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Circulating levels of the anti-oxidant indoleproprionic acid are associated with
higher gut microbiome diversity
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ABSTRACT
The gut microbiome has recently emerged as an important regulator of insulin resistance and abdom-
inal obesity. The tryptophan metabolite generated by the gut microbiome, indoleproprionic acid (IPA)
has been shown to predict the onset of type 2 diabetes. IPA is a metabolite produced by gut microbes
from dietary tryptophan that exhibits a high degree of inter-individual variation. The microbiome
composition parameters that are associated with circulating levels of this potent anti-oxidant have
however not been investigated to date in human populations. In 1018 middle-aged women from the
TwinsUK cohort, we assessed the relationship between serum IPA levels and gut microbiome composi-
tion targeting the 16S rRNA gene. Microbiome alpha-diversity was positively correlated with serum
indoleproprionic acid levels (Shannon Diversity: Beta[95%CI] = 0.19[0.13;0.25], P = 6.41 × 10−10) after
adjustment for covariates. Sixteen taxa and 12 operational taxonomic units (OTUs) associated with IPA
serum levels. Among these are positive correlations with the butyrate-producing Faecalibacterium
prausnitzii, the class Mollicutes and the order RF39 of the Tenericutes, and Coprococcus Negative
correlations instead were observed with Eubacterium dolichum previously shown to correlate with
visceral fat mass and several genera in the Lachnospiraceae family such as Blautia and Ruminococcus
previously shown to correlate with obesity. Microbiome composition parameters explained ~20% of the
variation in circulating levels of IPA, whereas nutritional and host genetic parameters explained only
~4%. Our data confirm an association between IPA circulating levels and metabolic syndrome para-
meters and indicate that gut microbiome composition influences IPA levels.
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Introduction

Indoleproprionic acid (IPA) is an antioxidant pre-
dictive of a lower risk of developing type 2 diabetes
(T2D).1 Indeed, De Mello et al.1 compared IPA
levels in individuals with impaired glucose toler-
ance, some of whom developed T2D over 15 years.
Higher IPA levels are associated with reduced like-
lihood of developing T2D and this was further
replicated in a Swedish population.1

Indolepropionic acid is a deamination product
of the amino acid tryptophan. It accumulates in
human serum, exhibits a high degree of inter-
individual variation2 and regulates gastrointestinal
barrier function via its interaction with the preg-
nane X receptor (PXR).3

Dietary and genetic factors have been impli-
cated in the circulating levels of this compound
in humans, and the gut microbes linked to IPA
have been studied in mice.

In terms of dietary factors, IPA has been
reported to be strongly associated with intake of
dietary fibre4 which is known to correlate with
higher microbiome diversity and higher produc-
tion of short-chain fatty acids (SCFAs).5 Therefore
it might be argued that the effect of this compound
might be reflecting simply the beneficial effect of
fiber on insulin resistance and fatty acid metabo-
lism in general. Circulating levels of IPA appear to
have a heritable component and have been shown
to be associated with genetic variants in large
metabolomic screens.6
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In mice, production of IPA has been shown to be
completely dependent on the presence of gut micro-
biome and to be specifically related to the bacterium
Clostridium sporogenes6. More recently, Dodd and
collaborators7 cultivated 36 bacterial isolates in the
same tryptophan-containing medium and found
that 5 other bacterial isolates (Peptostreptooccus anae-
robius, CC14N and three strains of Clostridum cada-
veris) were able to produce IPA. If higher levels of this
compound have health benefits, as suggested by the
literature, then understanding the relative contribu-
tion of the gut microbiome to its levels would become
relevant in order to understand how to increase its
production in the gut. However, the gut microbiome
components linked to higher or lower levels of this
compound have not been studied in human popula-
tions as yet nor has the relative importance of gut
microbiome factors relative to dietary or genetic
factors.

We hypothesized that gut microbiome and diet-
ary intake of tryptophan would have the strongest
influence on levels of IPA. In this study, we have
therefore quantified the contribution of micro-
biome composition, dietary fiber and tryptophan
intake and genetic variation in humans to circulat-
ing levels of IPA in a large cohort of twins.

Results

The descriptive characteristics of the study parti-
cipants are presented in Table 1. One thousand
eighteen females with concurrent IPA and micro-
biome data were included in the analysis.

We first tested whether IPA levels were associated
with clinical parameters related to metabolic syn-
drome in our cohort and we find that indeed it is

strongly negatively associated with visceral fat (Beta
(SE) = −0.057 (0.018), P = 0.002), insulin resistance
(Beta (SE) = −0.046 (0.019), P = 0.014), arterial
stiffness (Beta (SE) = −0.128 (0.064), P = 0.045),
and fasting glucose (Beta (SE) = −0.08 (0.032, P =
0.012) (Table S1, Figure 1). We then investigated
what are the factors contributing to circulating levels
of IPA. To do this we considered three sources:
genetics, diet and gut microbiome composition.

As part of the analysis, we also included genetic
variation known to influence levels of IPA8 map-
ping specifically to the ACSM2A gene. Although
several SNPs map to the genetic region known to
be associated with IPA levels, they are all highly
correlated with each other and therefore we con-
centrated on only the SNP with the strongest
p-value, namely rs1394678 (Figure 1).

IPA is derived from tryptophan so we have
considered various dietary sources of tryptophan
as contributors to its circulating levels (Figure 1).

When we assessed the relationship between cir-
culating levels of IPA and four different measures
of microbiome alpha diversity (Table 2) we found
that it was positively correlated with all four mea-
sures of alpha-diversity, and these associations
remained significant even after adjusting for diet-
ary fiber intake. This suggests that the association
between the gut microbiome and IPA levels is not
confounded by fiber intake.

We identified 16 taxa (Table S2) and 56 operational
taxonomic units (OTUs) (Table S3) associated with
IPA serum levels. The strongest associations seen
were positive associations with RF39 assigned to the
Tenericutes phylum and negative associations with
OTUs from the Lachnospiraceae family. We also
found positive correlations with the butyrate-
producing Faecalibacterium prausnitzii, the genus
Coprococcus,9 the class Mollicutes and several OTUs
affiliated with the Ruminococcaceae as well as one
from the family Chistensenellaceae. Negative correla-
tions instead were observed with several Eubacterium
species including E. dolichum that has been previously
reported to be associated with increased visceral fat
(Figure 1).10 When we included the 56 OTUs in
a stepwise linear regression model, we found a panel
of 12 OTUs independently associated with IPA levels
after adjusting for covariates (Figures 1 and 2).

In terms of relative abundances, we found that by
far the most common taxon positively correlated with

Table 1. Descriptive characteristics of the study population.
Phenotype N %

N 1018
Females 1018 100

Mean SD
Age, yrs 65.62 7.72
BMI, Kg/m2 26.25 4.90
Fibre intake, gr 20.92 7.21
HOMA2-IR 0.93 0.67
Indices of microbiome diversity
Shannon Diversity 5.14 0.69
Simpson Diversity 0.92 0.06
CHAO1 812.59 331.27
Number of observed OTUs 338.85 89.27
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IPA levels are unannotated sequences within the
order Clostridiales not assigned a lower taxonomy
with an average relative abundance of almost 10%
(Table S2), followed by the genus Coprococcus
(1.91%) and bacteria within the order Mollicutes
RF39 (1.71%) of the phylum Tenericutes. In terms of
negative correlations, the most common taxon

associated with lower levels of IPA was the genus
Blautia of the phylum Firmicutes.

We then quantified how much these various fac-
tors contributed quantitatively and found that age
and BMI contribute 5.97% of the variance in IPA
levels. Dietary intake parameters (fiber intake, satu-
rated fats, and eggs) contributed an additional 3.51%
of the variance (Figure 3), the genetic variant con-
tributed 1.1% of the variance, gut-microbiome alpha
diversity 3.72% and the 12 OTUs independently
associated to IPA levels 14.77% (Figure 3). Thus,
the strongest contribution to the interindividual var-
iation of IPA levels came from microbiome
composition.

Figure 1. CIRCOS plot showing the association (-log10 p-value) with indeloproprionic acid (IPA) levels and clinical parameters,
genetic parameters, dietary and food intake parameters and microbiome parameters, including four measures of alpha diversity.

Table 2. Association between circulating IPA levels and alpha
diversity measures.
Diversity Beta[95%CI] P

Shannon 0.19[0.13;0.25] 6.41 × 10−10

Simpson 0.13[0.07;0.18] 2.92 × 10−5

Number of observed OTUs 0.18[0.12;0.24] 3.22 × 10−9

Chao1 0.11[0.05;0.17] 2.07 × 10−4
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Finally, we investigated how much the bacterial
OTUs independently associated positively and nega-
tively with circulating IPA and the IPA associated

taxa reflect visceral fat mass. Visceral fat is not only
an important contributor tometabolic syndrome but
was the phenotypic trait most strongly associated in

Figure 3. Proportion of the variance in IPA circulating levels explained by microbiome parameters, dietary intake parameters and
genetic parameters in 1018 women from the TwinsUK cohort.

Figure 2. Forest plot showing an association between bacterial taxa and OTUs and IPA circulating levels and visceral fat mass.
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our data (Table S1); 9 out of the 12 independent
OTUs and 8 out of the 16 IPA associated taxa were
also nominally associated with visceral fat mass after
adjusting for age, and BMI (Figure 2). In all cases, we
found that those associated negatively with IPA were
positively correlated with visceral fat whereas those
positively correlated with IPA were negatively corre-
lated with visceral fat (Figure 2). Importantly all the
bacterial associations with IPA remained statistically
significant after adjusting for visceral fat mass but
one out nine associations between visceral fat mass
and the bacterial OTUs was no longer statistically
significant after adjustment for IPA levels (Figure 2).

Discussion

In this study we have investigated for the first time
in humans, the relationship between IPA circulat-
ing levels, gut microbiome composition and meta-
bolic health in 1018 women. In our data, we find
that IPA is strongly correlated with high micro-
biome diversity in spite of the fact that only
a handful of bacteria strains are known to be able
to produce IPA.7 We also confirm that IPA is
strongly linked to dietary fiber intake and that
higher IPA circulating levels correlate with lower
risk of a number of metabolic syndrome para-
meters as shown by Mello et al.1

None of the strains frommurine gut7, which have
been shown to produce IPA, were found in our study
to be correlated with IPA production. Most of the
strains reported to produce IPA from tryptophan
belong to the order Clostridiales. In our data, we
find a bacteria belonging to that order (>9.8% abun-
dance) strongly correlated with higher levels of IPA.
This suggests that the lack of taxonomic resolution of
16S rRNA data hampers accurate detection of the
IPA-producing strains. Metagenome-based analyses
data will allow for properly measuring IPA produ-
cers in human fecal DNA. On the other hand, we
find that a number of bacterial OTUs that have been
shown not to produce IPA,7 such as Tenericutes,
Coprococcus sp and Faecalibacterium prasunitzii are
positively correlated with IPA levels. It is possible
that these bacteria thrive in a similar environment to
that of IPA producers and hence they may be signa-
tures for IPA production even if they lack this func-
tion. It is also possible that the bacteria that actually

produce IPA thrive in a complex environment char-
acterized by higher diversity.

Previous studies had investigated the genetic varia-
tion that contributes to metabolite circulating levels
including those of IPA and had reported a genome-
wide significant region mapping specifically to the
ACSM2A gene.8 We report that a variant in the
ACSM2A gene contributes to the overall variation in
IPA circulating levels8 in addition to dietary and gut
microbiome factors. This gene encodes a
mitochondrial xenobiotic/medium-chain fatty acid:
CoA ligase (ACSM). The glycine conjugation pathway
is a two-step enzymatic reaction responsible for the
metabolism/detoxification of substrates that include
xenobiotics produced by gutmicrobiome, metabolites
from organic acidemias, and medium-chain fatty
acids (MCFAs).11 The first step is the activation to
an acyl-CoA by the ACSMs and the second step is the
conjugation to glycine by glycine N-acyltransferase
(GLYAT). Therefore, the genetic variants influencing
IPA levels are likely to be related to the metabolism
and excretion of IPA rather than its production. In
fact, the contribution of genetic variation in the
ACSM2A is fairly modest when compared to that of
diet and microbiome composition.

We note some limitations to the current study. The
study sample consisted exclusively of adult women
and therefore the results may be different in men. The
dietary influences have been assessed from food fre-
quency questionnaires and not from food diaries or
from controlled dietary interventions. The resolution
from the 16S rRNA gene does not allow for strain or
in many cases not even species identification. For this
reason, the current study cannot provide functional
insights into IPA production potential by the micro-
biome to prove causality. Shotgun-sequencing that
provides a deeper taxonomic resolution as well as
functional insights appears necessary to properly
characterize the bacterial taxa involved in IPA pro-
duction in the human gut.

Notwithstanding the above limitations, this is
the first study to investigate the dietary, genetic
and microbiome factors to the circulating levels of
this powerful anti-oxidant.

Subjects and methods

Study subjects were female twins enrolled in the
TwinsUK registry, a national register of adult
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twins recruited as volunteers without selecting for
any particular disease or trait traits.12 In this study,
we analyzed data from 1018 female twins with
concurrent 16s microbiome data and serum meta-
bolomics. The study was approved by NRES
Committee London–Westminster, and all twins
provided informed written consent.

Type 2 diabetes. T2D cases were defined as
individuals with fasting glucose levels≥7mmol/L at
time of initial sampling and at subsequent visits,
while T2D “super controls”were defined as subjects
with fasting glucose levels between 3.9mmol/L and
5mmol/L, as was done for the original metabolomic
study of T2D.13

Visceral fat measurement by DXA. Estimates
of visceral fat mass were derived from DXA mea-
surements of whole body composition as pre-
viously described.14

HOMA-IR – Fasting insulin and glucose levels
were measured for the twin cohort using the same
methods as previously described.12 The homeosta-
sis model assessment-estimated insulin resistance
(HOMA-IR) was calculated multiplying overnight
fasting plasma insulin (FPI) by overnight fasting
plasma glucose (FPG), then dividing by the con-
stant 22.5, i.e. HOMA-IR = (FPI×FPG)/22.515.

Fibre and fatty acid intake: A validated 131-
item semi-quantitative Food Frequency
Questionnaire (FFQ) established for the EPIC
(European Prospective Investigations into Cancer
and Nutrition)-Norfolk study15 was used to assess
dietary intake. Estimated intakes of essential fatty
acids and fiber (in grams per day) were derived
from the UK Nutrient Database16 and were
adjusted for energy intake using the residual
method prior to analysis.17

Genetic variation: Here we dissected the IPA gen-
ome-wide association scan (GWAS) data that was
previously generated and published as part of our
GWAS–metabolomics study.8 GWAS (in the
HapMap 2–based imputed genotype data set) was
conducted on 6056 individuals from TwinsUK and
1768 from KORA as previously described.8

Association results were combined in Metal18 using
inverse variance meta-analysis based on effect size
estimates and standard errors, adjusting for genomic
control.

Indolepropionate: Circulating IPA levels were
measured using ultra-high performance liquid

chromatography-tandem mass-spectrometry by
the metabolomics provider Metabolon Inc.
(Durham, USA) on 1018 fasting serum samples
from participants in the TwinsUK study, as
described previously.19

Microbiome analysis: Faecal samples were col-
lected and the composition of the gut microbiome
was determined by 16S rRNA gene sequencing car-
ried out as previously described.20 Briefly, the V4
region of the 16S rRNA gene was amplified and
sequenced on IlluminaMiSeq. Reads were then sum-
marised to operational taxonomic units (OTUs)
Quality control was carried out on a per sample
basis, discarding paired-ends with an overlap of less
than 200nt and removing chimeric sequences using
de novo chimera detection in USEARCH.21 De novo
OTU clustering was then carried across all reads
using Sumaclust within QIIME 1.9.0, grouping
reads with a 97% identity threshold.22,23 OTU counts
were converted to log-transformed relative abun-
dances, with zero counts handled by the addition of
an arbitrary value (10−6). The residuals of the OTU
abundances were taken from linear models, account-
ing for technical covariates including sequencing
depth, sequencing run, sequencing technician and
sample collection method. These residuals were
inverse normalized, as they were not normally dis-
tributed, and used in downstream analyses. In order
to calculate alpha diversity, the complete OTU count
table was rarefied to 10,000 sequences per sample 50
times. Alpha diversity metrics were calculated for
each sample in each of the rarefied tables and final
diversity measures taken as the mean score across all
50. Alpha diversities were quantified as observed
OTU counts and Shannon and Simpson diversity
indices. Alpha diversity indexes were standardized
to have mean 0 and SD 1.

Statistical analysis

Statistical analysis was carried out using Stata ver-
sion 11. We inverse normalized circulating IPA
levels as the metabolite concentration was not
normally distributed. We imputed missing values
using the minimum run-day measures. We
assessed the association between the cardio-
metabolic trait and circulating levels of IPA by
using randomly mixed models adjusting for age,
BMI and family relatedness. Linear mixed models
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were also employed to evaluate the associations
between (i) circulating IPA levels and gut micro-
bial diversity (Shannon, Simpson and CHAO1
indexes, number of observed OTUs), (ii) IPA and
OTU, and (iii) IPA and taxa adjusting for age,
BMI, technical covariates and multiple testing
using Bonferroni correction.

As dietary fiber is a strong predictor of gut
microbiome diversity,24 we further adjusted for
fiber intake. To identify a set of OTUs indepen-
dently associated with IPA, we fitted a stepwise
regression, incorporating all significant OTUs
together with age and BMI.

Using standard multiple linear regressions, we
computed the proportion of the variance (R2) in
IPA not explained by age, BMI and MAP that was
explained by microbiome diversity, microbiome
OTUs, genetics, and diet. Finally, we explored the
direction of microbiome associations with IPA and
compared them to those between the same
microbes and visceral fat, a marker of metabolic
syndrome. To do this we first ran linear regres-
sions of the same taxa and OTUs with normalized
visceral fat adjusting for age, BMI and technical
covariates. We then further adjusted for IPA and
ran in parallel the same regressions with IPA as
the outcome variable adjusting for visceral fat.
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