downregulate Wnt5a/β, LRP6, CCND1, 
MYC, and DKK (56, 57).

Adenoviruses (members of the Adenoviridae family), 
containing a double strand DNA genome, have different 
viral groups. Adenoviruses infect both humans and 
animals (109). Various studies in animal models, 
especially hamsters and primates have shown that some 
viral groups in this large family can be carcinogenic and 
some of the proteins in the family have an oncoprotein 
role and can cause the alteration of the Wnt pathway (59-
61). It has been observed that type-71 enteroviruses can 
cause the dysregulation of the Wnt pathway through the 
regulated expression of miRNAs (62). Additionally, it was 
shown that coxsackievirus miR-126 may target LRP6 
(a key frizzled co-receptor component that is involved 
in the canonical Wnt pathway) and WRCH1 (a small 
signaling G protein that is involved in the non-canonical 
Wnt pathway) and promote β-catenin degradation (63).

Conclusion
In this review, the effects of well-known human 

oncogenic viruses, as well as viruses that may indirectly 
contribute to carcinogenesis in the Wnt signaling 
pathway were evaluated and discussed. The results 
obtained from extended studies about the oncoproteins 
of these viruses and their interactions with the key Wnt 
signaling pathway indicate that most of these viruses 
have at least 1-2 oncoproteins and have clarified their 
mechanisms of action on the Wnt signaling pathway. 
Commonly, many of these interactions act through 
mechanisms such as modulation in the cytoplasmic and 
nuclear accumulation of β-catenin through direct and 
indirect targeting of the Wnt pathway proteins, inducing 
or coding the effective cellular and viral miRNAs on the 
Wnt pathway, epigenetic changes in the genes encoding 
the Wnt pathway including CTNNB1 gene and coding 
Wnt genes, silencing of SFRP proteins (antagonists of  
the Wnt signaling), prevention of β-catenin proteasomal 
degradation via interaction with the destruction 
complex proteins such as GSK3β and APC.

Taken together, according to the mentioned 
mechanisms and analysis of the results it seems 
that oncogenic viruses have common evolutionary 
mechanisms for modulation and interaction with the 
Wnt signaling pathway especially canonical pathway, 
which results in carcinogenesis of the tissue involved. 
Therefore, it is seen that interactions between viral 
oncoproteins and the Wnt signaling pathway potentially 
have an intense role in carcinogenesis, which can provide 

new insights into the pathogenesis of viral cancers and 
possible therapeutic strategies. However, more precise 
molecular mechanisms of these interactions and their 
role in viral carcinogenesis need to be further studied.
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