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The blood–brain barrier (BBB) helps maintain a tightly regulated microenvironment for
optimal central nervous system (CNS) homeostasis and facilitates communications with
the peripheral circulation. The brain endothelial cells, lining the brain’s vasculature,
maintain close interactions with surrounding brain cells, e.g., astrocytes, pericytes
and perivascular macrophages. This function facilitates critical intercellular crosstalk,
giving rise to the concept of the neurovascular unit (NVU). The steady and appropriate
communication between all components of the NVU is essential for normal CNS
homeostasis and function, and dysregulation of one of its constituents can result in
disease. Among the different brain regions, and along the vascular tree, the cellular
composition of the NVU varies. Therefore, differential cues from the immediate vascular
environment can affect BBB phenotype. To support the fluctuating metabolic and
functional needs of the underlying neuropil, a specialized vascular heterogeneity is
required. This is achieved by variances in barrier function, expression of transporters,
receptors, and adhesion molecules. This mini-review will take you on a journey through
evolving concepts surrounding the BBB, the NVU and beyond. Exploring classical
experiments leading to new approaches will allow us to understand that the BBB is
not merely a static separation between the brain and periphery but a closely regulated
and interactive entity. We will discuss shifting paradigms, and ultimately aim to address
the importance of BBB endothelial heterogeneity with regard to the function of the BBB
within the NVU, and touch on its implications for different neuropathologies.

Keywords: cerebral endothelial cells, blood–brain barrier, neurovascular unit, brain cellular heterogeneity,
vascular heterogeneity

THE BLOOD BRAIN BARRIER: HISTORICAL PERSPECTIVE

The central nervous system (CNS) needs a highly controlled microenvironment for optimal
functioning. Several barriers of the CNS, including the cerebral endothelial cells (CECs) of
the blood brain barrier (BBB) tightly regulate transport into and out of the CNS. An early
indication of a barrier at the cerebral blood vessels was recorded by Ridley (1653–1708)
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GRAPHICAL ABSTRACT | Heterogeneity of the cells of the neurovascular unit contributes to a significant vascular heterogeneity of the blood brain barrier
endothelium in different brain regions, such as white matter and gray matter.

after injecting wax and mercury, resulting in three-dimensional
vessel casts. While trying to improve histological tissue staining,
the classical experiments by Ehrlich and Goldman, during
the late 1800s and early 1900s, also suggested a separation
between the CNS and peripheral circulation. During that
same era, Lewandowsky tested neuro-pharmacologically active
substances in animals, and observed neurological effects of
only a subset. He hypothesized that, in order to shuttle
them into the CNS, the brain vessel wall displayed a specific
affinity for these select substances. Studies on the movement
of substances between peripheral blood, cerebrospinal fluid and
brain, led Lina Stern and collaborators (1918–1934) to the
conclusion that CECs played a dual role in both protecting and
metabolically supporting the CNS, thereby effectively proposing
the BBB concept. The introduction of the transmission electron
microscope allowed Reese and Karnovsky (1967) to show that
electron dense tracers were not able to penetrate in-between
adjacent CECs, hence pointing to the actual site of the barrier.
Subsequent studies with tracers and micro-electrodes, confirmed
the low BBB permeability, and demonstrated its high trans-
endothelial electrical resistance (Crone and Olesen, 1982). In the
late 1980s it was discovered that transmembrane multi-protein
tight junctional complexes at CEC-CEC borders conferred to

Abbreviations: AEF, astrocyte endfeet; AJ, adherens junctions; GM-A, gray matter
astrocyte; GM-CEC, cerebral endothelial cell in gray matter; L, lumen of brain
microvessel; N, neurons; OD, oligodendrocyte; PC, pericyte; PM, perivascular
macrophage; T, transporters; TJ, tight junctions; WM-A, white matter astrocyte;
WM-CEC, cerebral endothelial cell in white matter.

the BBB its barrier function. Freeze facture studies, initially
carried out by Farquhar and Palade (1963), revealed the complex
belt-like networks of these cell–cell junctions. Analysis, first
on epithelial cells and later confirmed for brain endothelium,
identified individual junctional components, including claudins,
occludins, junctional adhesion molecules, AJ (e.g., VE-cadherin,
N-cadherin, and β-catenin) and cytoplasmic adaptors, such as
zona occludens proteins. Due to its stringent barrier function
and low vesicle transport activity, the passage of nutrients and
waste products across the BBB was found to be regulated
by polarized transporters on CECs; with efflux transporters,
such as the ATP-binding cassette transporter family, usually at
the luminal membrane, and solute carriers delivering essential
nutrients into the CNS, such as GLUT-1, predominantly localized
on the abluminal side (Bendayan et al., 2006; Roberts et al., 2008).
Together, these classical experiments established the concept
of a tight BBB at endothelial junctions. In-depth reviews on
the history of the BBB (Liddelow, 2011; Saunders et al., 2014)
and BBB-endothelial junctions (Haseloff et al., 2015; Bauer and
Traweger, 2016; Stamatovic et al., 2016) are suggested.

ESTABLISHED PRINCIPLES: FROM THE
BBB TO THE NEUROVASCULAR UNIT

Influence of Brain Cells on CECs
The modulating influence of the neural environment on the
BBB was first suggested by Stewart and Wiley (1981) in a
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series of reverse grafting experiments of neural and non-neural
tissues. Ultrastructural studies revealed close apposition of AEF
to CECs, and cell transplantation experiments and trypan blue
exclusion confirmed that astrocytes contributed to the BBB
phenotype (Janzer and Raff, 1987). Subsequent studies showed
that astrocyte-derived signaling to CECs leading to increased
expression of tight-junctions was mediated by, e.g., transforming
growth factor beta (TGFβ), Sonic hedgehog and Wnt signaling
(Siddharthan et al., 2007; Alvarez et al., 2011; Wang et al., 2018;
Benz et al., 2019). Moreover, astrocytes regulate expression of
alkaline phosphatase and Na-ATPase on CECs via cAMP and IL6,
suggesting astrocytes regulate ionic homeostasis (Beuckmann
et al., 1995; Sun et al., 1997).

Besides astrocytes, pericytes also influence the BBB phenotype.
Pericytes are mural cells that wrap around the abluminal surface
of cerebral microvessels. Due to the presence of smooth muscle-
like fibers, contractile characteristics and expression of vaso-
active mediators, pericytes were initially thought to regulate
microvascular hemodynamics (Balabanov and Dore-Duffy,
1998). Subsequent ultrastructural studies revealed that pericytes
intercalate with AEF, covering up to 60–70% of CECs, and
maintain close physical contacts with CECs via gap junctions and
“peg-socket” structures, indicative of communicative functions.
In the CNS, pericyte loss and low pericyte coverage correlate
with increased BBB permeability, implicating their involvement
in regulating BBB-barrier functions (Winkler et al., 2011).
Combined in vivo murine models and in vitro studies confirmed
the ability of pericytes to directly modulate BBB phenotype by
regulating, e.g., Wnt and Notch signaling, caveolar transport
across the BBB through the expression of the lysolipid transporter
mfsd2a (Ben-Zvi et al., 2014; Sweeney et al., 2016), and the
expression of GLUT-1 and transferrin receptor CD71 (Liebner
et al., 2011). Pericyte CD146, together with PDGF act via TGFβ,
contributing to CECs barrier function (Armulik et al., 2010;
Sa-Pereira et al., 2012; Chen et al., 2017). Indirectly, pericytes
target CECs by inducing polarization of AQP4, Kir4.1, and
laminin-α2 on AEF and thus indirectly affect permeability by
restricting vesicular transport across CECs (Hori et al., 2004;
Armulik et al., 2010; Daneman et al., 2010). In vitro data
suggests pericyte involvement in immune function, through
modulation of phagocytosis, expression of αSMA and ICAM-
1 and supporting ICAM-1-mediated neutrophil transmigration
in response to pro-inflammatory stimuli and the generation
of mediators such as iNOS, ROS, COX2, MHCII, (Pieper
et al., 2014). Reviews on pericyte-neurovascular unit (NVU)
interactions (De Bock et al., 2017; Zhao et al., 2018) and
signaling (Sweeney et al., 2016) are suggested for more in-
depth information.

Neuronal effects on the BBB-CEC phenotype include release
of growth factors, such as neuregulin and brain-derived
neurotrophic factor, (Gauthier et al., 2013). Neuronal activity and
neurotransmitter release can regulate BBB permeability through,
e.g., glutamate-activating CEC-NMDA receptors and modulate
transport of insulin-like growth factor, across the BBB (Nishijima
et al., 2010; Vazana et al., 2016).

Taken together, the recognition of the contribution of
inter-cellular communication between astrocytes, pericytes and
neurons to the specific phenotype of CECs led to the formulation

of the concept of the NVU. This model emphasizes the
maintenance of CNS homeostasis through multidimensional,
continuous and reciprocal communication among all NVU
members by means of either physical contacts and/or the release
of signaling mediators. Hence, dysregulation of one of the
NVU components could lead to neuro-disease (Iadecola, 2017;
Sweeney et al., 2019).

SHIFTING PARADIGMS: FROM A SINGLE
NVU TO A HETEROGENEOUS NVU

Heterogeneity of NVU Components
Differences in morphology, cellular content, and microvascular
density have been observed among different brain regions and
are especially apparent in white matter (WM) versus grey
matter (GM). Historically, astroglial classifications were based
on their morphology and anatomical position; as is the case
with “fibrous astrocytes” with long processes in WM and more
star-shaped “protoplasmic astrocytes” in GM. However, GM and
WM astrocytes have extensive functional differences, as indicated
by differential expression of transporters, including glutamate-
transporters and GLUT-1 subtypes. In addition, they respond
differently to in vitro stimuli (de Graaf et al., 2001; Goursaud
et al., 2009). Hippocampal astroglia display differential ion
channel expression and GABA responses (Cavaglia et al., 2001),
confirming the regional heterogeneity of astroglial populations.
The overall transcriptomes of GM and WM were shown to be
unique and corroborate functional heterogeneities (Mills et al.,
2013). Further development of technical abilities and “big data”
processing revealed a large heterogeneity of individual NVU
members. RNA-seq studies of populations of brain cells exposed
high heterogeneity in both morphology of astrocytes, glia,
endothelial cells and pericytes and in physiological properties,
metabolic processes and functions (Zhang and Barres, 2010;
Zhang et al., 2014; Li et al., 2019).

Single cell transcriptomics also indicated high diversity of glial
sub-populations throughout the CNS, including in immunologic
profiles (Batiuk et al., 2018). Clear region-specific differences,
with a predominance of type-I interferon genes in GM, versus
NFκB-signaling in WM was observed. Similarly, RNAseq showed
that, with respect to immunological responses, isolated microglia
clustered into at least nine transcriptionally different states
(Hammond et al., 2019). Likewise, transcriptional profiling
highlighted large differences in microglial populations derived
from WM versus GM, with amoeboid-type microglia in WM
regions (Verdonk et al., 2016; van der Poel et al., 2019).
Transcriptional profiling also provided additional insights into
the heterogeneity of the spatiotemporal responses of microglia
to disease (Masuda et al., 2019). For example, metabolically
active amoeboid microglia with phagocytic capability share gene
signatures with those associated with degenerative disease (Li
et al., 2019; Staszewski and Hagemeyer, 2019). These diverse
populations also have different roles during neuronal plasticity
as shown by their variances in response to injury and disease (Tay
et al., 2018; Masuda et al., 2019). Such diversity may differentially
affect phenotype and function of CECs, thus contributing to
vascular heterogeneity.
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Perivascular macrophages are differentially distributed along
the vascular tree. They aid in preserving BBB integrity and
contribute to regulating vascular tone (Goldmann et al., 2016;
Hoeffel and Ginhoux, 2018). Under inflammatory conditions,
PMs respond quickly but differentially (He et al., 2016; Verdonk
et al., 2016; van der Poel et al., 2019). However, their interactions
within the NVU and their implications for BBB-phenotype are
under-investigated. The pericyte population is heterogeneous,
not just between macro- versus micro-vessels but also among
capillaries. For example, pericyte arms are fewer and shorter in
post-capillary venules, leading to differences in pre- versus post-
capillary contraction capacity (Itoh and Suzuki, 2012). Pericyte
coverage differs among brain regions affecting BBB permeability
in a regional-dependent manner, although other mechanisms
are involved (Winkler et al., 2018). Coverage is also higher
in the cerebral cortex compared to the spinal cord, suggesting
region-dependent differential regulation of the CECs phenotype
and function (Wilhelm et al., 2016). As alluded above, pericyte-
derived factors directly influence BBB function and affect AEF
polarization, thus indirectly restricting vesicular transport across
CECs. Although RNA-seq studies indicated heterogeneity among
pericytes (Zhang et al., 2014), it is essential to exploit novel
methods for isolation, characterization and analysis of pericytes
from different brain regions. This will shed more light on
the functional heterogeneity of pericytes, as well as on their
contributions to vascular heterogeneity (Crouch and Doetsch,
2018; Dore-Duffy and Esen, 2018).

Oligodendrocytes are more prevalent in WM compared to
GM brain regions, therefore their function was traditionally
viewed as to myelinate neuronal processes and facilitate neural
transmission. In the 1920s Rio Hortega described four types of
oligodendroglia, based on the number of axons they myelinated
and their location; perineural or perivascular. Recently, single-
cell RNA sequencing with Fluidigm-C1 technology revealed 12
clusters of heterogeneous oligodendrocyte populations or states.
Their functional heterogeneity among brain regions may be
related to different progenitor lineages (Dimou and Simons,
2017; Trotter and Mittmann, 2019). Although little is known
about the communication between oligodendrocytes and CECs,
the survival and proliferation of oligodendrocyte precursor cells
is influenced by factors released from CECs, such as brain-
derived neurotropic growth factor (Arai and Lo, 2009; Hamanaka
et al., 2018). Oligodendrocyte progenitors can modulate BBB
integrity via secretion of TGFβ-1, resulting in the upregulation
of junctional proteins in CECs (Seo et al., 2014). Pericytes also
influence progenitor development and neuronal myelination via
Lama2 and VEGF signaling and by regulating the bioavailability
of PDGF and TGFβ (De La Fuente et al., 2017; Girolamo et al.,
2019). Due to the high oligodendrocyte prevalence in WM, CECs
in WM are likely to have differential cellular interactions than
CECs residing in GM. More research on the interactions and
communications between oligodendrocytes and CECs and the
consequences for specific phenotypes of CECs in WM is needed.

Physiological Heterogeneity
Besides cellular interactions within the NVU, physiological
differences, such as blood flow, affect CEC-vascular phenotype.

For the brain’s blood supply, large vessel branches penetrate
the brain parenchyma, morphing into a dense network of
small arteries, arterioles, capillaries, and venules. Compared to
larger vessels, the microvasculature does not contain smooth
muscles but pericytes, indicating differences in regulation of
vaso-reactivity, blood flow, and shear stress (Cipolla, 2016;
Mikhail Kellawan et al., 2017). Shear stress has been shown to
affect expression of transporters, ion channels, and of tight- and
adherens junction proteins on CECs (Cucullo et al., 2011).

Dependent on brain area, the vasculature displays differential
densities and spatial orientation. In mouse frontal cortex, GM
vessels are perpendicular to the pyramidal cell layer, whereas
WM vessels are orientated parallel to axonal fibers (Itoh and
Suzuki, 2012; Murugesan et al., 2012). The capillary density in
the GM is greater than in the WM, reflecting different regional
metabolic and energy demands, such as in synaptically active
regions (e.g., cerebral cortex) versus fiber tract heavy regions
(e.g., corpus callosum) (Cavaglia et al., 2001; Itoh and Suzuki,
2012; Wilhelm et al., 2016). To support metabolic needs in areas
with low vascular density, an increased presence of transcellular
pathways, gap-junctions and specific expression of receptors and
transporters on CECs is needed (Cavaglia et al., 2001; Keaney
and Campbell, 2015). Along the vascular tree, from large to
small vessels, heterogeneity in the expression of various genes
and expression of claudin-5 is evident (Macdonald et al., 2010;
Paul et al., 2013; Sabbagh et al., 2018). Transcripts for junctional
proteins occludin, claudin-5, and α-catenin were increased in
WM-CECs compared to GM-CECs (Nyul-Toth et al., 2016).

The physiological/metabolic needs of the highly active neural
milieu are in constant flux. Demands for exchange of nutrients,
solutes, water and oxygen are conveyed through cues to the brain
microvasculature. As discussed above, there is high diversity in
the cellular composition of the NVU, which includes a significant
heterogeneity of astrocytes, pericytes and oligodendrocytes
in different brain areas. Taking into account the reciprocal
interactions of these brain cells within the NVU and differing
metabolic needs and differences in blood flow/shear stress, the
microvascular phenotype must differ between different brain
regions, especially between WM and GM regions. Characterizing
and understanding the implications of regional heterogeneity of
the brain microvasculature in health and disease is a new frontier
for brain vascular research.

FUTURE PERSPECTIVES: IMPLICATION
OF VASCULAR HETEROGENEITY FOR
NEUROPATHOLOGIES AND IN VITRO
MODELING

The critical role of brain vascular pathology recently emerged
in studies of various neurological diseases, e.g., multiple
sclerosis, infections including cerebral malaria and HIV,
neurodegenerative disorders, including Alzheimer’s disease,
traumatic brain injuries and in some psychiatric diseases. Small
vessel disease exhibits brain vascular pathologies associated with
either focal or generalized changes in different brain regions
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(Varghese et al., 2017; Kealy et al., 2018), comprised of WM
lesions, cerebral micro-bleeds (Pantoni, 2010) with BBB opening
and vasogenic edema resulting from oxygen loss and vascular
inflammatory responses, including MMP release (Yang and
Rosenberg, 2011). In multiple sclerosis, microvascular centered
inflammatory lesions involve BBB breakdown and are associated
with foci of demyelination in both GM and WM regions (Prins
et al., 2015). In WM, early demyelination, the loss of WM volume
and leukocyte infiltrations are associated with local BBB damage
(Lucchinetti et al., 2011; Popescu et al., 2011; Prins et al., 2015;
Granberg et al., 2017). Cerebral malaria, a severe neurological
complication of malaria, and post-CM sequelae present a clear
example of differential WM and GM pathology associated with
BBB permeability and hemorrhagic punctae which predominate
in WM but not in GM (Taylor and Molyneux, 2015). Alzheimer’s
is regarded mainly as a GM disease with heterogeneous findings
that include small vessel damage, cerebral amyloid angiopathy,
inflammation, and hypercoagulability (Zamolodchikov and
Strickland, 2016). In addition, differences in vascular pathologies
between different lobes and WM versus GM are reported, with
the occipital lobe more severely affected by cerebral amyloid
angiopathies, followed by frontal-, temporal-, and parietal
lobes (Vinters et al., 1996; Attems and Jellinger, 2014). Recent
studies show clear vascular pathologies in traumatic brain injury,

involving neurovascular inflammation, ROS, MMP’s resulting in
a loss of junctional integrity (Abdul-Muneer et al., 2015). Major
depressive disorder and attention deficit-hyperactivity disorder
also exhibit signs of vascular pathology. In schizophrenia,
evidence is mounting for NVU involvement (Najjar et al.,
2017). Here, selected regions of GM are predominately affected
(Cannon et al., 2002; Vita et al., 2012), whereas WM involvement
is limited to select tracts (Davis et al., 2003; Hercher et al.,
2014). Postmortem brain samples of schizophrenic patients
also revealed ultrastructural differences in brain capillaries
(Uranova et al., 2010).

Several brain diseases have underlying vasculopathic
mechanisms and the vascular heterogeneity may lead to
differential neuropathologies, especially in GM versus WM. To
understand the contribution of the brain’s vascular heterogeneity
and dysregulation of the NVU to neuro-pathogenesis, besides
animal models, appropriate in vitro models are needed.
Traditionally, isolated single CECs cultures or combinations
with astrocytes and/or pericytes have been used for in vitro
BBB modeling. More recently, inducible progenitor cells have
been used for BBB-models, which show a low permeability
and express drug transporters. An additional advantage is that
patient material can be differentiated into homologous multi-cell
BBB-models (DeStefano et al., 2018). However, considering

FIGURE 1 | Heterogeneity of the neurovascular unit (NVU): current research has revealed high heterogeneity of e.g., astrocytes and pericytes within the CNS and
among different brain areas. The heterogeneity of these different cellular components of the NVU in, for example, the GM (A) versus the WM (B) contributes to brain
vascular heterogeneity to support local physiological and metabolic needs for that particular part of the brain. This includes differential expression of specific receptors
and transporters on CECs, such as GLUT-1, Pgp and Na+/K+-ATPase, which are represented by the different shapes and colors in GM (A) versus WM-CECs (B).
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NVU-cell heterogeneity, it is not clear which part of the BBB
vasculature is represented; e.g., WM or GM. Depending on
the scientific questions involved, “simple” in vitro BBB models
may suffice or to better recapitulate the complexity of the
NVU interactions, multi-cellular, multi-compartment micro-
fluidic models, or organ-on-a-chip approaches may be more
suitable (Noumbissi et al., 2018). However, the incorporation
of NVU heterogeneity, including diversity of astrocytes and
pericytes derived from GM versus WM areas and the potential
role of oligodendrocytes, has thus far, been neglected in BBB-
model designs. When studying neuropathologies that differ in
their presentation in various brain regions, it is particularly
important to benchmark in vitro BBB models to the in vivo
vasculature of the region of interest. Therefore, considering brain
cell heterogeneity in experimental design may lead to BBB models
better reflecting WM versus GM vasculature.

CONCLUDING REMARKS

This mini-review aims to highlight the region-specific
heterogeneity of the brain’s vasculature and is not meant to
be an exhaustive list. Additional BBB topics, including other
barrier sites, immune interactions or BBB-development have
been recently reviewed (Forrester et al., 2018; Mastorakos
and McGavern, 2019; Saunders et al., 2019). Understanding
the contributions of cellular diversity of the NVU micro-
environment to phenotypic and functional heterogeneity
of the brain’s vasculature will aid in elucidating differing
region-dependent neuropathologies. This can be achieved by
combining basic research and clinical approaches with large
scale genetic/RNA-seq and proteomic analysis of regional
microvasculature and other NVU components. Ultimately, this
may inform us of novel targets for designing region-specific
neuro-therapeutics.

KEY CONCEPTS

Blood–Brain Barrier
Cerebral endothelial cells forming a low permeability barrier
between the peripheral blood circulation and the CNS. Presence
of TJ and polarized transporters tightly regulate passage of
molecules into and out of the CNS.

Neurovascular Unit
The concept that CECs, astroglial cells, pericytes, PMs,
and neurons communicate together to maintain brain
homeostasis for optimal functioning of the organism.
Dysfunction of any one component affects another and can lead
to neuro-disease.

Brain Cellular Heterogeneity
Heterogeneity in morphological-, molecular phenotype, and
function of brain cells (e.g., glia, neurons). As these cells
interact with the brain vascular CECs, they can influence the
CECs phenotype and function, reflecting the needs of the
underlying brain tissue.

Vascular Heterogeneity
Variances in the anatomical, cellular and molecular composition
of the vasculature. Differential interactions with adjacent brain
tissue can lead to a heterogeneity of the BBB phenotype and
function not only along the vascular tree, e.g., large to small
vessels, but also in different brain regions.
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