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Aaron Goodman contributed equally

(Received 21 January 2020, revised 27 April

2020, accepted 5 June 2020, available

online 7 July 2020)

doi:10.1002/1878-0261.12748

Hydrophobic neoantigens are more immunogenic because they are better

presented by the major histocompatibility complex and better recognized

by T cells. Tumor cells can evade the immune response by expressing

checkpoints such as programmed death ligand 1. Checkpoint blockade

reactivates immune recognition and can be effective in diseases such as

melanoma, which harbors a high tumor mutational burden (TMB). Can-

cers presenting low or intermediate TMB can also respond to checkpoint

blockade, albeit less frequently, suggesting the need for biological markers

predicting response. We calculated the hydrophobicity of neopeptides pro-

duced by probabilistic in silico simulation of the genomic UV exposure

mutational signature. We also computed the hydrophobicity of potential

neopeptides and extent of UV exposure based on the UV mutational signa-

ture enrichment (UVMSE) score in The Cancer Genome Atlas (TCGA;

N = 3543 tumors), and in our cohort of 151 immunotherapy-treated

patients. In silico simulation showed that UV exposure significantly

increased hydrophobicity of neopeptides, especially over multiple muta-

genic cycles. There was also a strong correlation (R2 = 0.953) between

weighted UVMSE and hydrophobicity of neopeptides in TCGA melanoma

patients. Importantly, UVMSE was able to predict better response

(P = 0.0026), progression-free survival (P = 0.036), and overall survival

(P = 0.052) after immunotherapy in patients with low/intermediate TMB,

but not in patients with high TMB. We show that higher UVMSE scores

could be a useful predictor of better immunotherapy outcome, especially in

patients with low/intermediate TMB, likely due to increased hydrophobic-

ity (and hence immunogenicity) of neopeptides.
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1. Introduction

Cells in the human body naturally present antigens,

which are short peptide fragments derived from intra-

cellular and extracellular sources, on their surfaces in

major histocompatibility complex (MHC) proteins.

Intracellular antigens are usually presented by MHC

class I molecules to effector T cells [1] to help the

immune system recognize whether the cell is healthy

and whether it belongs to the host (‘self’), whereas

extracellular antigens are often displayed in MHC II

moieties on professional antigen-presenting cells like

dendritic cells, B cells, and monocytes [2]. Healthy cells

displaying valid ‘self’ antigens are not recognized by

effector T cells due to negative selection in the thymus,

Treg cells meant to suppress the immune system do rec-

ognize these cells [2]. In contrast, cancer cells should

be recognized and attacked by cytotoxic T cells

because malignant cells harbor mutations that manifest

as altered peptide neoantigens marking them as non-

self. Antigens presented in MHC II could also be

important in activating CD4+ ‘helper’ T cells, which

are involved in a variety of antitumor responses [2].

Logically, more mutations should result in a greater

probability of presenting immunogenic neoantigens on

the cell surface [3].

In order to survive and evade the immune response,

highly mutated tumor cells use several evasion tech-

niques including downregulating MHC I expression,

though natural killer cells are more likely to target

these without the involvement of a separate evasion

mechanism involving shedding like in some prostate

cancers [4], since the presence of MHC I inhibits their

activity [2,5], and expressing immune checkpoint sur-

face proteins, such as programmed cell death 1 (PD-1)

ligands [6] to dull the adaptive response their foreign

antigens trigger. PD-1 ligands are induced by inter-

feron gamma found in the proinflammatory tumor

microenvironment [7] and cause CD8+ T cells to

become anergic, even if they recognize the foreign anti-

gens present on the tumor. Checkpoint blockade

immunotherapies (e.g., anti-PD-1/PD-L1 antibodies)

counter this effect by obstructing the PD-1/PD-L1

interaction. These are more effective in cancers charac-

terized by a high tumor mutational burden (TMB)

such as melanoma [8] and the high TMB subset of

patients in other cancers [8–14]. Other factors that cor-

relate, albeit imperfectly, with a propensity to PD-1/
PD-L1 inhibitor responsiveness include PD-L1 overex-

pression [8,12,13] and Apolipoprotein B mRNA Edit-

ing Enzyme, Catalytic Polypeptide-like (APOBEC)

mutational activity [15].

Most mutations in melanomas are caused by exposure

to ultraviolet (UV) light [16] through the action of free

radicals formed by high-energy UV rays disrupting

covalent double bonds in pyrimidine DNA bases [16].

There are three forms of UV radiation, categorized by

wavelength, and therefore energy level: UVA (340–
400 nM), UVB (280–320 nM), and UVC (200–280 nM).

Free radical oxidation reactions due to UVB and UVC

light cause dipyrimidine dimers to form, most of which

should be repaired by nucleotide excision repair. How-

ever, some residual dipyrimidine mutations remain

uncorrected, leading to increased brittleness in the DNA

helix and improper replication and transcription.

Dipyrimidines composed of linked cytosines are usually

mispaired with two adenines during DNA replication,

resulting in the characteristic CC→TT mutations com-

monly associated with UV light [17]. Lower energy

UVA radiation tends to cause G→T mutations by free

radicals oxidizing guanine, creating a new 7,8-dihydro-8-

oxoguanine species that can pair with adenine, which

then causes the guanine’s replacement with a thymine in

a succeeding DNA replication cycle [16].

In this paper, we describe biochemical (hydropho-

bicity) and clinical outcomes as related to UV-induced

hypermutation. We show that neoantigens produced

from a UV-mutated genome tend to be more

hydrophobic and therefore are likely to be more

immunogenic because they are better presented by

MHC and they are more easily recognized by T cells

[18–20]. We also show a positive correlation between

response to immunotherapy and level of UV mutations

in 151 patients seen at the University of California

San Diego Moores Cancer Center. These data suggest

that the shift toward hydrophobicity induced by UV

mutations is likely to underlie the enhanced respon-

siveness to immunotherapy.

2. Materials and methods

2.1. In silico UV mutagenesis

We generated all possible 6-nucleotide stretches (repre-

senting two codons) and applied the UV mutational

signature, as previously described [21], onto them. The

6-nucleotide length for each stretch was used to allow

us to consider the effect of mutations occurring in all

possible reading frames in a codon. This is because the

UV mutation signature is defined using the context of

the two nucleotides flanking the substitution site since

mutations arising from UV exposure often involve

reactions between neighboring bases [22], therefore
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necessitating the presence of at least five nucleotides

per stretch to allow the signature to be applied to

every possible reading frame of the codon. The 4096

6-nucleotide stretches, before and after mutation, were

then virtually transcribed into their corresponding

amino acids whose total hydrophobicity was calculated

with the Kyte–Doolittle hydrophobicity scale [23] (with

and without the reciprocal strand). The hydrophobicity

of the dipeptides was multiplied before and after muta-

genesis by the probability of observing the codons cor-

responding to the dipeptide on the human coding

genome (derived from the Kazusa’s codon usage data-

base [24]) and the probability of UV mutagenesis on

the stretch [21]. The change in hydrophobicity due to

in silico mutagenesis was compared using the Wilcoxon

signed-rank test.

For example, using the 6-mer TCCGAG, encoding

for the dipeptide Ser-Glu, would have a Kyte–Doolittle

hydrophobicity index of (−0.8) + (−3.5) = (−4.3) arbi-
trary unit (AU) [23]. This 6-mer can be mutated with

the most frequent UV mutagenesis pattern TCC>TTC
at the second position to yield the sequence TCCGAG/
Phe-Glu, which has a hydrophobicity index of

(+2.8) + (−3.5) = (−0.7) AU. The substitution alone

results in an increase in hydrophobicity of +3.6 AU, but

this value must be further weighted by the probability of

the mutation occurring in the specific 6-nucleotide

stretch. The mutation occurrence probability is calcu-

lated as the joint probability of encountering the origi-

nal TCCGAG sequence in the genome, 0.00070092, and

the probability of the TCC>TTC mutation occurring

based on the signature 7 from [21], 0.2887, yielding a

joint mutation probability for this specific case of

0.00070092 × 0.2887 = 2.024 × 10−4. The relative

change in hydrophobicity of this substitution is there-

fore 2.024 × 10−4 × (+3.6) = +72.84 × 10−4. Analogous

calculations were performed for all possible nucleotide

substitutions (three unique nucleotides per position) at

all definable, mutable positions (2nd, 3rd, 4th, and 5th

positions) in all 6-nucleotide stretches (n = 4096) result-

ing in a total of 49 152 possible singly mutated stretches,

whose relative hydrophobicity changes were summed

together to estimate the genome-wide hydrophobicity

change for each round of mutagenesis. Each succeeding

cycle of mutagenesis starts with the preceding 6-nu-

cleotide stretches, and the joint probability of the two

codons was modified based on the mutations applied in

the previous cycle.

Each iteration of mutagenesis described above corre-

sponds to a single iteration of UV-mediated mutagene-

sis, equivalent to an AU dose of UV exposure.

Multiple iterations of mutagenesis in this method are

intended to correspond to increasing doses of UV

light. We repeatedly simulated UV mutagenesis for up

to 100 iterations to investigate and model the effects

of long-term UV exposure on antigen hydrophobicity.

2.2. Analysis of UV mutational signature in

TCGA repository pan-cancer tumor samples

Molecular profiles, obtained by next-generation

sequencing (NGS) of human tumors, consisting of

mutations such as substitutions or small insertions/
deletions and mRNA expression data, were down-

loaded from the community resource project The Can-

cer Genome Atlas (TCGA), using the Broad GDAC

Firehose website (https://gdac.broadinstitute.org—
standardized data run release 2016_01_28). All samples

were published and available without usage restrictions

as of January 14, 2019. All TCGA data used in this

study respected the TCGA Human Subjects Protection

and Data Access Policies (https://cancergenome.nih.

gov/abouttcga/policies/tcga-human-subjects-data-polic

ies). Another set of mutation data containing mutation

data for acral melanomas [25] was downloaded from

cBioPortal (http://www.cbioportal.org/study?id=mel_

tsam_liang_2017). The acral melanoma data were col-

lected in accordance with the protocol approved by

Vanderbilt University and Memorial Sloan-Kettering

Cancer Center Institutional Review Boards, as detailed

in Liang et al. [25]. The mutation annotation file from

both data sources containing the mutation data were

then filtered by genomic coordinates corresponding to

the exon regions sequenced by Foundation Medicine.

2.3. UV mutational signature enrichment

estimation for TCGA samples

An estimation of the enrichment of mutations due to

UV exposure was performed using our implementation

of a signature estimator (publicly available software

tool at https://github.com/UCSD-CCAL/Mutational-

Signature-Enrichment-Calculator). The results were

given as a numerical score (UV mutational signature

enrichment, UVMSE) representing the enrichment of

mutations likely to be caused by UV exposure. In

TCGA tumors, for each sample the total number of

mutations was multiplied by its UVMSE score to

quantify the extent of UV-induced mutagenesis in each

sample when correlating it with each sample’s overall

neopeptide hydrophobicity.

2.4. Hydrophobicity analysis

From 9166 samples in the TCGA database (33 distinct

tumor types), we selected 3543 tumors without (a)
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POLE and POLD1 mutations, (b) mismatch repair gene

loss, underexpression, or mutations, (c) and microsatel-

lite instability-high alterations because these alterations

are already known to influence immunotherapy

response [12,26,27]. Using the mutation description

available for these tumors, we then performed two types

of analysis: (a) In the first analysis, for each tumor, the

differences in total hydrophobicity (i.e., the sum of the

hydrophobicity of all amino acids) of each transcript’s

full-length peptide product (after versus before mutage-

nesis) were considered; and (b) for the second analysis,

for each tumor, mutated transcripts were used to gener-

ate all possible 8- to 10-mer neoantigens encompassing a

mutation (since MHC I presents 8–10 amino acid pep-

tides); the differences in total hydrophobicity of the

neoantigens after versus before mutagenesis were con-

sidered. The results of both (a) and (b) above were com-

puted either not weighted by mRNA expression levels

or weighted by these levels (in order to take into consid-

eration whether the neoantigens were actually tran-

scribed and their respective levels of expression). For

each sample, the weighted and unweighted hydropho-

bicities were then correlated against the UVMSE-

weighted total mutation count.

2.5. Analysis of UV mutagenesis signature and

tumor neoantigen hydrophobicity in patients

receiving immunotherapy (PD-1/PD-L1 blockade

agents)

We reviewed the electronic medical records of 1638 eligi-

ble patients with malignancies at UC San Diego Moores

Cancer Center who have undergone hybrid capture-

based NGS (Foundation Medicine, Cambridge, MA,

USA) starting in October 2012. Only patients having

received at least one line of immunotherapy were consid-

ered (N = 151). For each case, responses to therapy were

assessed based on physician notation, using the Response

Evaluation Criteria in Solid Tumors (RECIST) criteria.

This study was performed in accordance with UCSD

Institutional Review Board guidelines for data analysis

(NCT02478931) and for any investigational treatments

for which patients consented. In addition, the study

methodologies conformed to the standards set by the

Declaration of Helsinki.

Formalin-fixed paraffin-embedded tumor samples

from these patients were submitted for NGS to Foun-

dation Medicine’s clinical laboratory improvement

amendments-certified laboratory. The patients’ muta-

tions were assessed with the FoundationOne® assay

(hybrid capture-based panel exome NGS; panel of up

to 315 genes—http://www.foundationone.com/). The

methods have been previously described in Frampton

et al. [28]. Average sequencing depth of coverage was

greater than 250×, with more 99% of exons covered

having greater than 100×. TMB, measured in muta-

tions per megabase (Mb), was calculated by extrapolat-

ing the number of somatic mutations detected on NGS

to the whole exome with a validated algorithm [26,29].

Alterations likely or known to be bona fide oncogenic

drivers and germline polymorphisms were excluded.

TMB levels were divided into three groups: low (1–5
mutations/Mb), intermediate (6–19 mutations/Mb), and

high (≥ 20 mutations/Mb), which stratified roughly

50% of patients to low TMB, 40% to intermediate

TMB, and 10% to high TMB in our cohort [30].

2.6. UV mutational signature enrichment

(UVMSE) for patient samples

An UVMSE score was computed for each of the 151

patients from their NGS data on the Foundation Medi-

cine gene panel using our MSE software tool as was used

to calculate the UV MSEs of TCGA data. Demographic

data for the patients were previously provided (8).

Variant call format (.VCF) files for the 151 Moores

Cancer Center patients were generated by processing

the Binary Sequence Alignment/Map format (.BAM)

files, obtained from Foundation Medicine Inc. (www.f

oundationmedicine.com/) NGS, with the variant detec-

tion FreeBayes algorithm, and excluding low-quality

variants (QUAL score of < 50 or read depth of

< 100). Further, the VCF files were then filtered by

genomic coordinates corresponding to the exonic

regions Foundation Medicine sequences for their com-

mercially available report. We then defined a single-

strand, DNA-specific UV signature, signature 7 from

[21]. Substitutions in the reverse complement were

treated the same as those in the forward strand for

counting purposes. The UVMSE score quantifies how

frequently mutations described in the defined UV sig-

nature 7 occur at a specific sequence context compared

to analogous single nucleotide substitutions in other

contexts. It is our adaptation of the quantification

method described in Roberts et al. [31]. For example,

the mutation TCC→TTC, the most frequent UV-in-

duced mutation according to Alexandrov et al. [21],

can be used to illustrate our method. Its enrichment

can be calculated as follows:

ETCC!TTC ¼MutTCC!TTC=ConTCC!TTC

MutC=ConC

¼ MutTCC!TTC�Conc

MutC�ConTCC!TTC

(1)
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MutTCC→TTC is the amount of TCC→TTC and

GGA→GAA reverse complement mutations counted

in a 41-nucleotide stretch on the human genome

(GrCh37.75) centered around a detected single nucleo-

tide substitution from the VCF file. ConTCC→TTC is

the amount of TCC contexts that can be potentially

mutated found in the reference genome copy of the

stretch. MutC is the number of C→T and G→A

reverse complement mutations found in the stretch,

and ConC is the number of C and G nucleotides found

in said stretch. This enrichment value was then

weighted by the probability of the mutation occurring,

according to the signature [21].

The weighted enrichment value for each of the 192

described mutations in the signature was then summed

together to yield the UVMSE score for a particular

sample.

2.7. Clinical outcome analysis of patients

receiving PD-1/PD-L1 blockade agents

Patients were divided into two groups of interest: (a)

patients presenting a tumor with a high load of UV

mutations (‘UV high’); and (b) patients presenting a

tumor with a low load of UV mutations (‘UV low’).

The optimal threshold (0.7917) for UVMSE estimate

was selected using the receiver operating characteristic

(ROC) curve method (with UV high being ≥ 0.7917)

and evaluating the performance of the UVMSE score

to discriminate patient outcomes. (It should be noted

that the cutoff in the patient set and the TCGA set for

UV high was different, probably because the tumor

type distribution differed; for instance, 88 of 3543

(2.5%) of TCGA tumors were melanoma, while 52 of

151 patients (34%) of the patients treated had mela-

noma, and furthermore, the UV high designation was

not used to determine outcome in the TCGA dataset.)

Patients were then grouped by best response: Com-

plete or partial responses (CR/PR) in patients were

considered favorable outcomes, whereas a poor out-

come was defined as patients with a stable or progres-

sive disease (SD/PD). Best response observed,

progression-free survival (PFS) and overall survival

(OS) in months, and TMB and patient demographics

were compared between patients presenting a high

UVMSE score (≥ 0.7917) versus patients presenting a

low UVMSE score.

2.8. Statistical analysis and outcome assessment

The association between the UVSME score and clini-

cal outcome was conducted using SAS
® University

Edition software (Cary, NC, USA; http://support.sas.

com/software/products/university-edition/) and GRAPH-

PAD PRISM
® version 6.01 (San Diego, CA, USA; http://

www.graphpad.com/scientific-software/prism/). Two-

tailed tests were used, and P-value ≤ 0.05 was consid-

ered significant.

Statistical significance for the in silico modeling

results was assessed using a Wilcoxon signed-rank test

(nonparametric paired test) for the comparison of

change in total hydrophobicity before and after UV

mutagenesis in 6-nucleotide stretches. Change in total

hydrophobicity was also calculated in TCGA cohort

samples, and those with and without UV mutagenesis

were compared; these calculations were performed for

the products of full-length transcripts as well as for 8-

to 10-mer peptides; the Mann–Whitney U-test (non-

parametric unpaired test) was used.

For the clinical study, Fisher’s exact test was used

to assess for the association between categorical vari-

ables and the response to therapy, defined as CR/PR,

and stable disease or progressive disease (SD/PD) by

RECIST criteria. Patient characteristics were summa-

rized using descriptive statistics. Medians and respec-

tive 95% confidence intervals (CIs) and range were

calculated, whenever possible. The association of

UVMSE and TMB levels with PFS and OS in months

(calculated using the Kaplan–Meier method) was

assessed using the Mantel–Cox log-rank test. PFS and

OS were calculated from the date of starting the

immunotherapy. For patients who received multiple

immunotherapy regimens, the treatment with the long-

est PFS was chosen for analysis. Patients were

excluded from the survival analysis if they were lost to

follow-up before their first restaging. Patients were

censored at date of last follow-up for PFS or OS, if

they had not progressed or died, respectively. In multi-

variate analysis, associations between categorical vari-

ables were tested using a binary logistic regression

model and associations between categorical and con-

tinuous values such as survival time were assessed with

the Cox’s proportional hazards model. Linear vari-

ables were tested using the Mann–Whitney U-test for

univariate analysis.

3. Results

Overall, both in silico and TCGA-based analysis

demonstrated increased hydrophobicity (which is in

turn associated with increased immunogenicity) [18–20]
after UV mutagenesis, and that a high UV signature

predicts longer PFS and OS in low/intermediate TMB

tumors, but not high TMB tumors, after checkpoint

blockade (Tables 1–2 and Tables S1–S9, Figs 1–4 and

Figs S1–S2).
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3.1. UV mutational signature and increased

exome hydrophobicity are associated as

determined by in silico mutagenesis

Overall, 4096 six-nucleotide stretches were generated

for in silico mutagenesis, each consisting of different

combinations of the four canonical DNA nucleotides

A, T, C, and G (46 = 4096). The 2nd, 3rd, 4th, or 5th

position on each stretch was mutated once, separately,

per cycle of mutagenesis creating 49 152 possible

mutated stretches [4096 stretches × 4 mutable posi-

tions × 3 possible mutations (nucleotides other than

the preexisting one)]. Overall exome hydrophobicity

increased proportionally with the number of in silico

UV mutagenesis cycles. After one cycle of UV mutage-

nesis when considering all 4096 possible stretches

(P < 0.0001), the median hydrophobicity increased by

1.6 × 10−7 AU, and the average hydrophobicity

increased by 5.8 × 10−6 AU (Tables 1 and S1). The

calculations were repeated with five nucleotide

stretches and showed the same significant increase in

hydrophobicity (data not shown).

The number of codons coding for hydrophobic

amino acids increased, while the number of hydrophi-

lic amino acid codons decreased with each successive

iteration of in silico UV mutagenesis (Fig. 1A-C). The

number of stop codons present in the exome also

increased with each iteration of mutagenesis: by 38%

after one round and by 383% after 20 rounds (Fig. 1

D). (Transcripts with premature stop codons tend to

become neoantigens due to a quality control mecha-

nism involving the pioneer round of translation in the

nucleus [32].) An overall increase in exome hydropho-

bicity proportional to the number of iterations of

in silico mutagenesis is the net result of these changes

(Fig. 1E).

3.2. Neoantigen hydrophobicity correlates with

UV exposure mutations in TCGA samples

In the selected TCGA cutaneous melanoma cohort,

the total number of mutations in each sample was

weighted by the sample’s UVMSE as a proxy for how

many UV-induced mutations are present in the sam-

ple. Neoantigen hydrophobicity shows a strong corre-

lation (R2 = 0.953, P < 0.0001) with UVMSE-

weighted mutation quantity in the selected 88 cuta-

neous melanoma tumors. Weighting neoantigen

hydrophobicity by expression preserves the significance

(R2 = 0.5527, P < 0.0001; Fig. 2).

3.3. UVMSE correlates with tumor types that are

known to have high UV exposure

Figure S1 shows that melanoma has higher UVMSE

versus nonmelanoma (Panel A; P = 0.0002), but the

MSE of other signatures was not significantly different

between the two groups (Panel B) in the 151 UCSD

Moores Cancer Center patients. Further, patients who

attained a CR or PR after immunotherapy had a

higher UVMSE in the pan-cancer cohort (P = 0.0165),

but this difference in UVMSE was not significant (n.s.)

Table 1. Overall hydrophobicity of the human coding genome

increases in a single iteration of UV mutagenesis (per in silico

computation)*. Table 1 shows the analysis using all existing 6-

nucleotides stretches; alterations on the reciprocal strands were

not included because of an existing bias against mutations in the

reciprocal strand [21]. See Table S1 for calculations with the use of

the reciprocal strand.

Considering all stretches (one iteration)a

Hydrophobicity (AU)

Before UV

mutagenesis

After UV

mutagenesis

Difference

After–Before
UV

mutagenesis

Number of

stretches

4096

Median −0.00003438 −0.00002255 +1.6 × 10−7

25th percentile −0.0006361 −0.0006205 −1.6 × 10−6

75th percentile 0.0003892 0.0003933 5.3 × 10−6

Mean −0.0001756 −0.0001695 +5.8 × 10−6

Standard

deviation

0.001392 0.001391 4.9 × 10−5

Standard error 0.00002175 0.00002174 7.7 × 10−7

Lower 95% CI −0.0002182 −0.0002121 4.3 × 10−6

Upper 95% CI −0.0001329 −0.0001269 7.3 × 10−6

Sum −0.7191 −0.6941 +0.0250

P-value Wilcoxon

signed-rank test

< 0.0001

Bolded values are meant to highlight statistically significant results.
a

UV signature pattern 7 (as described by Alexandrov et al. [21] was

used. All stretches have at least one mutation. For one iteration,

every possible six-nucleotide combination was generated, and then

virtually transcribed to amino acids, and then the hydrophobicity of

the amino acids was calculated, and then multiplied by the fre-

quency that the two codons (six nucleotides) would appear in the

human genome (probability based on Kazusa’s codon usage data-

base [24]). We then virtually mutated nucleotides 2,3,4, and 5 of

each 6 nucleotide stretch (since that would result in all possible

configurations for the two codons), and for each mutation, we mul-

tiplied the probability that the mutation would occur as part of the

UV signature, with the latter being derived from Alexandrov et al.

[21],finally, the hydrophobicity of the new amino acids would be

calculated and multiplied by the probability of the two original

codons occurring.
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Table 2. Patient demographics by UV signature low versus high (N = 151)a.

Variable Group

All patients UV low UV high
Univariateb Multivariatec

N = 151 (100%) N = 105 (70%) N = 46 (30%) ORg (95% CI) P-value

ORg (95%

CI) P-value

Age ≤ 60 years

(reference

group)

78 (52%) 55 (71%) 23 (29%) 1.1 (0.5–1.8) 0.8602 – –

> 60 years 73 (48%) 50 (68%) 23 (32%)

Gender Men 93 (62%) 62 (67%) 31 (33%) 1.4 (0.7–3.0) 0.3677 – –
Women

(reference

group)

58 (38%) 43 (74%) 15 (26%)

Ethnicity Caucasian 111 (74%) 69 (62%) 42 (38%) 5.5 (1.8–16.5) 0.0011 3.5

(1.1–11.1)
0.0329

Other

ethnicities

(reference

group)

40 (26%) 36 (90%) 4 (10%)

Tumor type Melanoma 52 (34%) 28 (54%) 24 (46%) 3.0 (1.5–6.2) 0.0031 2.3

(1.0–5.2)
0.0427

Other tumorsd

(reference

group)

99 (66%) 77 (78%) 22 (22%)

TMBe High 38 (25%) 14 (37%) 24 (63%) 7.1 (3.2–15.9) < 0.0001 5.6

(2.4–13.2)
< 0.0001

Low or

intermediate

(reference

group)

113 (75%) 91 (81%) 22 (19%)

Type of

immunotherapy

Anti-PD-1/PD-L1
alone

102 (68%) 77 (75%) 25 (25%) 0.4 (0.2–0.9) 0.0249 – 0.5888

Other

regimensf

(reference

group)

49 (32%) 28 (57%) 21 (43%)

Response CR/PR 45 (30%) 21 (47%) 24 (53%) 4.4 (2.1–9.2) 0.0002

SD/PD
(reference

group)

106 (70%) 84 (79%) 22 (21%)

PFS on

immunotherapy

(months)

Median (range) 4.6 (0.2–54.7) 3.2 (0.2–54.7) 9.3 (0.5–40.9+) HR = 0.4

(0.3–0.7) (high
versus low UV)

0.0001

OS from

immunotherapy

(months)

Median (range) 25.4 (0.2–66.1+) 21 (0.2–66.1+) n.r. (0.5–51.9+) HR = 0.4

(0.2–0.9) (high
versus low UV)

0.0139

Bolded values are meant to highlight statistically significant results.
a

UV low < 0.7917 and UV high ≥ 0.7917 (as determined by the UVMSE [31]).
b

Calculated using Fisher’s exact test and log-rank (Mantel–Cox) test where appropriate.
c

Variables presenting a P-value ≤ 0.2 in univariate analysis were included in the multivariate model.
d

Tumors included: Adrenal carcinoma (n = 1), appendix adenocarcinoma (n = 1), basal cell carcinoma (n = 2), bladder transitional cell carci-

noma (n = 4), breast cancer (n = 3), cervical cancer (n = 2), colorectal adenocarcinoma (n = 5), cutaneous squamous cell carcinoma (n = 8),

hepatocellular carcinoma (n = 3), head and neck (n = 13), Merkel cell carcinoma (n = 2), non-small-cell lung carcinoma (n = 36), ovarian carci-

noma (n = 2), pleural mesothelioma (n = 1), prostate cancer (n = 1), renal cell carcinoma (n = 6), sarcoma (n = 3), thyroid cancer (n = 3),

unknown primary squamous cell carcinoma (n = 2), and urethral squamous cell carcinoma (n = 1)
e

TMB low = 1–5 mutations/Mb; TMB intermediate = 6–19 mutations/Mb; TMB high ≥ 20 mutations/Mb. High TMB was compared to low

and intermediate TMB.
f

Other regimens: OX40 (n = 3), anti-CD73 (n = 1), anti-CTLA4 (n = 15), OX40 + anti-PD-1 (n = 1), anti-PD-1 + anti-CTLA4 (n = 17), IDO +
anti-PD-1 (n = 1), high-dose IL-2 (n = 8), others (n = 4).

g

OR > 1.0 implies higher chance of response; HR < 1.0 implies less chance of progression or death; and OR and HR refer to UV high ver-

sus UV low.
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in the melanoma patients, perhaps because of the

small number of cases (Panels C and D).

The UVMSE scores of the cutaneous melanoma

cohort in TCGA were also compared with those from

the acral melanoma cohort [25] in order to determine

whether UVMSE can accurately predict high or low

UV exposure (Fig. S2). The acral samples were all

placed in the ‘low UV’ group because of the low rate

of UV mutation in acral melanomas [25]. The low UV

group had an average UVMSE of 1.206 (95% CI:

0.8290–1.583), while the high UV group had an aver-

age UVMSE of 1.842 (95% CI: 1.762–1.922; calculated
on whole exome). The difference between the two

groups was statistically significant (P < 0.0001). We

therefore used the data to determine a threshold of

1.642 using the ROC curve method to dichotomize the

TCGA data between low and high UV exposure. This

threshold has a sensitivity of 73.10% and a specificity

of 73.68% when used to predict whether a TCGA

patient was diagnosed with cutaneous melanoma.

In our cohort of 151 patients, the mean UVMSE for

patients with a melanoma diagnosis, which we used as

a proxy for high UV exposure status due to the most

common etiology of melanoma being excessive UV

exposure [16], was significantly higher at 0.8043 (95%

CI: 0.7887–0.8199) compared to nonmelanoma

patients who had an average UVMSE of 0.7827 (95%

CI: 0.7737–0.7918; P = 0.0029; calculated on the

Fig. 1. Amino acid distribution and relative hydrophobicity of the human coding genome, after 1 and 20 mutagenesis iterations, as described

by in silico computation. After 20 in silico mutagenesis iterations, the increase in hydrophobicity tabulated in Table 1 becomes even more

pronounced. Increasing rounds of mutagenesis cause a loss in hydrophilic amino acid encoding codons and a gain in hydrophobic amino

acid encoding codons, therefore increasing the overall hydrophobicity of peptides encoded by the exome, including those of neoantigens.

Neoantigen production could potentially increase as well due to an increase in the number of stop codons caused by increasing

mutagenesis.

1687Molecular Oncology 14 (2020) 1680–1694 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

T. V. Pham et al. UV light and immunotherapy



genomic real estate in the Foundation Medicine panel;

Fig. 3).

3.4. Clinical factors associated with high UV

signature

In a univariate model based on our 151 patients in the

UCSD Moores Cancer Center Cohort, the factors

associated with high UV signature included Caucasian

ethnicity, tumor type being melanoma, and TMB high

(all P < 0.003; Table 2).

3.5. Univariate and multivariate analyses of

factors associated with response, PFS, and OS in

immunotherapy-treated patients

Overall, 151 patients from the UCSD Moores Cancer

Center were analyzed for immunotherapy response.

Fifty-two percent were ≤ 60 years old; 62% were men;

74% were Caucasian; 34% had melanoma; 25% had

high TMB; and 68% received a PD1/PDL1 inhibitor as a

single agent (Table 2). Overall, 30% of patients achieved

a CR or PR. The median PFS for all patients was

4.6 months, andmedian OS was 25.4 months (Table 2).

3.5.1. Univariate analysis of all patients

A UVMSE threshold value of 0.7917 was designated

to distinguish between UV-high and UV-low status in

patients (threshold determined using the ROC curve

method; e.g., we identify the threshold that maximizes

the area under the ROC for predicting clinical out-

come using the UVSME as predictor).

Table S8 shows that tumor type melanoma, TMB

high, UV high, and immunotherapies other than sin-

gle-agent checkpoint inhibitors were significantly asso-

ciated with better response rates as well as longer PFS

and OS (all P < 0.01; univariate analysis). Overall, 24/
46 patients (52% of UVMSE high) versus 21/105
(20% of UVMSE low) patients responded

(P = 0.0002; Table S8). In the UV-high group, the

median PFS was 9.3 versus 3.2 months (P = 0.0001) in

the UV-low group, whereas median OS was not

reached (n.r.) in the UV-high group compared to

21 months in the UV-low group (P = 0.0139; Table

S8).

3.5.2. Multivariate analysis of all patients

Multivariate analysis demonstrated that only mela-

noma and TMB high were selected as independent

variables predicting response rate, PFS, and OS (all

P < 0.03; Table S8).

Results were similar in that UV high versus UV low

was associated with response in univariate but not

multivariate analysis when only nonmelanoma or only

melanoma patients were analyzed (Tables S2 and S3).

For PFS, UV high was selected as an independent

Fig. 2. Correlation between the

change in hydrophobicity of

neoantigens and the total number

of mutations in TCGA tumors

weighted by UVMSE. In both the

pan-cancer and skin cutaneous

melanoma (SKCM) TCGA cohorts,

there is a positive correlation

between overall neoantigen

hydrophobicity and the UVMSE-

weighted mutation count. P-values

of the slope were calculated using

the standard t-test. Panel A: A

significant, positive Spearman

correlation of 0.9762 was observed

in the 88 SKCM group of the TCGA

tumors (P < 0.0001). Panel B:

When the hydrophobicity was

weighted by expression in the

same SKCM tumors as panel A,

the correlation coefficient remained

high at 0.7434 b (P < 0.0001).
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factor predicting PFS only in melanoma (but not in

nonmelanoma) patients (Tables S4 and S5). OS could

not be associated with any factor once the groups were

split into nonmelanoma and melanoma patients, per-

haps because of the limited number of patients in each

group (Tables S6 and S7).

3.6. UV high versus UV low predicts favorable

outcome in the TMB-low/intermediate but not

the TMB-high subgroup

Considering the lower and higher TMB groups sepa-

rately, UVMSE score was effective at identifying

responders in the low/intermediate TMB group

(P = 0.0026) where 10/22 (45%) patients with a high

UVMSE responded to immunotherapy versus 13/91
(14%) of patients with a low UVMSE [odds ratio

(OR) of 5.0 (1.8–13.9), P = 0.0026]. The results in the

high TMB group were n.s. (P = 1.0000), with 14/24
(58%) of UV-high patients responding to treatment

versus 8/14 (57%) of UV-low patients [OR of 1.1

(0.3–4.0); Table S9]. Similar results were seen for PFS

and OS: In the low/intermediate TMB group, the UV-

high and UV-low status predicted longer PFS

(P = 0.036) and OS (P = 0.052) but did not stratify

PFS or OS for the TMB-high patients (Fig. 4).

There was a significant association between UVMSE

and clinical response in univariate (P = 0.0026) and in

multivariate (P = 0.0108) analysis among patients with

low or intermediate TMB. Within those patients,

Fig. 3. UVMSE analysis in a cohort of 151 patients and correlation with the response to immunotherapy. Patient data were filtered based

on genomic coordinates corresponding to the regions sequenced by Foundation Medicine. Red lines indicate mean (95% CI). The UVMSE

calculated with only the genomic regions corresponding to those examined by Foundation Medicine for the cohort of 151 Moores Cancer

Center patients was used to assess the validity of the UVMSE as a method of measuring degree of UV mutation in tumor samples. See

Fig. S1 for the UVMSE calculated on the same cohort with all genomic regions. All P-values were calculated using the Mann–Whitney U-

test. UV low < 0.7917 and UV high ≥ 0.7917 (as determined by the UV mutation signature enrichment UVMSE [31]). TMB low = 1–5
mutations/Mb; TMB intermediate = 6–19 mutations/Mb; TMB high ≥ 20 mutations/Mb. Panel A: Comparison of UVMSE in melanoma

versus non-melanoma-diagnosed patients. Melanoma patients had an average UVMSE of 0.8043 (95% CI: 0.7887–0.8199), while

nonmelanoma patients had an average UVMSE of 0.7827 (95% CI: 0.7737–0.7918). The difference was significant with a P-value of 0.0029.

Panel B: A comparison of the average of all non-UVMSE values in melanoma versus non-melanoma-diagnosed patients. This difference was

n.s. with a P-value of 0.1853, showing that UVMSE is useable as a specific measurement of mutation enrichment due to UV light exposure.

Panel C: UVMSE is able to differentiate between negative (SD or PD) and positive (CR or PR) PFS outcomes to immunotherapy in the entire

151-patient cohort. The average UVMSE of the positive outcome group was 0.7812 (95% CI: 0.7741–0.7882), while the average UVMSE of

the negative outcome group was 0.8114 (95% CI: 0.7907–0.8320). This difference was statistically significant with a P-value of 0.0011.

Panel D: Within only the cohort of 52 melanoma patients, UVMSE shows a trend in distinguishing between positive and negative outcomes

(P = 0.0652). The positive outcome group has a higher average UVMSE of 0.8167 (95% CI: 0.7903–0.8430) than the negative outcome

group at 0.7919 (95% CI: 0.7746–0.8093; albeit does not reach statistical significance).
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melanoma tumor type was also significant in both uni-

variate (P = 0.0041) and multivariate analyses

(P = 0.0139), but immunotherapy type was only signif-

icant in univariate analysis (P = 0.0101; Table S10).

UVMSE was significantly associated with PFS or OS

time in univariate analysis (P = 0.036 and P = 0.05)

within the low TMB group, but not in multivariate

analysis (Fig. 4 and Tables S11 and S12); since only 22

patients were in the high UVSME group in this sub-

analysis, the small numbers of patients may have pre-

cluded robust correlations.

4. Discussion

Immunotherapy such as checkpoint blockade has been

lauded in both the scientific and popular press because

it can effectively suppress or even eradicate some

advanced cancers. This phenomenon is due to the way

immunotherapy serves as a force multiplier for the

body’s endogenous immune system by reactivating it

so that cancer cells are recognized and attacked [33].

While immunotherapy results in exceptional responses

in certain tumors, such as melanoma, which is charac-

terized by a high TMB [8], it only has a ~ 20% overall

response rate in the unselected population of patients

with malignancies [8]; further, in certain cases, check-

point blockade may result in hyperprogression of the

tumor and it is not without toxicity [34]. Interestingly,

other factors such as PD-L1 amplification may also

predict immunotherapy response [35]. It is apparent

that more predictive biomarkers in addition to histo-

logic diagnosis, TMB, and a better understanding of

immunosuppressive mechanisms that incapacitate the

natural immune response are needed to more effec-

tively route the appropriate therapies to patients.

We show that the mutational landscape caused by

UV light, as quantified by the UVMSE, is positively

correlated with increased hydrophobicity of exome

protein products in both in silico simulation and pan-

cancer TCGA data. This observation is similar to that

for APOBEC signatures, which also increase

hydrophobicity, but differs from other signatures such

Fig. 4. Kaplan–Meier curves of PFS (top panel) and OS (bottom panel) for patients presenting UV signature enrichment compared to those

not presenting a UV signature enrichment, in different groups of tumor mutation burden. The figure shows that UVSME level stratifies low/
intermediate TMB (but not high TMB) subgroups into those with longer PFS (high UVSME) versus those with shorter PFS (low UVSME;

P = 0.036) and longer OS (P = 0.052). UV low < 0.7917 and UV high ≥ 0.7917 (as determined by the UV mutation signature enrichment

UVMSE [31], TMB low = 1–5 mutations/Mb; TMB intermediate = 6–19 mutations/Mb; TMB high ≥ 20 mutations/Mb; All P-values were

calculated using the Mantel–Cox log-rank test..
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as microsatellite instability and tobacco, which may

decrease hydrophobicity (even while increasing number

of mutations) [15]. The increased hydrophobicity of

UV-mutated proteins derived from the altered coding

genome would increase the immunogenicity of the

antigens derived from them because T cells have a

higher affinity for more hydrophobic antigen peptides

[18] and because more hydrophobic peptides bind

more strongly to MHC class I molecules’ hypervari-

able regions, particularly when the antigen’s hydropho-

bic peptides are located at the anchor positions [19,36].

An increased number of UV mutations, which bias the

resulting peptides toward increased hydrophobicity,

would logically increase the probability of hydropho-

bic peptides being placed at the anchor position. In

addition, antigens intended for presentation in MHC I

are only 8–10 amino acids long [2], with one or two of

those being anchor peptides, so changing only the

anchor positions may have important effects. Similar

effects regarding antigen hydrophobicity enhancing

presentation in MHC II have also been noted since the

peptide binding groove of MHC II requires hydropho-

bic amino acids at key locations [37,38]. However,

antigens bound to MHC II can be larger than those in

MHC I due to the open structure of MHC II, and

antigens with more hydrophilic external peptides have

been shown to be more immunogenic to CD4+ T cells

interacting with MHC II [39]. The fact that the num-

ber of UV mutations is associated with an increase in

putative neoantigen hydrophobicity is a possible expla-

nation for why melanomas tend to respond well to

checkpoint blockade immunotherapy [40]. In addition,

the increase in the number of stop codons also

increases the number of neoantigens produced from

the mutated exome due to the resulting excess of faulty

transcription products being routed to and processed

into antigens via mechanisms such as nonsense-medi-

ated decay and a separate quality control process

located in the nucleus that is part of the pioneer round

of transcription [32].

In our study, higher UVMSEs correlated with

response to therapy, PFS, and OS. However, despite

its significance in univariate analysis, we found that

the UV mutational signature was not an independent

variable predicting outcome in multivariate analysis;

the tumor type, specifically a melanoma versus non-

melanoma histology, and TMB (high versus low/inter-
mediate) were independent predictors of better

outcome. These observations are consistent with UV

exposure being strongly associated with melanoma

diagnoses due to it being the predominant etiology for

the disease [16]. Even so, UVMSE can effectively

detect responders as well as those with longer PFS and

OS after immunotherapy in the low or intermediate

TMB patient cohort. This could be explained by the

extremely hydrophobic nature (hydrophobicity being

associated with immunogenicity [18]) of the UV muta-

tional signature, hence driving the immune response.

On the other hand, UVMSE does not appear to be

predictive of better outcome in the high TMB cohort,

possibly because the sheer number of neoantigens aris-

ing from a highly mutated sample, regardless of

mutational source, would elicit a strong immune

response.

There are several limitations to this study. For

instance, the range of UVMSE signatures differs when

the patient cancer type distribution differs. This issue

can be seen in the range of the UVMSE in TCGA

compared to that of the 151 Moores Cancer Center

patients. Second, patients had a variety of tumor types

and immunotherapies, and the limited number of

patients with individual tumor types precluded an

analysis by histology. However, the data may also sug-

gest that the results are generalizable across cancers

and treatments.

5. Conclusion

In summary, we show, through in silico simulation and

analysis of TCGA data, that a genome altered with

the characteristic UV exposure mutation signature

would produce 8–10 mer antigens of significantly ele-

vated hydrophobicity. The hydrophobicity of these

neoantigens is also proportional to the number of

mutations caused by UV exposure in individual sam-

ples. This increased hydrophobicity, among other

physicochemical properties, may cause T cells of the

immune system to recognize cells presenting the

neoantigens extracellularly in MHC I molecules as

‘foreign’, marking these cancer cells for destruction. T

cells preferentially bind through their T-cell receptors

to more hydrophobic antigens, both because these

antigens are more likely to be presented in MHC I

moieties due to the requirement for hydrophobic

anchor positions to facilitate antigen presentation, a

prerequisite for interacting with T cells, and because of

the hydrophobic peptides’ intrinsically immunogenic

nature [15,18–20]. Therefore, checkpoint blockade

immunotherapies are more likely to be effective since

the tumor will be infiltrated by T cells attached to can-

cer cells prevented from doing their effector functions

only by PD-1/PD-L1 interactions. The correlation of

UV exposure with better immunotherapy outcome

appears to be more important in cases with low/inter-
mediate TMB (versus high TMB), perhaps because, in

the latter, the large number of mutations already
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permits immune recognition once T cells are reacti-

vated after checkpoint blockade therapy.
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Table S1. Consequences of a single iteration of UV

mutagenesis on the overall hydrophobicity of the

human coding genome, including mutations appearing

on the reciprocal strand (computed in silico)*.

Table S2. Univariate and multivariate analysis of fac-

tors affecting response rate for non-melanoma patients

treated with immunotherapy agents (N = 99).

Table S3. Univariate and multivariate analysis of fac-

tors affecting response rate for melanoma patients

treated with immunotherapy agents (N = 52).

Table S4. Factors associated with PFS on

immunotherapy for 99 non-melanoma patients treated

with immunotherapy.

Table S5. Factors associated with PFS on

immunotherapy for 52 melanoma patients treated with

immunotherapy.

Table S6. Factors associated with OS on immunother-

apy for 99 non-melanoma patients treated with

immunotherapy.

Table S7. Factors associated with OS on immunother-

apy for 52 melanoma patients treated with

immunotherapy.

Table S8. Univariate and multivariate analysis of fac-

tors affecting response rate, progression-free and over-

all survival for all patients treated with

immunotherapy agents (N = 151).

Table S9. Factors associated with response to

immunotherapy for the treated 151 patients separated

into higher and lower TMB groups.

Table S10. Univariate and multivariate analysis of fac-

tors affecting response rate for low/intermediate TMB

patients treated with immunotherapy agents

(N = 113).

Table S11. Factors associated with PFS on

immunotherapy for 113 low/intermediate TMB

patients treated with immunotherapy.

Table S12. Factors associated with OS on

immunotherapy for 113 low/intermediate TMB

patients treated with immunotherapy.

Fig. S1. UV signature enrichment analysis in a cohort

of 151 patients and correlation to the response to

immunotherapy.

Fig. S2. UV signature enrichment analysis in a cohort

of 328 acral and cutaneous melanomas.
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