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Severe COVID-19 is characterized by acute respiratory distress syndrome (ARDS)-like
hyperinflammation and endothelial dysfunction, that can lead to respiratory and multi
organ failure and death. Interstitial lung diseases (ILD) and pulmonary fibrosis confer an
increased risk for severe disease, while a subset of COVID-19-related ARDS surviving
patients will develop a fibroproliferative response that can persist post hospitalization.
Autotaxin (ATX) is a secreted lysophospholipase D, largely responsible for the extracellular
production of lysophosphatidic acid (LPA), a pleiotropic signaling lysophospholipid with
multiple effects in pulmonary and immune cells. In this review, we discuss the similarities of
COVID-19, ARDS and ILDs, and suggest ATX as a possible pathologic link and a potential
common therapeutic target.
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COVID-19

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to the development
of Coronavirus Disease 2019 (COVID-19), proclaimed pandemic on March 11, 2020 (1, 2). Upon
airborne, mainly, CoV-2 transmission, the viral spike (S) glycoprotein mediates viral entry via
binding to angiotensin-converting enzyme 2 (ACE2), supported by the transmembrane protease
serine protease 2 (TMPRSS2) that proteolytically processes the S protein (3, 4). Infected cells in the
lung, as detected with immunocytochemistry, include the upper airway bronchiolar epithelium and
submucosal gland epithelium, as well as alveolar epithelial cells and macrophages (1). ACE2 is
distributed mainly in the intestine, heart, kidney, as well as the lung, where alveolar epithelial type
II cells are the major expressing cells. TMPRSS2 is highly expressed in several tissues; in the lung is
co- expressed with ACE2 in nasal epithelial cells and alveolar epithelial type II cells, which might
partially explain the tissue tropism of CoV-2 infection (3, 4).

CoV-2 infection is either asymptomatic or causes only mild respiratory diseases (non-
pneumonia or mild pneumonia) in most individuals. However, a significant number of elderly
individuals, frequently with comorbidities (such as cardiovascular diseases, diabetes, obesity), will
org October 2021 | Volume 12 | Article 6873971
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develop a more severe form of the disease and will require
hospital care (1, 2). COVID-19 most common clinical
manifestations include fever, fatigue and dry cough, and
dyspnea in severe cases (5). Severe COVID-19 associated
histopathological changes are found mainly in the lungs,
characterized by diffused alveolar damage (DAD), hyaline
membranes and fibrin deposits, as well as severe endothelial
injury, capillary microthrombi and exudative inflammation (6–12).
A systematic review of published case reports and studies
identified three main COVID-19 histological patterns: epithelial
(85%), vascular (59%) and fibrotic (22%), with a frequent overlap
(60%), whereas the epithelial and vascular patterns were present in
all stages of severe COVID-19 (13).
COVID-19, ARDS AND
PULMONARY FIBROSIS

The rapid replication of SARS- CoV-2 and the associated
epithelial cell death may, depending on the underlying genetic,
inflammatory or metabolic context, trigger alveolar macrophages
to produce excessive amounts of cytokines (such as TNF, IL-1b,
IL-6, MIP1, IFN-g and VEGF), a “cytokine storm”, associated
with systemic infections such as sepsis or immunotherapies
aftermath (14). The highly divert cytokine profile of COVID-
19 hyperinflammation resembles, in some cases, other cytokine
release syndromes, such as macrophage activation syndrome
(15), although it is more heterogeneous and less robust, both
quantitively (levels) and qualitatively (number of elevated
cytokines). Noteworthy, IL-6 was found to be the most
consistently upregulated cytokine and among the most overall
predictive biomarkers (16, 17). In turn, the excessive production
of cytokines further induces lung injury and Acute Respiratory
Distress syndrome (ARDS), leading frequently to respiratory and
multi organ failure and death (18).

ARDS develops most commonly in the setting of bacterial and
viral pneumonias, or non-pulmonary sepsis, and is characterized
by focal epithelial damage and excessive alveolocapillary
permeability, leading to interstitial and alveolar edema and
hypoxemia in the acute phase (18). Many severe COVID-19
patients will develop ARDS with impaired gas exchange and
characteristic CT findings; however, the combination of multiple
pathogenetic stimuli in COVID-19-induced ARDS results in a
highly heterogeneous, “atypical” clinical appearance that has
stimulated considerable controversy (2, 19–24). Nevertheless,
excessive inflammation and endothelial dysfunction are among
the top candidate pathologic events linking ARDS and COVID-
19 (21, 25, 26) and markers of endothelial dysfunction have been
recently correlated with COVID-19 mortality (27). Moreover,
endothelial dysfunction is also a major characteristic of the most
common comorbidities of COVID-19 that are associated with
worse prognosis, hypertension, diabetes and obesity (21, 25).

The initial acute exudative inflammatory phase of ARDS is
followed by a proliferative phase characterized by alveolar
epithelial cell hyperplasia (18). A subset of acute ARDS
survivors will further develop a fibroproliferative response,
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including fibroblast accumulation, deposition of collagen and
other lung extracellular matrix (ECM) components (28), the
magnitude of which was associated with ARDS duration (29).
Moreover, and although invasive mechanical ventilation has
revolutionized the management of ARDS, ventilator associated
lung injury is considered as an additional contributor to
pulmonary fibrosis in ventilated ARDS patients (30).
Accordingly, a literature review of published histopathological
analyses of COVID-19 lungs postmortem indicated, beyond
DAD and hyaline membranes, the frequent presence of
pulmonary fibrosis (31), while abnormal pulmonary
architecture and functions have been reported in many
recovering COVID-19 patients (32–34), suggesting persisting
fibrotic abnormalities, pending large-scale and long-term
follow up studies. Finally, CoV-2 infection per se has been
reported to induce the expression of different pro-fibrotic
factors including TGFb (35). On the other hand, patients with
interstitial lung diseases (ILD) had increased odds for ARDS
development and severe COVID-19 (12, 36–39), while COVID-
19-related acute exacerbation of ILDs had worse prognosis than
non-COVID ILD acute exacerbations (40), thus suggesting
pulmonary fibrosis both as a disease risk and a possible
complication of COVID-19.
AUTOTAXIN (ATX; ENPP2) AND COVID-19

ATX is a secreted glycoprotein that can be detected in most
biological fluids, including blood and bronchoalveolar lavage
fluid (BALF) (41). A large percentage (~40%) of serum ATX is
thought to originate from the adipose tissue (42), while the
damaged liver has been suggested as an additional possible
source of serum ATX (43). High ATX expression has been
reported from endothelial cells in high endothelial venules
(HEVs) (44, 45), however their expected relative contribution
to circulating levels should be low. Inflammatory macrophages
have been also reported to express ATX upon inflammation (46–
48), thus contributing to BALF ATX levels (46).

ATX is a constitutively active lysophospholipase D, that
catalyzes the extracellular hydrolysis of lysophosphatidylcholine
(LPC) to lysophosphatidic acid (LPA) (49). LPC is synthesized
from fatty acids or membrane phosphatidylcholine (PC) by
phospholipase A2 (PLA2) enzymes and is highly abundant in the
plasma, associated with oxidized low-density lipoprotein (oxLDL)
and albumin (50, 51). LPA is a growth factor-like signaling
phospholipid with numerous effects in most cell types through
its G-protein coupled receptors (LPAR1-6) (51–53). ATX has been
suggested to bind to cell surface integrins (54–56), thus avoiding
clearance, as well as localizing LPA production to its adjacent
receptors, that exhibit widespread distribution and overlapping
functions (51, 57).

Viral infections have been shown to increase systemic ATX
levels, including HCV, HIV and HBV (43, 58, 59), while LPA has
been also shown to directly affect HCV viral infection and
replication (43, 60). Increased ENPP2 mRNA expression was
detected in nasopharyngeal swabs from COVID-19 patients,
October 2021 | Volume 12 | Article 687397
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likely from immune cells (61), suggesting that ATX/LPA might
stimulate viral infections, that could include SARS-CoV-2.

Increased serum/plasma ATX levels have been also reported
in different diseases, including different forms of cancer, liver
diseases, as well as respiratory diseases such as asthma and
idiopathic pulmonary fibrosis (IPF) (Table 1) (41, 51). A
variety of methods has been utilized, while reported levels
exhibit remarkable heterogeneity, with no apparent consensus
on healthy levels (Table 1). Increased ATX serum levels were
recently reported in non-surviving ARDS patients, where ATX
serum levels were shown to be an independent prognostic factor
for 28 day mortality, outperforming the established SOFA/
APACHE scores (62). Plasma ATX levels correlated with
mortality also in a cohort of patients with severe sepsis (63),
suggesting a role for ATX/LPA in systemic hyperinflammation.
ATX serum levels in ARDS correlated with the increased IL-6/
IL-8 serum levels (62), further supporting an interplay of ATX/
LPA with inflammation, as previously suggested in breast cancer
(64). ATX serum levels also correlated with the severity of lung
injury (62), while increased ATX BALF levels upon endotoxin-
induced acute lung injury (ALI) (65, 66), and ventilator-induced
lung injury (VILI) in mice (67) have been reported. Moreover,
ATX BALF levels in ARDS patients were positively associated
with inflammatory and fibrotic mediators (IL-6, IL-8, TNF-a,
MMP-7, fibronectin, OSM, and SPARC), suggesting that ATX
may also have a role in the fibrotic component of ARDS (62). In
line with the above, increased ATX levels have been detected in
IPF patients and fibrotic animal models (46, 68), where results
from genetic and pharmacologic studies have established a pro-
fibrotic role for ATX (46, 69–72). Increased serum ATX levels
were very recently detected also in COVID-19 patients
hospitalized in the intensive care unit (ICU) as compared with
less severe patients hospitalized in the clinic (61), thus adding
ATX expression to the commonalities of COVID-19, ARDS and
pulmonary fibrosis, and suggesting ATX as a possible
pathologic link.

ATX levels in severe COVID-19 patients correlated with the
increased IL-6 serum levels (61), as recently also shown in ARDS
(62), as well in acute-on-chronic liver failure (ACLF) patients (73),
suggesting interdependent regulation of expression. Accordingly,
IL-6 has been reported to stimulate ATX expression from
adipocytes (73) and human dermal fibroblasts (74). Vice versa,
LPA has been reported to stimulate the expression of IL-6 from
synovial fibroblasts (75, 76) and dermal fibroblasts (74), suggesting
an ATX/LPA/IL-6 expression loop. Among the different
components of the cytokine storm, IL-6 is the most predictive
biomarker in COVID-19 (16, 17), correlating with respiratory
failure and the need for mechanical ventilation (77), as well as with
mortality risk (78).

Beyond hyperinflammation, and/or as its consequence,
endothelial dysfunction is a major characteristic of COVID-19/
ARDS (21, 25, 26). The increased ATX levels that were detected
in severe COVID-19 patients correlated with markers of
endothelial dysfunction (sP-sel, sICAM) (61) that have been
independently correlated in the same samples with COVID-19
mortality (27). Similarly, ATX correlated with angiopoietin-2
Frontiers in Immunology | www.frontiersin.org 3
levels and mortality in severe septic patients (63). In support for a
major role of ATX/LPA on vascular homeostasis, ATX
expression and LPA signaling have been shown necessary for
the embryonic development of the vascular (and neural) system
in mice (79–81). In adult mice, in studies unraveling the
molecular mechanisms of SARS-CoV and MERS-CoV
pathogenesis in the Collaborative Cross mice, Enpp2, the gene
encoding ATX, has been reported to be a high priority candidate
gene for pulmonary hemorrhage (82, 83). More importantly,
LPAR1 null mice were reported to be protected from bleomycin
(BLM)-induced pulmonary fibrosis, attributed to fibroblast
accumulation and reduced vascular leak (68), as well as from
Candida albicans water-soluble fraction (CAWS)-induced
vasculitis, attributed to reduced CXCL1/IL-8-mediated
neutrophil infiltration (84). Noteworthy, the stability of LPAR1
in the context of acute lung injury in mice has been proposed to
be regulated by ubiquitination (84).
LPA SIGNALING IN PULMONARY
AND IMMUNE CELLS

Overall, any ATX effect will rely on its local levels (locally
produced and/or extravasated) and its possible cell surface
attachment, the local availability of LPC, the cell-specific
expression profile of LPA receptors, as well as of the
expression of the transmembrane lipid phosphate phosphatases
(PLPP1-3; PPA2 A-C) that catabolize LPA (41, 85, 86). In this
context, the possible effects of increased ATX levels can be
deduced from the corresponding effects of LPA in the relative
cells in the tissue microenvironment in question.

A plethora of LPA effects on pulmonary non-immune cells in
vitro have been reported, as previously reviewed (87–89) and as
summarized at Table 2. These include the promotion of
apoptosis and the secretion of chemotactic signals (IL-8, MCP-
1, CXCL1) from epithelial cells, the integrin-mediated activation
of TGFb on epithelial and smooth muscle cells, the modulation
of permeability, leukocyte adhesion and cytokine secretion from
endothelial cells, and the chemoattraction and accumulation of
myofibroblasts (Table 2). LPAR1 has been reported as the main
receptor mediating these effects, involving different well-known
G-protein mediated pathways (Table 2). Moreover, LPA has
been reported to transactivate different growth factors including
TGFb, PDGF and EGF that activate similar signal transduction
pathways, while LPA was reported to signal also via RAGE
(Table 2), further increasing the pleiotropic complexity of LPA
signaling in the lung.

The effects of ATX and LPA signaling on the regulation of
immune cells have been previously reviewed in detail (87–92).
Briefly, high ATX expression from ECs in HEVs in lymph nodes
has been reported (44, 45), where ATX has been suggested to
facilitate lymphocyte homing via the promotion of the adhesion
(44), transmigration and motility of lymphocytes (45, 93, 94).
Intriguingly, LPA signaling has been proposed to intersect with
sphingosine phosphate (S1P) signaling (95), a closely related
October 2021 | Volume 12 | Article 687397
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TABLE 1 | Autotaxin serum levels in patients of different inflammatory diseases and cancer.

Disease
classification

PMID Disease Samples
(M/F/M+F)

ATX1 Method

Viral hepatitis

33102751 Chronic hepatitis C 28 1.1 ± 0.8 Two-site enzyme immunoassay
Non-alcoholic steatohepatitis 19 1.4 ± 0.4 *

Alcoholic steatohepatitis 15 1.2 ± 0.4 *
vs. vs. vs.

Chronic hepatitis B 38 0.9 ± 0.3
21419756 Chronic Hepatitis C (histologically proven fibrosis) 74 2.40 ± 0.96 Two-site enzyme immunoassay

Chronic Hepatitis C (FibroScan proven fibrosis) 134 2.20 ± 1.22
27981605 Chronic viral hepatitis 14 0.19 (0.13 - 0.35) * ELISA

21 0.17 (0.04 - 0.13)
vs. vs. vs.

Healthy controls 8 0.13 (0.02 - 0.20)
12 0.18 (0.09 - 0.35)

28425454 Chronic hepatitis C 292 1.16 (0.85 - 1.68) *, # Two-site enzyme immunoassay
301 1.64 (1.19 - 2.20) *
593 1.39 (1.01 - 1.99) *

vs. vs. vs.
Healthy controls 80 0.76 #

80 0.82
160 0.76

31933517 Liver cirrhosis
(multiple aetiologies)

240 1.58 ± 0.68 # Two-site enzyme immunoassay
160 1.99 ± 0.73

Chronic hepatitis B 33 1.36 ± 0.62 #, ~

17 1.82 ± 0.5
Chronic hepatitis C 64 1.62 ± 0.67 #, $

66 2.09 ± 0.71
Non viral hepatitis 143 1.49 ± 0.71 #

77 1.96 ± 0.79
29114991 Chronic hepatitis B 62 1.10 (0.85-1.24) Two-site enzyme immunoassay

39 1.36 (1.23-1.64)
101 1.22 (0.95-1.42)

Non-viral liver
disorders

25062038 Liver cirrhosis 181 0.77 ± 0.41 *, # ELISA
89 0.86 ± 0.43 *
270 0.81 ± 0.42 *

vs. vs. vs.
Healthy controls 35 0.18 ± 0.04 #

50 0.35 ± 0.47
85 0.26 ± 0.40

29568204 Non-alcoholic fatty liver disease 186 0.86 * Two-site enzyme immunoassay
vs. vs. vs.

Healthy controls 160 0.76
30905718 Liver cirrhosis 50 0.44 ± 0.22 * ELISA

vs. vs. vs.
Healthy controls 20 0.19 ± 0.06

31144415 Non-alcoholic fatty liver disease 173 0.67 ± 0.21 # Two-site enzyme immunoassay
134 0.97 ± 0.36
307 0.81 ± 0.32

Bile duct disorders

31186435 Primary sclerosing cholangitis 193 6.3 ± 3.0 #, * Homovanillic acid assay
59 8.6 ± 4.9 *
252 6.8 ± 3.7

vs. vs. vs.
Healthy controls 57 2.5 ± 0.7 #

142 3.2 ± 1.5
31651244 Primary biliary cholangitis – Severe 25 1.25 (0.72 - 4.31) Two-site enzyme immunoassay

vs. vs. vs.
Primary biliary cholangitis – Moderate 94 1.08 (0.58 - 3.12)

27506882 Primary biliary cholangitis 118 10.2 ± 4.4 Homovanillic acid assay
Primary sclerosing cholangitis 115 7.3 ± 3.4

vs. vs. vs.
Healthy controls Undisclosed 3.1 ± 1.7

(Continued)
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TABLE 1 | Continued

Disease
classification

PMID Disease Samples
(M/F/M+F)

ATX1 Method

Undisclosed 2.5 ± 0.7
109 2.8 ± 1.4

29802350 Primary biliary cholangitis 20 1.00 (0.82 - 1.13) *,# Two-site enzyme immunoassay
108 0.78 (0.66 - 0.98) *
128 0.97 (0.79 - 1.11) *

vs. vs. vs.
Healthy controls 80 0.76 #

80 0.82
160 0.76

25450205 Preeclampsia / HELLP syndrome 17 16.8 ± 8.9 Homovanillic acid assay
Pruritic disorders of pregnancy 33 16.8 ± 6.7

Intrahepatic cholestasis of pregnancy 55 43.5 ± 18.2 *, †

vs. vs. vs.
Normal pregnancy 44 19.6 ± 5.4 *

vs. vs. vs.
Healthy controls 57 2.5 ± 0.7 #

142 3.2 ± 1.5

Malignancies

2464234 Hepatocellular carcinoma 105 1.94 ± 1.01 # Two-site enzyme immunoassay
43 2.87 ± 0.76
148 2.21 ± 1.03

18710386 Acute myeloid leukemia 26 0.86 ± 0.29 ELISA
Chronic lymphocytic leukemia 14 0.93 ± 0.30 *

Follicular lymphoma 25 1.47 ± 0.69 *
Diffuse large B-cell lymphoma 28 0.94 ± 0.39 *

vs. vs. vs.
Healthy controls 74 0.66 ± 0.12 #

46 0.85 ± 0.18
120 0.73 ± 0.18

27583415 Hepatocellular carcinoma 58 1.07 (0.84 - 1.37) * Two-site enzyme immunoassay
vs. vs. vs.

Healthy controls 74 0.68 ± 0.12 #

46 0.97 ± 0.17
120 0.73 ± 0.18

29724718a Non-small cell lung cancer 19 0.124 * TOOS assay
vs. vs. vs.

Healthy controls 49 0.088
30921203 Breast cancer 112 0.29 ± 0.04 * ELISA

vs. vs. vs.
Healthy controls 50 0.25 ± 0.02

Metabolic disorders

26727116 Obese – overweight people >60 yo 20 0.17 ± 0.01 # ELISA
40 0.29 ± 0.02
60 0.25 ± 0.11

26831013 Diabetic nephropathy 38 0.75 ± 0.27 ELISA

Autoimmune disorders

22493518b Rheumatoid arthritis 10 0.87 ± 0.83 * ELISA
16 1.12 ± 1.08 *
26 1.03 ± 0.98 *

vs. vs. vs.
Osteoarthritis 11 0.27 ± 0.19

15 0.32 ± 0.19
26 0.30 ± 0.19

24984830 Multiple sclerosis 20 12.11 ± 1.42 * TOOS assay
vs. vs. vs.

Other neurological disorders 20 7.05 ± 1.51

Various disorders

26083365 Chronic liver diseases 18 1.37 ± 0.77 * Two-site enzyme immunoassay
17 1.46 ± 0.67 *

Follicular lymphoma 10 0.95 ± 0.27 *
15 1.28 ± 0.47 *

vs. vs. vs.
Healthy controls 76 0.98 ± 0.58 #

98 1.49 ± 0.98

(Continued)
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phospholipid (96), that has been shown to affect lymphocyte
egress from the lymph nodes (97).

Non-withstanding the effects of ATX/LPA on lymphocyte
homeostasis, highly pertinent for both ILD/IPF and COVID-19,
a role for ATX/LPA on the homeostasis of the monocyte
phagocyte system is emerging. Macrophages are central players
in the pathogenesis of both IPF (98, 99) and COVID-19 (15, 100,
101), exhibiting remarkable heterogeneity and spatiotemporal
plasticity. LPA has been suggested to stimulate the expression of
macrophage chemotactic factors from ECs, such as monocyte
chemoattractant protein-1 (MCP-1) (102) and CXCL1 (103), thus
promoting both monocyte migration as well as adhesion to ECs
(102–104). Beyond LPA-induced macrophage chemoattraction
and adhesion to ECs, inflammatory macrophages per se have
been reported to express ATX upon BLM-induced pulmonary
inflammation and fibrosis, while IPF macrophages have been
Frontiers in Immunology | www.frontiersin.org 6
shown to stain for ATX (46). scRNAseq analysis of BALF cells
from COVID-19 patients indicated a predominance of
macrophages (100, 101), where ENPP2 mRNA expression was
detected in monocyte-derived alveolar macrophages (Mo-AMs)
(61), that have been shown to drive the development of BLM-
induced pulmonary fibrosis in mice (105). In turn, accumulating
evidence indicates that LPA co-stimulate macrophage maturation
and/or activation (47, 106–109), suggesting an autocrine role of
ATX/LPA inmacrophagepathologic responses.Moreover, LPAhas
been suggested to stimulate oxLDL uptake and foam cell formation
(110, 111), linking macrophages and ATX/LPA with
hyperlipidaemia and cardiovascular diseases (112), major
comorbidities of COVID-19.

While LPA promotes bone marrow derived monocyte
(CD11b+) activation (F4/80 expression) in vitro as potently as
M-CSF (106), LPA has been also reported to co-stimulate the
TABLE 1 | Continued

Disease
classification

PMID Disease Samples
(M/F/M+F)

ATX1 Method

32826822 Sepsis 84 443.6 (285.8 -
632.2)

TOOS assay

33568105 Pancreatic diseases 114 0.39 * ELISA
Benign pancreatic diseases 94 0.27

vs. vs. vs.
Healthy controls 120 0.26

34130757 Acute respiratory distress syndrome (survivors) 31 39.01 ± 13.89 Human Magnetic Luminex
AssayAcute respiratory distress syndrome (non-

survivors)
21 44.79 ± 13.38
October 202
Only publications analyzing more than 10 samples are included.
1All reported values were converted to mg/L and presented as in the original publication as means ± SD, or as median (interquartile range). Individual values represent medians unless
stated otherwise.
*: Compared to the same sex group of the controls; p < 0.05.
#: Compared to within-the-group opposite sex; p < 0.05.
†: Compared to females with normal pregnancy.
~: Compared to non-viral hepatitis.
$: Compared to hepatitis B.
a: ATX activity mean values are indicated.
b: ATX concentration in the serum was calculated anew by utilizing the supplementary data of this publication.
TABLE 2 | Reported Lysophosphatidic acid (LPA) effects on pulmonary, non-immune, cells.

Cell type LPA effect Receptor Pathway PMID

Epithelial cells

Human bronchial epithelial cells

induction of anchorage dependent apoptosis LPAR1 - 22021336
induction of TSLP & CCL20 – - 18757306
activation of TGF-b LPAR2 integrin avb6 19147812
induction of soluble ST2 expression LPAR1, 3 - 21871564
transactivation of EGFR & secretion of IL-8 - - 16687414,

16197369
induction of IL-13Ra2 – Gai 17287216
enhancement of epithelial barrier integrity LPAR1, 3 - 19586906,

17359381
decrease of EGFR-EGF binding – - 17640953
induction of COX-2 expression & PGE2 secretion Gai 18294142
transactivation of PDGFR-b – – 12890682
redistribution of c-Met on the membrane - - 17689924,

23624790

(Continued)
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GM-CSF/IL-4-induced conversion of monocytes to DCs (113,
114). Moreover, LPA has been also reported to modulate the
activity of TCF4 (115), a decisive transcription factor in
plasmacytoid dendritic cells (pDCs) development and
homeostasis (116). Increased ENPP2 expression was detected
in COVID-19 DCs and pDCs, correlating with markers of
Frontiers in Immunology | www.frontiersin.org 7
immature DCs (61), while an anti-inflammatory role of LPA
has been previously proposed for DCs via LPAR2 (117),
suggesting that ATX/LPA could be also involved in
suppression of DC responses in COVID-19.

Therefore, increases of ATX levels and LPA local production
in ARDS, ILD/IPF and COVID-19 can exacerbate numerous
TABLE 2 | Continued

Cell type LPA effect Receptor Pathway PMID

Human bronchial epithelial cells
(BEAS-2B)

transactivation of EGFR LPAR1 – 17640953
inhibition of IFN/TNF-induced CCL5/RANTES expression LPAR1 Gi/PI3K 20861350
decrease of EGFR-EGF binding – – 17640953

Human alveolar epithelial carcinoma cells (A549)
decrease of p53 abundance - - 18025263
increase of cell migration LPARs PKCd, cortactin 21696367
promotion of EMT, proliferation and migration RAGE PKB 33109194

Human basal cells induced signaling by CREB – ERK1/2 33794877

Mouse alveolar and bronchial epithelial cells
induction of apoptosis LPAR1 - 22021336
induction of apoptosis LPAR2 – 23808384

Mouse lung epithelial cells (MLE12)
induction of migration LPAR1 TrkA 26597701
induction of KC secretion LPAR1 ERK, p38 27448760

Endothelial cells

Human microvascular endothelial cells
increase of the endothelial layer permeability LPAR2,

6
- 23084965

Human pulmonary artery endothelial cels
increased adhesive properties LPAR1,

3
– 25621161

Human aortic endothelial cells

induction of VCAM, E-selectin - Gi 10595650
induction of E-selectin, MCP-1,
monocytic migration and adhesion

– ROCK2, NF-kB 30884801

induction of VCAM, ICAM - ROCK2, NF-kB 20164172

Human endothelial cells
CXCL1 secretion, monocyte adhesion LPAR1,

3
– 21531341

Human airway epithelial cells inhibition of the attachment to the ECM LPAR1 Rho-kinase 27500235
Mouse endothelial cells vascular leak/extravasation LPAR1 – 18066075
Bovine pulmonary artery endothelial cells migration, chemotaxis - ERK, Hic-5 17337598

15333043- -

Fibroblasts

Human fibroblasts

chemoattraction, accumulation LPAR1 – 18066075
proliferation, EGFR ectodomain shedding - ERK1/2 21362091
differentiation, profibrotic gene expression (TGFb, col1a2, FN,
SMA)

LPAR2 ERK1/2, Smad
3, Akt, p38

23808384

Mouse lung fibroblasts lamelipodia formation, motility LPAR1 - 14744855

Mouse fibroblasts (NIH 3T3)
migration, protection from apoptosis, proliferation – – 16219296
protection from apoptosis, proliferation Gi 11062066

Rat Rat1/c-Myc fibroblasts protection from apoptosis – Rac1 11062066
Mesenchymal cells derived from fibrotic lung
allografts

promotion of NFAT1 nuclear translocation LPAR1 b-catenin 28240604

Smooth muscle cells

Human smooth muscle cells
proliferation, stimulation of EGFR signaling - - 9252534, 11741820
activation of TGF-b – integrin avb5 22025551

Rabbit smooth muscle cells contraction - - 9338431

Stem cells

Human mesenchymal stem cells
migration LPAR1 b-catenin 22782863
migration, differentiation into myofibroblasts LPAR1 – 24251962
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TABLE 3 | Representative small molecules targeting ATX in late-stage preclinical and clinical development.

Pre-clinical data Clinical trials

Pharmacokinetics LPA
inhibition

Disease targeting
(Dose, route)

iv clearance (L/h·kg):
0.23 (mouse), 0.69 (rat), 0.12 (dog)1

Cmax (mouse, 30 mg/kg per os): 21.367 mg/mL1

tmax (mouse, 30 mg/kg per os): 1 h1

t1/2 (mouse, 30 mg/kg per os): 3.8 h1

per os bioavailability (F%):
29 (mouse), 37 (rat), 63 (dog)1

95%
(maximum)
(30 mg/kg
per os)1

Pulmonary fibrosis
(3, 10 or 30mg/kg

per os)1

Phase I
NCT03143712
NCT02179502

IPF
Phase II

NCT02738801
Phase III

NCT03711162
NCT03733444
Scleroderma

Phase II
NCT03798366
NCT03976648

– –
Metabolic disorders

(15mg/kg)2

Phase I
NCT04146805
NCT04814472
NCT04814498
NCT04939467

clearance (mL min-1 kg-1): 8.2 (mouse), 4.7 (rat),
5.8 (dog)4

Vdss (L/kg): 1.5 (mouse), 1.9 (rat), 2.3 (dog)4

Cmax (1 mg/kg per os): 124 ng/mL (mouse), 261
ng/mL (rat), 1670 ng/mL (dog)4

1/2 (1 mg/kg per os): 5.4 h (mouse), 2.5 h (rat), 5.9 h
(dog)4

per os Bioavailability (F): 51.6% (rat), 71.1% (dog),
30.8% (monkey)4

96%
(18:2 LPA, 3
mg/kg)3

93%
(20:4 LPA, 3
mg/kg)3

>99%
(18:2 & 20:4

LPA,
30 mg/kg)3

Prostatic hyperplasia
(0.3-10mg/kg, id)3

Breast cancer
(10mg/kg, per os)5

Thyroid cancer
(2mg/kg, per os)6

Preclinical
evaluation

rat iv clearance (mL min-1 kg-1) = 317

Vdss (L/kg) = 3.27

t1/2 = 1.2 h7

Cmax (10 mg/kg per os) = 2.55 mM7

tmax (10 mg/kg per os) = 0.67 h7

rat per os F (10 mg/kg) = 83%7

EC50 = 54.7
nM

(16:0 LPA)7

EC50 = 84.6
nM

(18:0 LPA)7

EC50 = 51.7
nM

(20:0 LPA)7

Arthritis Hyperalgesia
(30mg/kg, po)7

Glioblastoma
(10mg/kg, ip)9

Liver fibrosis
(30mg/kg, ip)10

Lung allograft fibrosis
(30mg/kg, per os)11

Preclinical
evaluation

9971, 6: 25398768, 7: 20392816, 8: 29798825, 9: 24062988, 10: 27981605, 11: 28240604.
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Compound
(Company)

In vitro properties

IC50(assay) Mode of Binding (Ki)ATX inhibitor type
(PDB structure entry)

ADMET

GLPG-1690
Ziritaxestat
(Galapagos)

131 ± 12 nM
(hATX, TOOS assay)1

418 nM
(mouse plasma,

18:2 LPA, LC-MS/MS)1

542 nM
(rat plasma,

18:2 LPA, LC-MS/MS)1

242 nM
(human plasma,

18:2 LPA, LC-MS/MS)1

Competitive (15 nM, hATX),
type IV inhibitor1 (5MHP)

hERG IC50: = 15 mM1

CYP3A4 TDI: negative1

BLD-0409
Cudetaxestat

(Blade
Therapeutics)

≤ 0.5 mM
(LPC assay)2

– –

ONO-8430506
(Ono

Pharmaceuticals)

5.1 nM
(recomb. ATX, FS-3

assay)3

10.2 nM
(hATX, LPC assay)3, 4

6.4 nM
(mouse plasma, LPC

assay)3

19 nM
(rat plasma, LPC assay)3

5.5 nM
(human plasma)3, 4

type II inhibitor
Protein plasma binding: rat
(95.1%), human (99%)4

High selectivity to ATX3

i

t

PF-8380
(Pfizer)

2.8 nM
(hATX, FS-3 substrate)7

1.7 nM
(hATX, LPC substrate)7

1.16 nM
(mATX, FS-3 substrate)7

1.15 nM
(fetal fibroblast cell line,

LPC substrate)7

101 nM
(human whole blood)

Competitive (0.02-0.04 nM),
type I inhibitor7

Solubility (pH = 6.8) = 0.011 mg/
mL8

Poor solubility at physiological
pH (7.4)8

IC50 hERG (cardiotoxicity) = 2.7
mM8

Permeability (PAMPA assay) =
81%8

1-11 refer to the following hyperlinked publications (PubMed ID): 1: 28414242, 2: 33342311, 3: 24747415, 4: 32551021, 5: 2459
v

https://www.rcsb.org/structure/5MHP
https://clinicaltrials.gov/ct2/show/NCT03143712?term=GLPG-1690&draw=2&amp;rank=1
https://clinicaltrials.gov/ct2/show/NCT02179502?term=GLPG-1690&draw=2&amp;rank=9
https://clinicaltrials.gov/ct2/show/NCT02738801?term=GLPG-1690&draw=2&amp;rank=7
https://clinicaltrials.gov/ct2/show/NCT03711162?term=GLPG-1690&draw=2&amp;rank=3
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pathogenic responses in the lung, likely in co-ordination with
other pathologic inflammatory and fibrotic factors.
PHARMACOLOGIC TARGETING OF ATX
AS AN ADDITIONAL THERAPEUTIC
OPTION IN COVID-19

Dexamethasone (Dex), the first line of defense against systemic
inflammation, has been proven effective in COVID-19 patients
requiring oxygen or ventilation (118, 119), the only approved single
therapy against severe COVID-19. Remarkably, Dex treatment of
ventilated COVID-19 patients attenuated serum ATX levels,
suggesting that the therapeutic effects of Dex include the
suppressionofATXexpression (61) and thatATXcanbedruggable.

The exacerbated production of IL-6 and other storm cytokines,
where present, is considered among the leading causes of COVID-
19/ARDS-related mortality, and therefore many clinical trials have
been conducted targeting storm cytokines or their receptors, with
inconsistent results, spurring controversial opinions on the use of
systemic anti-inflammatory drugs (120). ATX and IL-6 levels were
shown to correlate in ACLF (73), ARDS (62) and COVID-19 (61)
patients, suggesting that simultaneous inhibition of both IL-6 and
ATX may be an effective therapeutic strategy for COVID-19, as
previously suggested in systemic sclerosis (74).
Frontiers in Immunology | www.frontiersin.org 9
The antifibrotic compounds pirfenidone and nintedanib,
approved for IPF, have shown efficacy in fibrotic lung diseases
other than IPF (121–125). Therefore, since COVID-19 and IPF
share disease severity risk factors, such as sex/age and
comorbidities, existing and developing anti-fibrotic compounds
have been suggested as additional therapeutic options in
COVID-19 (126–128). Among them, GLPG1690 (Table 3 and
Figure 1) targets ATX and, together with the standard of care
treatment (pirfenidone or nintedanib), has entered phase III
international clinical trials (ISABELA 1 and 2, NCT03711162
and NCT03733444) (129). Given the above, the same or a similar
regime might also prove effective in COVID-19.

The crystal structure of ATX has been solved (55, 130, 131),
allowing a deep understanding of its structure and function
relationship (132) (Figure 1), and thus promoting rational
drug design. Given the establishment of ATX as a therapeutic
target in IPF, as well as the promising results from the initial
clinical trials, a plethora of ATX inhibitors have been developed
(133, 134); the ones at late-stage development as shown in
Table 3 and their mode in binding at Figure 1.

Inducible genetic deletion of ATX in adult life, resulting in 70-
80% decreases in serum ATX levels and mRNA expression levels
in different tissues, did not have any appreciable effects in gross
pathophysiology of major organs (135), suggesting that the bulk
of ATX activity in mice is dispensable for adult life. Moreover,
potent (IC50 2 nM), long term (3 weeks) pharmacological
FIGURE 1 | Schematic representation of the mode of binding (color coded) to ATX by the 4 different types of ATX inhibitors (I-IV). The mode of binding of LPA is
also displayed (in green).
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inhibition of ATX with PF-8380 (120 mg/Kg - 4 times the
effective concentration; PO; bid) had no effects in survival or
gross pathology of major organs (135), suggesting that ATX
pharmaceutical targeting is safe and well tolerated in mice. In
humans, GLPG1690 was reported to be well tolerated in a phase
1 randomized clinical trial (NCT02179502), safe and efficacious
in a phase 2a randomized placebo-controlled clinical trial
(NCT02738801), supporting ATX inhibition as a novel
treatment for IPF (136, 137). In addition, administration of
BBT-877, another orally available small molecule inhibitor
targeting ATX (IC50 ~6.7 nM), to healthy volunteers in a
phase I clinical trial (NCT03830125), did not reveal severe
adverse events (138, 139). However, the GLPG1690 phase III
clinical trial was recently discontinued on account of “low benefit
to risk ratio“. Likewise, BBT-877’s scheduled phase II clinical
trial was also postponed due to “toxicity concerns“. Since the
relative results are not announced yet, it is not known if the
toxicity was imposed from the compounds themselves or their
target. Nevertheless, several new candidates are emerging, while
possible compound toxicity can be eliminated with targeted
modifications or bypassed via inhaled administration.
CONCLUSIONS

The increased levels of ATX in ILDs/IPF, ARDS and COVID-19
add yet another commonality between them and suggest that
Frontiers in Immunology | www.frontiersin.org 10
LPA signaling is involved in their pathogenesis, including the
amplification of vascular damage, the regulation of the immune
system and the promotion of fibrosis. Therefore, the therapeutic
targeting of ATX in IPF and fibrotic diseases could be also
applied in COVID-19, alone or together with approved anti-
fibrotic, anti-rheumatic and anti-viral drugs, especially given its
predicted short-term administration, as well as the emergency
nature and unmet medical need for the treatment of COVID-19
severe cases.
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