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Abstract: CNN extracts the signal characteristics layer by layer through the local perception of
convolution kernel, but the rotation speed and sampling frequency of the vibration signal of rotating
equipment are not the same. Extracting different signal features with a fixed convolution kernel will
affect the local feature perception and ultimately affect the learning effect and recognition accuracy.
In order to solve this problem, the matching between the size of convolution kernel and the signal
(rotation speed, sampling frequency) was optimized with the matching relation obtained. Through
the study of this paper, the ability of extracting vibration features of CNN was improved, and the
accuracy of vibration state recognition was finally improved to 98%.

Keywords: deep learning; convolutional neural network; vibration; feature learning; condition recognition

1. Introduction

As an important component of mechanical equipment, the operating state of rotating
equipment directly affects the working efficiency and service life of mechanical equipment.
Gear is the most frequently used equipment in rotating equipment, so the condition
monitoring and fault diagnosis of wind turbine gearboxes can significantly save operation
and maintenance costs. However, strong interferences from high-speed parallel gears and
background noises make fault detection of wind turbine gearboxes challenging [1]. In the
current research on fault diagnosis of rotating equipment, signal processing technology is
widely used to extract the characteristics of vibration signals of rotating equipment and
then is used for the identification of fault types.

With the development of data mining and artificial intelligence, the fault diagnosis
model based on shallow machine learning is widely used in the fault diagnosis of rotating
equipment, such as ANN, SVM, and fuzzy recognition [2–4]. This kind of method mainly
relies on the feature extraction of rotating equipment signals in the early stage then machine
learning realizes fault identification. However, the fault features of the rotating equipment
signal are very weak and difficult to extract, which will lead to the inclusion of redundant
irrelevant features in the feature input and ultimately affect the recognition result.

The emergence of deep learning solves the problem of insufficient feature extraction
ability of signal processing methods and learning depth in shallow machine learning [5].
As a supervised deep learning algorithm, Convolution Neural Network (CNN) has been
widely applied in the field of pattern recognition [6]. CNN differs from other deep learn-
ing algorithms in three prominent features: local sensitivity field, weight sharing, and
pooling [7]. It not only reduces the complexity of the network but also reduces the risk of
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overfitting, which makes it possible to build a deep learning framework for processing
massive data.

At present, in the research on fault diagnosis of vibration signals by using CNN,
there are two methods. One is to decompose the vibration signal to extract fault features
and use the decomposed signal as the input of CNN for fault diagnosis. The signal
analysis methods often combined with CNN include Hilbert–Huang transform [8], wavelet
transform [9], EMD [10], EEMD [11], LMD [12], etc. These methods could map the time–
domain information of the signal to the time–frequency distribution of the signal in the
frequency domain, which obtains the fault information matrix; then, the failure information
matrix is studied by CNN. Another kind of method is to obtain the feature image by
processing the signal and recognizing the feature image. For example, the spectrum
images [13], time–frequency images [14], axis orbit images [15], symmetrized dot pattern
(SDP) images [16], etc. However, the essence of these two methods is to extract fault
features by using signal processing technology, then use CNN to learn and recognize
two-dimensional images or one-dimensional vectors containing fault feature signals. As
for the first method, the fault features of rotating equipment are often overwhelmed by
strong background noise in actual operation and the signal feature extraction process
is likely to be disturbed; thus affecting the diagnosis accuracy. At the same time, in
the second method, fault features of vibration signals will also be converted from one
dimension to two dimensions in the process of selecting and transforming feature images,
which will lead to loss of features and deviation of recognition results. Moreover, both of
these methods require manual signal preprocessing and do not realize the “end-to-end”
intelligent diagnosis process.

The visualization technology helps CNN learn some core local features from the image
matrix by using the local receptive field of the convolution kernel and the combination
of these local features could help the model judge the types of images [17]. However,
the vibration signal of the rotating device is a one-dimensional signal rather than a two-
dimensional image. Therefore, when the one-dimensional vibration signal is used as the
input of CNN, its convolution kernel will continuously acquire features along with the
development direction of the signal. In this case, the size of the convolution kernel will
affect the acquisition of fault features and a too large or too small convolution kernel will
lead to a decrease in CNN identification accuracy. It can be observed from numerous models
based on CNN, such as VGG-net [18], Res-net [19], and inception v4 [20], that CNN uses
two successive 3 × 3 convolutional layers which could gain a receptive region of the same
size as with that of a 5 × 5 convolutional kernel while using only 2 × 3 × 3 weights. Sun
et al. proposed a convolutional discriminative feature learning model to detect induction
motor fault diagnosis [21]. The model consisted of an input layer, a convolution layer
(1 × 200), and a pooling layer (1 × 20). In this method, the large convolution kernel was
used to enlarge the local perception field of the model, with a high fault recognition rate
obtained. The authors of [22] proposed a TICNN model based on a deep convolutional
neural network which consisted of an input layer, six convolution layers (1 × 64, 1 × 3,
1 × 3, 1 × 3, 1 × 3, 1 × 3, 1 × 3, 1 × 3), six pooling layers (1 × 2, 1 × 2, 1 × 2, 1 × 2, 1 × 2,
1 × 2, 1 × 2, 1 × 2, 1 × 2, 1 × 2, 1 × 2, 1 × 2, 1 × 2), and a fully connected layer. TICNN
could directly identify the input signal. Due to the characteristics of the model, such as the
convolution cascade deepening and the convolution kernel being larger, the higher fault
identification results were obtained. Accordingly, by using the superposition of multiple
convolution layers and the larger convolution kernel, CNN can obtain a larger range of
receptive fields [23]. However, when the convolutional layer is too large, the calculation
amount of CNN will increase which will affect the calculation of CNN. Therefore, it is
necessary to find the optimal CNN structure to realize fast and accurate fault identification.

On the other hand, people have proposed better neural network structures, such
as MACNN (multi-scale attention convolution neural network) [24], improved MSCNN
(multi-level attention convolution neural network) [25], DNCNN (depth normalized con-
volution neural network) [26], and FTNN (feature-based transmission neural network) [27].
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These models have high recognition accuracy. To further improve the recognition efficiency
of the model, how to further optimize the parameters of the above model is worth consid-
ering. The authors of [28] summarized the traditional parameter optimization problems of
the deep learning model but did not discuss the relationship between specific equipment
parameters and model parameter optimization. To solve the above problems, this paper
uses one-dimensional CNN to extract the features of one-dimensional signals directly. On
the premise of not increasing the depth of CNN, the matching problem between convolu-
tion kernel size and signal (rotation speed and sampling frequency) is optimized and the
optimal matching relationship between them is obtained, which is verified by experiments.
Finally, the ability of CNN to extract vibration features is improved. The research process
of this paper is shown in Figure 1. The red box in the lower left indicates that the original
signal collected by the equipment is divided to form a data set:
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2. Introduction to CNN

CNN is a typical deep feedforward artificial neural network, inspired by the biological
sensing mechanism, which is generally composed of a convolution layer, pool layer, and
full connection layer.

2.1. Convolution Layer

In convolutional neural networks, each convolution layer is composed of several
convolution units and the parameters of each convolution unit are optimized by the back
propagation algorithm. The purpose of convolution operation is to extract different input
features. The first convolution layer may only extract some low-level features, such as
edges, lines, and angles. Networks with more layers can iteratively extract more complex
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features from low-level features. The expression formula of convolution operation is as
follows:

xl
j = f

 ∑
i∈Mj

xl−1
i ∗ωl

ij + bl
j

 (1)

In Formula (1), the superscript l indicates the layer 1 in the corresponding network;
i,j represent the serial number of the characteristic diagram in the l and l − 1 layers,
respectively; Mj represents the feature map in layer l − 1 connected with the j feature map
of layer l; ωl

ij represents the convolution kernel parameters input by the j-th characteristic

map of layer l corresponding to the i-th characteristic map of layer l− 1; bl represents offset;
∗ represents a convolution operation.

2.2. Pool Layer

Usually, features with large dimensions will be obtained after the convolution layer.
The features are cut into several regions and their maximum or average value is taken to
obtain new features with small dimensions. In recent years, maximum pooling has been
widely used because it has been generally proved to have better effects.

xl
j = f (βl

jdown(xl−1
j ) + bl

j) (2)

In Formula (2), down(·) represents the subsampling function, mainly to reduce the
size of the feature map; βl

j and bl
j represent the weight and offset in layer l.

2.3. Full Connection Layer

The full connection layer is usually located at the tail of CNN, which means that all
neurons between the two layers have weighted connections, that is, the connection is the
same as that of traditional neural networks. Softmax is usually applied to the output layer
of multi-classification problems to ensure that the sum of all output neurons is 1, and the
value of the [0, 1] interval corresponding to each output is the probability of the output. In
application, the output with the highest probability is taken as the final prediction.

3. Vibration State Recognition of Transmission System Based on CNN
3.1. Vibration Signal Sample Data Set

In order to study the matching between the signal and the optimal perceptive field
model, the experiments of different faults of parallel gearbox were carried out in the dy-
namic engineering laboratory of North China Electric Power University (NCEPU) (Baoding,
China). The experimental platform completely simulates the transmission system of a wind
turbine shaft system which is driven by a motor and different loads are simulated by a
magnetic particle brake. The input of the motor finally reaches the output shaft through
the planetary gear and two-stage parallel shaft gear and the load acts on the output shaft.
The acquisition system uses sensors arranged in different positions to collect vibration data
and transmit it to the host computer for analysis. The vibration data of parallel gears of the
gear power transmission failure simulation bench were selected for analysis. The parallel
gears used in the platform included the faults of normal, gear wear and tear, crack, broken
teeth, and tooth deficiency. The experimental platform and fault gear kit are shown in
Figures 2 and 3, respectively.
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Figure 3. Faulty gear: (a) broken gear tooth; (b) gear crack; (c) gear wear and tear; (d) gear tooth
deficiency.

In order to facilitate the analysis, this paper uniformly uses the data of the No. 3
measuring point for the experiment, which is located at the box shell next to the faulty gear.
The experimental data collection with a normal gear is shown in Table 1.
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Table 1. Experimental data acquisition.

Sample Type Sampling Time (s) Load (NM) Rotation Speed (rpm) Sampling Frequency (Hz)

Normal 60 50

1200 2 k/4 k/8 k/16 k/32 k
1500 2 k/4 k/8 k/16 k/32 k
1800 2 k/4 k/8 k/16 k/32 k
2100 2 k/4 k/8 k/16 k/32 k

The same experiment was carried out on the broken gear tooth, gear crack, gear wear
and tear, and gear tooth deficiency.

In the second part, the vibration signal of parallel gear with sampling frequency of
2000 Hz and rotation speed of 1200 rpm was taken as the experimental sample. The selected
experimental samples are shown in Table 2.

Table 2. Experimental samples of the gear vibration signal.

Sample Type Sample Length
Sample Size

Train Test

Normal 10,240 300 100
Broken gear tooth 10,240 300 100

Gear crack 10,240 300 100
Gear wear and tear 10,240 300 100

Gear tooth deficiency 10,240 300 100

3.2. State Recognition Model Based on CNN and the Optimization of Convolution Kernels

In the process of deep learning, it is the premise for the model to learn the high-level
and abstract features from the classification objects. In CNN, the setting of the convolution
layer affects the feature extraction effect of the model. In order to effectively extract the
feature representation which is most conducive to the classification of samples from the
signal, the optimal network structure can be found by changing the number and depth of
convolution layers. For the classification task in this paper, the classification accuracy of the
test set was taken as the standard and the learning rate was set as 0.0001. The learning rate
attenuation function was Exp (exponential attenuation) and the number of neurons in the
fully connected layer was 64 [22]. The experimental results of all the studies in this paper
are based on the Tensorflow2.0 framework of Python language. In all training processes, the
optimizer is Adam, the Batch size is 32, and the epochs is 50. Only when the convolution
depth is insufficient, the depth of the convolution layer would significantly influence model
classification accuracy. With the further increase in convolution layer depth, the change in
model classification accuracy is small, but the model training time increases greatly, and
the model convergence is more difficult. Thus, convolutional depths of 32 and 64 were
selected to complete the classification task [22]. Finally, the structural parameters of the
CNN model were determined and shown in Table 3.

The data in Table 2 were used to train the CNN model in Table 3. The convolution
kernels of 1× 1, 1× 2, 1× 4, 1× 6, and 1× 8 were used to optimize the convolution kernel
in the layers of Convalution1, Convalution2, Convalution4, and Convalution5, respectively.

As shown in Table 4, for bearing vibration signals of the same type, the convolution
kernel with Convalution1 and Convalution2 was selected for 1 × 8 and Convalution4 and
Convalution5 for 1 × 6. The fault identification accuracy of CNN for vibration signals is
the highest, reaching 96.3%.
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Table 3. CNN model parameter setting.

Layer Kernels/Filter
(Height ×Width/Stride) Kernel Channel Size Feature Maps

Input 1 × 10,240
Convolution1 32 1 × 10,240 × 32
Convolution2 32 1 × 10,240 × 32
Max pooling3 1 × 2/2 32 1 × 5120 × 32
Convolution4 64 1 × 5120 × 64
Convolution5 64 1 × 5120 × 64
Max pooling6 1 × 2/2 64 1 × 2560 × 64

Fully connected 64 1 64 × 1
Output 5 1 5

Table 4. Convolution kernel optimization results.

C1, C2
C4, C5 1 × 1 1 × 2 1 × 4 1 × 6 1 × 8

1 × 1 57.6% 63.4% 52.3% 57.8% 55%
1 × 2 85.3% 85.5% 80.1% 75.8% 77.2%
1 × 4 80% 77.2% 85.6% 85.5% 83.1%
1 × 6 85.2% 88.3% 90.9% 82.2% 82.5%
1 × 8 82.9% 80% 88.5% 96.3% 82.6%

4. The Matching of Convolution Kernel Scale and Signal
4.1. Feature Extraction of Signals at Different Sampling Frequencies

Bearing vibration signals with different sampling frequencies at 1200 rpm were se-
lected as experimental samples. To ensure consistency, the training set/test set was divided
by 3/1 in the same proportion as Table 2.

In order to discuss the matching of the optimal convolution kernel to various signals,
it is necessary to use the optimal convolution kernel obtained from the experiment in
Section 2 to identify the signals of different sampling frequencies in the CNN. Finally, the
structural parameters of the CNN model were determined and shown in Table 5. The CNN
structure diagram is shown in Figure 4.

Table 5. CNN model parameter setting.

Layer Kernels/Filter
(Height ×Width/Stride) Kernel Channel Size Feature Maps

Input 1 × 10,240
Convolution1 1 × 8/1 32 1 × 10,240 × 32
Convolution2 1 × 8/1 32 1 × 10,240 × 32
Max pooling3 1 × 2/2 32 1 × 5120 × 32
Convolution4 1 × 6/1 64 1 × 5120 × 64
Convolution5 1 × 6/1 64 1 × 5120 × 64
Max pooling6 1 × 2/2 64 1 × 2560 × 64

Fully connected 64 1 64 × 1
Output 5 1 5

The data was used to train the model in Table 5. Five rounds of different fault
experiments were carried out for each sampling frequency signal. Finally, the standard
deviation (Std.) and the average recognition rate were obtained. The fault recognition
rates of the above sampling frequency signals were compared, and the results are shown in
Table 6.
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Table 6. Comparison of fault recognition rates of vibration signals at different sampling frequencies.

Rotation Speed-Sampling Frequency Recognition Rate Std.

1200 rpm–2000 Hz 96.3% 0.034
1200 rpm–4000 Hz 91% 0.128
1200 rpm–8000 Hz 83.2% 0.113

1200 rpm–16,000 Hz 76.8% 0.265
1200 rpm–32,000 Hz 71% 0.227

It can be seen in Table 6 that when the sampling frequency is 2000 Hz, the fault
identification accuracy is the highest. When the sampling frequency of the signal changes,
the recognition rate will decrease to different degrees. In order to further analyze the
reasons for such results, this paper makes a more intuitive comparison of the feature
information extracted by CNN in the previous layer of the fully connected layer, as shown
in Figure 5.

After continuous convolution and pooling operation, signals in different states are
extracted into their own abstract feature maps in front of the full connection layer. The more
obvious their visual differences, the higher the classification accuracy. It can be seen from
Figure 5 that different faults have different fault characteristics and the fault characteristics
become more complex with the increase in sampling frequency. Meanwhile, with the
increase in sampling frequency, the fault differentiation degree of gear crack, normal and
gear wear, and tear fault gradually decrease. This is because the change in signal sampling
frequency will result in a decrease in the matching between the signal and the convolution
kernel, which makes it impossible for CNN to obtain fault features with a large degree
of differentiation by using the local perception field. As a result, it is difficult for CNN
to distinguish gear crack, normal and gear wear, and tear feature information. Thus, the
recognition rate is greatly reduced.

The fault identification and classification results of CNN can be visualized using the
t-SNE (t-distributed stochastic neighbor embedding) [29] image and the clustering effect of
the t-SNE image can reflect the accuracy of CNN identification. Therefore, the t-SNE images
of each sampling frequency signal in the fully connected layer were used for analysis, as
shown in Figure 6.
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Scattered points of different colors in t-SNE image represent different fault types. The
more discrete their distribution and less stacking crossing, the better the classification effect
of the model. It can also be seen from Figure 6 that the clustering effect of the t-SNE image
of 8000, 16,000, and 32,000 Hz is poor and the crossover of each fault is significant. The
clustering effect of 4000 Hz is better with less crossover. The 2000 Hz clustering has the best
effect and the least crossover. This also shows that with the decrease in sampling frequency,
the recognition accuracy of CNN will gradually improve.

4.2. Feature Learning of Different Rotation Speed Signals

In order to further verify the matching between the signal and the optimal sensing
field model, experiments of different motor speeds were carried out to further prove the
reliability of the experiments. Similarly, the gear power transmission fault simulation
test-bed of North China Electric Power University (Baoding, China) was used to obtain the
vibration data of each fault type at 1200, 1500, 1800, and 2100 rpm by changing the motor
speed. The sampling frequency was 2000 Hz. To ensure consistency, the training set/test
set was divided by 3/1 in the same proportion as Table 2.
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The model was trained with the obtained data. Five rounds of experiments were
carried out on each rotation speed signal. Finally, the standard deviation and average
recognition rate were obtained as shown in Table 7.
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Figure 6. t-SNE image of signal classification in the fully connected layer: (a) 2000 Hz, (b) 4000 Hz,
(c) 8000 Hz, (d) 16,000 Hz, and (e) 32,000 Hz.

Table 7. Comparison of fault recognition rates of vibration signals at different rotation speeds.

Rotation Speed-Sampling Frequency Recognition Rate Std.

1200 rpm–2000 Hz 96.3% 0.034
1500 rpm–2000 Hz 91.7% 0.082
1800 rpm–2000 Hz 88.1% 0.065
2100 rpm–2000 Hz 86.5% 0.144

It can be seen from Table 7 that when the rotation speed is 1200 rpm, the fault recog-
nition rate is the highest. When the rotation speed of the signal changes, the recognition
rate will decrease to different degrees. To explain this phenomenon, a feature information
image extracted by CNN in the previous layer of the fully connected layer was analyzed
and shown in Figure 7.

As observed in Figure 7, different faults have different fault characteristics. When the
rotation speed is 1200 rpm, the discrimination between fault feature diagrams is very high.
However, the discrimination between fault feature diagrams decreases with the increase in
the rotation speed. This is also caused by the change in the rotation speed, which leads to
the decrease in the matching between the signal and the convolution kernel. It is difficult to
extract fault features from the local perception field, which ultimately means the reduction
in the recognition rate.
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At the same time, in order to observe the fault classification of CNN clearly, the fault
classification of the fully connected layer by t-SNE is visualized with the corresponding
t-SNE image of each rotation speed shown in Figure 8.
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It can be seen from Figure 8 that the clustering effect of the t-SNE diagram of the
1200 rpm signal is the best and the crossing is the least; with the increase in rotating speed,
the clustering effect of the t-SNE diagram becomes worse and the intersection between
various fault types also increases. It shows that with the increase in rotating speed, the
recognition accuracy of CNN is gradually decreasing.

According to the experiment in the fourth part, with a certain initial optimal convolu-
tion kernel, changing the sampling frequency and rotation speed of the signal will result in
a decrease in CNN recognition rate. The reason is that the change in sampling frequency
and rotation speed will lead to a decrease in the matching between the vibration signal and
the optimal convolution kernel, which makes it difficult for the feature extracted from the
local sensing field of CNN to obviously reflect the fault problem and the recognition rate
will naturally decrease. Therefore, in order to improve the fault recognition rate without
increasing the depth of CNN, the matching optimization experiments on the signals are
conducted in Section 5.
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5. Model and Signal Matching Optimization Based on Optimal Perception Field
5.1. The Study of Convolution Kernel Optimization Based on Optimal Perception Field

Based on the above experimental results, it can be seen that in order to quickly and
accurately identify faults, the relationship between the optimal convolution kernel size and
fault signal parameters must be found. Therefore, it is necessary to analyze the relationship
between local perception field, sampling frequency, and rotation speed from the input signal.

The left half of Figure 9 depicts the vibration signals with different sampling frequen-
cies. The sampling frequency of the red curve is the highest, followed by the blue curve
and the sampling frequency of the green curve is the lowest. The right half represents the
local perception field of the same convolution kernel corresponding to different sampling
frequencies. Four points on the green, blue, and red curves can be observed from top to
bottom. As can be seen from Figure 9, with the increase in sampling frequency, the local
perception range of the same convolution kernel scale decreases. On the contrary, if we
want to have the same size of local sensing range, the sampling frequency will increase and
the convolution kernel scale will also increase accordingly. It can be concluded that the
scale of the convolution kernel should be proportional to the sampling frequency (m ∞ fs).
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The left half of Figure 10 depicts the vibration signals at different speeds. The red curve
speed is the highest, the blue is the second, and the green speed is the lowest. The right
half represents the local perception fields of the same convolution kernel corresponding
to different speed signals. Four points on the green, blue, and red curves can be observed
from top to bottom. Therefore, it can be seen from Figure 10 that the local perception field of
the same convolution kernel increases with the increase in rotating speed. On the contrary,
if we want to observe the local perception range of pain, when the speed increases, the
scale of the convolution kernel should be reduced. It can be concluded that the scale of the
convolution kernel is inversely proportional to the speed (m ∞ 1/n).
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According to the relationship between the convolution kernel scale and fault sig-
nal parameters obtained from the experimental analysis, the optimal convolution kernel
calculation formula can be calculated as:

M = a × fs

n
(3)

In Formula (3), M represents the optimal convolution kernel size; a represents the scale
coefficient; n is the rotation speed of the rotating equipment; and fs represents the sampling
frequency of the vibration signal. Formula (3) represents the optimal relation between the
fault signal of rotating equipment and the convolution kernel (local perception field) of
CNN.

According to the experiments in the second and third parts, the optimal matching
results can be calculated: M = 1 × 8, fs = 2000 Hz, and n = 1200 rpm. By substituting the
parameters into Formula (3) the following is obtained: a = 4.8 and the matching formula
can be obtained:

M =4.8 × fs

n
(4)

Therefore, in fault diagnosis, on the premise of a stable depth of CNN, the optimal
convolution kernel size can be calculated by substituting the sampling frequency and
rotation speed of the fault signal, so as to reduce the training speed of the CNN network
and improve the speed and accuracy of recognition. For traditional CNN, this method
avoids the difficulty of calculation caused by the large convolution kernel i and the deep
superposition. For the traditional “feature extraction + state recognition” mode, it avoids
the problems of the fault features that are difficult to extract caused by the non-linear,
non-stationary, and strong noise interference of the vibration signal as well as the weak
fault features.

5.2. Experimental Study

In order to improve the matching between the signals of each sampling frequency
and the optimal structure, the signals of each sampling frequency were down-sampled.
The down-sampled signal was used to train the CNN model, and the results are shown in
Table 8.

Table 8. Comparison of fault recognition rates of vibration signals at different sampling frequencies
(sampled).

Rotation Speed-Sampling Frequency Recognition Rate Std.

1200 rpm–2000 Hz 96.3% 0.034
1200 rpm–4000 Hz→ 2000 Hz 93.5% 0.058
1200 rpm–8000 Hz→ 2000 Hz 93.2% 0.022

1200 rpm–16,000 Hz→ 2000 Hz 91.8% 0.036
1200 rpm–32,000 Hz→ 2000 Hz 91.3% 0.089

The comparison between Tables 6 and 8 shows that the identification accuracy of each
sampling frequency signal is significantly improved after down-sampling. This is because
the matching between the sampling frequency signals and the optimal convolution kernel
scale is improved, which makes it easy for the CNN model to distinguish and recognize
these signals. Thus, an improved recognition rate is obtained.

To better reflect the classification of CNN, the classification results at the fully con-
nected layer were visualized by t-SNE and shown in Figure 11.
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Figure 11. t-SNE image of signal classification in the fully connected layer: (a) 2000 Hz, (b) 4000 Hz,
(c) 8000 Hz, (d) 16,000 Hz, and (e) 32,000 Hz.

Compared with Figure 6, it is found that the clustering of signals at 4000, 8000,
16,000, and 32,000 Hz is more obvious and the crossover is much less than that before the
optimization. It also shows that after down-sampling, the matching between the sampling
frequency signal and the optimal convolution kernel scale in this paper is improved, which
further improves the recognition accuracy of CNN.

According to Formula (4) as the calculation benchmark, without changing the scale
of the convolution kernel, by adjusting the sampling frequency, the convolution kernel
can reach the best matching state with different speed signals. Then, the corresponding
experimental data are collected. At the same time, the data is used to train the model to
obtain the fault recognition rate of vibration signals at different speeds, as shown in Table 9.

Table 9. Comparison of fault recognition rates of vibration signals at different rotation speeds.

Rotation Speed-Sampling Frequency Recognition Rate Std.

1200 rpm–2000 Hz 96.3% 0.034
1500 rpm–2500 Hz 96.7% 0.027
1800 rpm–3000 Hz 97.4% 0.046
2100 rpm–3500 Hz 98% 0.013

Comparing Table 9 with Table 7, it can be seen that after the matching optimization of
corresponding sampling frequency for different speed signals, the fault recognition rate
was significantly improved. The recognition accuracy of 2100 rpm–3500 Hz signal reaches
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98%. In order to better reflect the classification of CNN, the classification results at the fully
connected layer were visualized by t-SNE and shown in Figure 12.
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Figure 12. t-SNE image of signal classification in the fully connected layer: (a) 1200 rpm–2000 Hz,
(b) 1500 rpm–2500 Hz, (c) 1800 rpm–3000 Hz, and (d) 2100 rpm–3500 Hz.

After comparing Figure 12 with Figure 8, it is found that the clustering of each signal
is more obvious and the cross situation is much less than that before optimization, which
shows that the recognition accuracy of CNN was also significantly improved. The experi-
mental results show that by using Formula (4) to adjust the sampling frequency of vibration
signals at different speeds, the convolution kernel scale and vibration signals can achieve
the best matching state, which can effectively improve the recognition accuracy of CNN.

Conclusions can also be made that the optimal convolution kernel calculation formula
to optimize the CNN model can not only effectively improve the fault recognition rate, but
also avoid the general method which used increasing the convolution layer depth and the
size or conducting the previous signal preprocessing to improve the recognition rate.

6. Experimental Comparison

Based on the traditional CNN, this paper optimized the CNN model through the
calculation formula of the optimal convolution kernel, which can not only effectively
improve the fault recognition rate, but also avoid the common methods to improve the
recognition rate by increasing the depth of the convolution layer, increasing the size of the
convolution kernel, and signal preprocessing. In order to verify the effectiveness of this
method, this paper selected some other methods for comparison. (1) The deep learning
diagnosis method based on Deep Belief Networks (DBN) [30] uses the original vibration



Sensors 2022, 22, 3693 17 of 19

data as the model input. (2) The Back Propagation Neural Network (BPNN) [31] method
uses the original vibration data as the model input. (3) The deep learning diagnosis method
CNN takes the features extracted from the original vibration data using the symmetrical
point pattern (SDP) method as the model input [32]. (4) The deep learning diagnosis
method CNN uses the time domain waveform of the original vibration data as the model
input [33]. (5) The 1D-CNN method uses the original vibration data as the model input [34].
At the same time, in order to ensure the accuracy of the experiment, the experimental data
is the 2100 rpm–3500 Hz signal. The data set was divided into five mutually exclusive
subsets with similar size and the consistency of data distribution was maintained during
the division. Each time, the union of four subsets was used as the training set, the rest was
used as the test set, trained for 5 times, and finally the mean values of the results were
taken. After the experiment, the recognition accuracy of different methods is shown in
Table 10,

Table 10. Classification accuracy of the test set.

Classifier Feature Gear Diagnosis Accuracy

DBN [30] Raw vibration data 83.5%
BPNN [31] Raw vibration data 79.3%
CNN [32] SDP 93.7%
CNN [33] Time domain waveform 94.5%

1D-CNN [34] Raw vibration data 92.6%
Optimized CNN Raw vibration data 98.2%

It can be seen from Table 10 that the optimized CNN in this paper has higher recogni-
tion accuracy than other methods. According to the experimental results in Table 10, the
performance of the diagnosis method largely depends on the performance of the feature
extraction method and classifier algorithm in the traditional intelligent fault diagnosis
method. Methods 1 and 2 are traditional neural networks. Although they can learn a large
number of sample data sets, the recognition accuracy is not high. As for methods 3 and 4,
when the two-dimensional image matrix is used as the input of CNN model, the image
visual difference caused by coordinate axis selection and image stretching may lead to
the artificial distinguishing feature of image visual difference caused by CNN. Therefore,
the classification accuracy is also low. Method 5 is similar to the method proposed in this
paper. The original one-dimensional vibration signal is used as the input of CNN to realize
“end-to-end” fault diagnosis, but it lacks the optimization of convolution kernel parameters.
This paper also uses one-dimensional vibration signal as the input of CNN to realize “end-
to-end” fault diagnosis, and the direct input of one-dimensional signal also avoids the loss
of features. At the same time, this paper puts forward the convolution kernel optimization
formula for the speed and sampling frequency of vibration signal. Through this formula,
the matching relationship between CNN model and vibration signal is improved, then the
fault recognition rate of each vibration signal is significantly improved. The optimized
CNN has a relatively simple structure and avoids the problem of a neural network that is
too complex.

7. Conclusions

This paper conducted scale matching between the vibration signal of rotating machin-
ery and the convolution kernel of the convolutional neural network. Conclusions can be
summarized as follows:

(1) The vibration signals of parallel gears with the same sampling frequency and rotation
speed in the power engineering laboratory of NCEPU (Baoding) were taken as input
and CNNs with different convolution kernel sizes were selected for fault recognition.
Experimental results show that the fault identification accuracy of CNN for vibration
signals is the highest (96.3%) when selecting Convalution1, Convalution2 as the
convolution kernel of 1 × 8 and Convalution4, Convalution5 of 1 × 6. This also
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proves that there is a matching relation between the size of the convolution kernel
and the recognition rate of the vibration signal.

(2) Experiments using the CNN model show that when the optimal convolution kernel
remains unchanged, the speed of vibration signal decreases, or the sampling frequency
increases, the fault recognition rate of CNN decreases to varying degrees. Through
the perceptual field optimization experiment, the relationship between the vibration
signal speed and sampling frequency and the convolution kernel scale is obtained, and
then the fault recognition rate of each vibration signal can be significantly improved.
The results show that the accuracy of fault identification can be effectively improved
by adjusting the matching between vibration signal and convolution kernel scale.

(3) The optimal convolution kernel scale formula was derived from experiments in this
paper. Experimental results showed that the optimal convolution kernel scale formula
can improve the matching between the CNN model and the vibration signal, reduce
the complexity of the CNN model, accelerate the calculation of CNN, as well as
improve the recognition rate of CNN effectively. Finally, the fault recognition rate
can reach 98% after optimization. At the same time, other methods in the literature
were selected for comparative experiments to further prove the effectiveness of the
convolution kernel optimization formula.
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