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A B S T R A C T   

Cell mediated immune escape, a microenvironment factor, induces tumorigenesis and metastasis. 
The purpose of this study was to display the characteristics of T cell populations in immune 
microenvironments for colorectal cancer (CRC) metastasis. Unsupervised cluster analysis was 
conducted to identify functionally distinct T cell clusters from 3,003 cells in peripheral blood and 
4,656 cells in tissues. Subsequently, a total of 8 and 4 distinct T cell population clusters were 
identified from tumor tissue and peripheral blood, respectively. High levels of CD8+TEX, 
CD4+TRM, TH1-like T cells, CD8+TEM, tumor-Treg from tissues, and CD4+TN from peripheral 
blood are essential components of immune microenvironment for the prediction of CRC metas-
tasis. Moreover, exhausted T cells are characterized by higher expression of multiple inhibitory 
receptors, including PDCD1 and LAG3. Some genes such as PFKFB3, GNLY, circDCUN1D4, TXNIP 
and NR4A2 in T cells of cluster were statistically different between CRC metastasis and non- 
metastasis. The ligand-receptor interactions identified between different cluster cells and 
metastases-related DEGs identified from each cluster revealed that the communications of cells, 
alterations of functions, and numbers of T subsets may contribute to the metastasis of CRC. The 
mutation frequency of KiAA1551, ATP8B4 and LNPEP in T cells from tissues and SOR1 from 
peripheral blood were higher in metastatic CRC than that in non-metastatic CRC. In conclusion, 
the discovery of differential genes in T cells may provide potential targets for immunotherapy of 
CRC metastasis and relevant insights into the clinical prediction and prognosis of CRC metastasis.   

1. Introduction 

It was estimated that colorectal cancer (CRC), the third most frequent cancer and second leading cause of cancer-associated death 
worldwide, had 1.8 million new cases and 881,000 deaths in 2018 [1]. The main clinical manifestations of CRC include stomach aches, 
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bloody stools, and weight loss [2]. However, these symptoms are often overlooked at early stages of CRC, and more patients are likely 
to develop CRC metastasis at first diagnosis. About 20% of CRC patients develop metastasis, one of the main causes of CRC-associated 
death, accompanied by poor five-year prognosis [3]. The current study revealed that the regulation of epithelial to mesenchymal 
transition (EMT)-associated signaling pathway, such as WNT/β-catenin and TGF-β induced by abnormal expression of E-cadherin, 
N-cadherin, and vimentin, is responsible for CRC metastasis. In addition, alteration in a few gene biomarkers such as TP53, RAS, and 
BRAF, is responsible for the progression of CRC metastases [4,5]. However, for the complex process of metastasis, its underlying 
mechanisms are still poorly understood. 

Cancer progression and metastasis are dependent on complex peripheral blood and tissue tumor microenvironments, the disruption 
of which may result in adverse consequences [6]. It has been proved that reduced lymphatic vessels and immune cytotoxicity of tumor 
microenvironment are important for the distant metastasis of CRC [7]. Primary tumors and metastases of CRC present a heterogeneous 
immune infiltration environment and an immune suppression microenvironment, which facilitates tumor immune escape and 
metastasis [7]. Cytokines or chemokines produced by immune infiltrating cells can both change tumor microenvironment and regulate 
the adaptive immune response to promote CRC metastasis [8]. T cell immunity comprises CD4+T cells, CD8+T cells, T Helper (TH) 
cells, and T regulatory (Treg) cells, and constitutes important components of the immune system as well. For example, tissue-resident 
memory CD8+T (TRM) cells was are related to lymph node metastasis and prognosis of tumors [9]. Some cytotoxic CD4+T cells can 
kill autologous tumors in an MHC-II dependent fashion and are suppressed by regulatory T cells [10]. T Helper (TH) cells are involved 
in the anti-tumor immune response [11]. The infiltration of high density Foxp3+Treg cells in the cancer tissues of CRC patients was is 
associated with a better prognosis [12]. The changes in T cell immunity in an immunological environment may induce immune escape 
mechanisms for the metastasis of CRC [13]. 

The treatment of CRC includes surgery, chemotherapy, radiotherapy, and so on. In recent years, immunotherapy, targeted therapy, 
and other cancer treatments have emerged, which provided new and effected treatments for cancer patients. As an innovative 
treatment, tumor immunotherapy has become a hot topic in the field of tumor therapy research. CD8+ T cells play a key role and are 
significantly correlated with the prognosis of patients. For example, progression-free survival and overall survival are longer in CRC 
patients with cytotoxic CD8+ T lymphocytes [14]. Immunocheckpoint inhibitor (ICI) treatment that rejuvenates T cells and modulate 
the adaptive immune system can prevent immune escape controlled by multiple checkpoints, such as cytotoxic T lymphocytes (CTL) 
associated protein 4 (CTLA-4) and programmed cell death ligand 1 (PD-L1) [15,16]. With a long-term effect on some patients with 
advanced cancer, immune checkpoint blockade (ICB) significantly improves the outcome of the disease [17]. However, immuno-
therapy currently provides little clinical benefits for 85% of CRC patients with pMMR and low microsatellite instability (MSI-L) or 
microsatellite stability (MSS) (PMMR-MSI-L/MSS) [18]. The prognosis of pMMR-MSI-L/MSS patients is worse than that of 
dMMR-MSI-H CRC [19]. In addition, several new drug combination regimens have emerged to provide more treatment options for 
patients with CRC. Brandi G et al. found that cytotoxic double- or triple-drug chemotherapy regiments (e.g. FOLFOX, FOLFOXIRI) after 
transplantation may be a safe approach for non-resettable colorectal liver metastases (NRCLM) patients receiving liver transplantation 
[20]. Viscardi G et al. evaluated the risk of early death from solid malignancies treated by immune checkpoint inhibitors alone or in 
combination with other drugs and discovered that ED after first-line ICI is a clinically relevant phenomenon of solid malignancies that 
could not be predicted by PD-L1 expression, but other treatments of ICI [21]. Regorafenib (REG) is an oral multikinase inhibitor in the 
treatment of CRC. A systematic review of 2,099 patients showed that the treatment with a standard dose of 160 mg of REG is associated 
with a significant increase in adverse events (adverse events)-related permanent withdrawal, dose interruption, and dose reduction 
[22]. However, the prognosis of CRC patients is not the same even when the tumor stage is the same, and the tumor heterogeneity of 
CRC remarkably affects the efficacy of immunotherapy. Therefore, in-depth exploration of the immune landscape of CRC may 
contribute to understanding the complexity of tumor heterogeneity, which may help design more appropriate therapies and develop 
new immunotherapy strategies. 

Studies have indicated that gene mutation can change the copy number and function of related genes and lead to tumorigenesis. For 
instance, multiple RAS-related genes, including KRAS, NRAS and HRAS, are common mutated gene family in CRC. RAS mutation 
frequency is correlated with the invasion and metastasis of CRC [23]. What’s more, mutations at sites 19 and 21 in EGFR gene are 
related to tumor genesis, progression and metastasis [24]. In addition, genetic mutations can alter the number and function of T cells. 
For example, mutations in the HER-2 gene affect the antigen recognition ability of T cells [25]. At present, there are relatively few 
studies on gene mutations in tumor infiltrating T cells, dominantly because the number of T cells isolated from the tumor tissue is 
insufficient. There is also great heterogeneity in each T cell subgroup. Single-cell RNA sequencing is a high-throughput experimental 
technique for quantifying gene expression profiles of specific cell populations by using RNA sequencing at the single-cell level. 
Meanwhile, it can evaluate the complex contribution of tumor genetic heterogeneity in multicellular organisms and different cell types 
[26]. Therefore, applying single-cell RNA sequencing to reveal the immune properties of T cells in the microenvironment surrounding 
the tumor is of great importance for cancer immunotherapy. 

Until now, only the Zhang zemin group has detected the single T cell transcriptome profiling from CRC patients for determining the 
T cell properties and revealing tissue distribution of different T cells [27]. In their study, single T cell analysis by RNA sequencing and 
TCR tracking (STARTRAC) analysis was conducted to reveal the dynamic relationships of T cells in CRC. However, they did not explore 
metastasis-related mechanisms of T cell subsets in CRC. Thus, this study reclassified T cell cluster using unsupervised analysis and 
differential expression genes (DEGs) of each T cell cluster between non-metastatic and metastatic CRC samples from cancer tissues and 
peripheral blood. Besides, the possible biological functions and mutation frequencies of DEGs between non-metastatic and metastatic 
samples were investigated. The aim of this study was to provide new insights and treatment targets of metastasis at the single T cell 
genomic level. 
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2. Materials and methods 

2.1. Data acquisition 

The single-cell RNA sequencing data (GSE108989 dataset) were obtained from the Zhang zemin group. A total of 11,138 single T 
cells from 12 CRC patients were sequenced, among which 10,805 single T cells remained after data processing, including quality 
control, data filtration, and normalization. In this study, only processed transcriptomes of single T cells of 5 non-metastatic and 6 
metastatic CRC samples from tissues and peripheral blood were used, with 3,003 T cells from peripheral blood and 4,656 T cells from 
cancer tissues. The cells were sequenced using Illumina HiSeq 4000 platform (Illumina, California, USA). The clinical characteristics of 
the 11 CRC samples are shown in Supp. Table 1. 

2.2. Unsupervised clustering 

Simpler single cell RNAseq data clustering (sscClust (https://github.com/Japrin/sscClust), package is a tool for multiple single cell 
RNAseq data analysis, including variable gene identification, dimension reduction, and clustering on reduced data [28]. In this study, 
sscClust package was used to sort T cells based on unsupervised clustering from cancer tissues and peripheral blood, respectively. First, 
the top 1,500 highly variable genes based on average expression and dispersion were selected, after which dimension reduction 
analysis was performed based on Spearman’s correlation between cells. Afterwards, cell clustering was conducted by k-means algo-
rithm, and a number of clusters were pre-established as 2–30. Subsequently, the final cluster classifications were determined by 
selecting the highest normalized mutual information (NMI) index and comparing the results of cell type identification shown in raw 
chip article [27]. Finally, the t-distributed stochastic neighbor embedding (t-SNE) method was adopted for cluster visualization. 

2.3. Comparison of identified cell types with original article 

Marker genes of T cell types identified in a previously published article [19] were reported (Supp.Table 2). Then, different T cell 
subtypes in each cluster were calculated. The main T cell types in each classified cluster were compared by unsupervised clustering. 
Finally, the violin plots of main T cell types in each cluster were drawn to validate our results. 

2.4. Correlation analysis of clusters 

Based on each defined cluster in cancer tissues and peripheral blood, and mean expression values of each gene in every cell type, the 
Pearson correlation coefficient among all the clusters were calculated using the cor function in R. Next, the corrplot software in R 
(https://mirrors.tuna.tsinghua.edu.cn/CRAN/web/packages/corrplot) [29] was applied to visualize the correlation heatmap. 

2.5. Identifying cell type specific communication 

To characterize T cell subset communications, the iTALK (https://github.com/Coolgenome/iTALK) package in R was used to 
explore cell communication by identifying ligand-receptor interactions among T cell subsets in cancer tissues and peripheral blood, 
respectively. On the one hand, the top 50% genes with high expression of each cluster were selected to explore ligand-receptor in-
teractions between any two clusters and matched to the 2,648 known ligand-receptor interactions included in iTALK package, in which 
the genes were divided into 4 types: growth factor, cytokine, checkpoint, and others. On the other hand, on the bias of types of ligand 
genes and expression of ligand and receptor genes, each type of ligand-receptor interaction was ranked and ligand-receptor interaction 
networks were plotted and presented using the top 20 interactions of each type. 

2.6. Differentially expressed gene (DEG) analysis 

The differential expression of genes in each cluster between non-metastatic and metastatic CRC samples from cancer tissues and 
peripheral blood were analyzed using Bayesian methods in the limma package (Version 3.10.3, http://www.bioconductor.org/ 
packages/2.9/bioc/html/limma.html) in R [30]. Afterwards, the p value was adjusted by Benjamini & Hochberg, and DEGs were 
screened by thresholds of adj.P.Val<0.05 and |log fold change (FC)|>1. 

2.7. Functional and pathway enrichment analysis 

Metascape (http://metascape.org) [31] is a powerful tool for providing functional enrichment, gene annotation, and membership 
search by integrating many functional biological databases, including Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes 
(KEGG), and Uniprot. In this study, the GO biological processes (BP) terms and KEGG pathways of DEGs of each cluster were analyzed 
under default parameters (Min Overlap: 3; P Value Cutoff: 0.01; Min Enrichment: 1.5). After obtaining terms that fit the given pa-
rameters, they were further clustered based on the similarity of genes enriched in each term larger than 0.3. The top 20 results of each 
cluster were presented using bar graph. 
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2.8. Protein-protein interaction (PPI) network analysis 

Metascape tool was applied to identify PPI pairs of DEGs. The PPI enrichment analysis of DEGs was conducted using BioGrid [32], 
InWeb_IM [33], and OmniPath [34] databases under default parameters (Min Network Size: 3; Max Network Size: 500). After 
obtaining PPI pairs, the Cytoscape software (Version 3.4.0, http://chianti.ucsd.edu/cytoscape-3.4.0/) was used to construct and 
visualize the PPI network. 

2.9. Comparison of mutation frequencies of DEGs between non-metastatic and metastatic samples 

The somatic mutation files of SNP calling of non-metastatic and metastatic COAD and READ samples were downloaded from the 
TCGA database (https://tcga-data.nci.nih.gov/). Then, the gene mutation frequency of DEGs identified from each cluster in non- 
metastatic and metastatic COAD and READ samples were counted using maftools software (Version 2.0.16) in R [35]. 

3. Results 

3.1. Distinct T cell clusters identified from tissue and peripheral blood 

Under pre-setting 2–30 clusters, the overall T cell population from tissue and peripheral blood were classified using unsupervised k- 
means clustering, respectively. The NMI index corresponding to different cluster numbers is shown in Fig. 1A and B. Since the NMI 
indexes were the highest when the number of clusters were 8 and 4 for tumor and peripheral blood-derived T cells, respectively, a total 
of 8 tumor T cell clusters and 4 peripheral blood T cell clusters were identified. The t-SNE plots demonstrated distinct clusters from 

Fig. 1. Identification of distinct T cell clusters from CRC tumor tissue and peripheral blood. A) A total of 8 clusters of T cell populations from 
CRC tumor tissue emerged using unsupervised clustering. B) A total of 4 clusters of T cell populations from CRC peripheral blood emerged using 
unsupervised clustering. The number of clusters was chosen when the corresponding NMI index was the highest. X-axis represents the number of k- 
means clusters, while Y-axis represents the corresponding NMI index. NMI: normalized mutual information. C) tSNE plots show 8 distinct clusters of 
T cells from CRC tumor tissue. D) tSNE plots show 4 distinct clusters of T cells from CRC peripheral blood. Different colors refer to different T cell 
clusters. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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tumor T cells (Fig. 1C) and distinct clusters from peripheral blood T cells (Fig. 1D). 

3.2. Characteristics of T cell subtypes composition of each cluster 

The number of T cell subtypes of each cluster from tumor and peripheral blood samples was calculated based on marker genes of 
each T cell subtype provided by an original article (http://crc.cancer-pku.cn/) (Supp.Tables 3 and 4). A total of 4,656 cells were 
composed of 8 tumor T cells clusters, and Tumor-T regulatory cells (Tumor-Treg) (1192) made up a major proportion of all the cells 
(25.6%), followed by exhausted CD8+T cells (CD8+TEX) cells (15.6%). CD8+TEX cells were most abundant T cell populations in 
cluster 1 (C1). Effector memory CD8+T cells (CD8+TEM) and CD8+TEX were both dominant in C2. Tumor-Treg cells were dominant 
in C3 and C5, TH1-like T cells were most dominant in C4, CD8+TEM were most dominant in C6, while resident memory CD4+T cells 
(CD4+TRM) were dominant in C7 and C8 (Supp.Table 3). These were further validated by violin plots, which showed the expressions 
of gene markers for CD8+TEX, CD8+TEM, Tumor-Treg, TH1-like T cells, and CD4+TRM in the 8 clusters from tumor T cells (Fig. 2). 

In 4 peripheral blood clusters, 3003 cells were identified, and CD8+terminal differentiated effector memory (CD8+TEMRA/TEFF, 
638) was the most abundant T cell subset, accounting for 21.2% of all cells. CD4+blood-central memory T cells (CD4+blood-TCM) and 
blood-Treg were dominant in C1; CD4+blood-TCM and CD8+TEMRA/TEFF were dominant in C2; CD4+TN were dominant in C3; 
CD4+TEMRA/TEFF were dominant in C4 (Supp.Table 4). Moreover, the violin plots exhibited a distinct expression distribution of gene 
markers for CD4+ blood-TCM, blood-Treg, CD8+TEMRA/TEFF, and naive CD4+T cell (CD4+TN) in the 4 clusters (Fig. 2). 

3.3. Significant correlation of different clusters in CRC T cell subtypes 

Among the 8 tissue clusters, the correlation of T cell subsets of C3 and C5 with other clusters was relatively weak, but there was a 
significant positive correlation between the two clusters. In addition, apparent positive correlations existed between C7 and C8, C6 and 
C2, and C1 and C2. C7 had a significantly negative correlation with most clusters (C1-5) (Fig. 3A). 

In 4 peripheral blood clusters, all the clusters had positive correlations, and apparent positive correlations existed between C1 and 
C3, C1 and C4, and C2 and C4 (Fig. 3B). 

The heterogeneity within Treg and Trm subsets differs between non-metastatic and metastatic CRC. The venn analysis showed that 
there were 76 differential genes in Treg (C3 and C5) subgroups and 68 differential genes in Trm (C7 and C8) subgroups between the 

Fig. 2. Violin plots show expressions comparison of selected genes markers for cluster. Violin plots show genes marker expressions for 
CD8+TEX (A), Tumor-Treg (B), CD8+TEM (C), TH1-like T cells (D), and CD4+TRM (E) in 8 clusters from tumor T cells, and blood-Treg (F), 
CD8+TEMRA/TEFF (G), CD4+blood-TCM (H) and naive CD4+T cell (I) in 4 clusters from peripheral blood T cells, respectively. The color of each 
violin represents the average expression value of a given gene in each cell cluster. The change of color from yellow to black represents the average 
expression value from the lowest to the highest score. 
CD8+TEX: exhausted CD8+T cells; Treg: T regulatory cell; CD8+TEMRA/TEFF: CD8+terminal differentiated effector memory. CD8+TEM: Effector 
memory CD8+T cells; TH1-like T cells: T helper 1-like T cells, CD4+TRM: resident memory CD4+T cells; CD4+blood-TCM: CD4+Peripheral blood- 
central memory T cells; CD4+TN: naive CD4+T cell. (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 
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metastatic and non-metastatic groups (Supplemental Fig. 1). The list of different genes was showed in Supp. Tables 5 and 6. 

3.4. Ligand-receptor interactions among clusters in CRC T cell subtypes 

The communications among tissue and peripheral blood T subsets were explored by excavating ligand-receptor pairs among 
clusters. A total of 8,681 ligand-receptor pairs were obtained from tissue T cell subsets include 688 pairs of growth factor type, 1,108 
pairs of cytokine type, 451 pairs of checkpoint type, and 6,434 pairs of other type. The top 20 ligand-receptor pairs of each type are 
shown in Fig. 3C. Many of the highest-expression interactions were found in the chemokine type. The highly expressed receptor CCR8, 
a gene marker of tumor-Treg, was detected in C3 and C5. The ligand CCL4 highly expressed in C1 and C2 had both receptor CCR8 in C3 
and C5. 

Furthermore, a group of 1,349 ligand-receptor pairs was obtained from peripheral blood T subsets, including 72 pairs of growth 
factor type, 123 pairs of cytokine type, 37 pairs of checkpoint type, and 1,117 pairs of other type. The top 20 ligand-receptor pairs of 
each type are shown in Fig. 3D. The most highly expressed interactions belonged to the ‘other’ type, including SELPLG-SELL, ICAM2- 
ITGB2, and LTB-TNFRSF1A. 

3.5. Differences for T cell subsets between metastatic and non-metastatic CRC 

First, the total T cells from tissue-derived and peripheral blood-derived metastatic non-metastatic CRC samples were calculated 
(Table 1). There were increasing trends of overall T cell counts in non-metastatic samples compared with metastatic samples from each 
cluster, except peripheral blood C4. The number of T cells from tissue identified in clusters showed a greater difference between C2 and 
C7, but there were no obvious differences among the other clusters (Table 1A). The number of overall T cells from peripheral blood C4 
was significantly lower than that from C1, C2, and C3 (Table 1B), which revealed the tissue or microenvironment preferences of 
different T subsets. 

Furthermore, the number of each main T cell subset was counted from metastatic and non-metastatic samples, respectively 
(Table 2). As a result, high CD8+TEX, CD4+TRM, tumor-Treg, TH1-like T, and CD8+TEM cell counts were found in tissue-derived 
metastatic samples compared with non-metastatic samples, especially tumor-Treg from C3 and CD4+TRM from C7 (Table 2A). 
Meanwhile, significantly higher levels of CD4+TN were found in peripheral blood-derived metastatic samples rather than in non- 
metastatic samples (Table 2B). The DEGs of each cluster between T cells from metastatic and non-metastatic cancer tissues and pe-
ripheral blood samples were identified. A total of 282 DEGs between tissues-derived T cells were screened, including 39, 37, 51, 66, 25, 
60, 28, and 40 DEGs from C1, C2, C3, C4, C5, C6, C7, and C8, respectively, among which 28 (e.g., LAG3) were specific in C1, 21 were 
specific in C2, 26 were specific in C3, 47 were specific in C4, 14 were specific in C5, 43 were specific in C6, 19 were specific in C7, and 
33 were specific in C8. GNLY and PHLDA were specifically upregulated in C4. Three common DEGs (PDCD1, PFKFB3, and FAM46C) 
were only identified in C1 and C2, while several DEGs (DUSP10, HIVEP1, AOAH, SNX9, PMAIP1, and UBE2B) were only identified in 
C3 and C5. 

In addition, a total of 153 DEGs between peripheral blood-derived T cells were screened, including 36, 31, 25, and 89 from C1, C2, 
C3, and C4. A total of 22, 18, 12, and 81 DEGs were specifically deregulated in C1, C2, C3, and C4, respectively. Among these DEGs, 
TXNIP, NR4A2, and ZNF331 were identified in 4 clusters. JAML was only significantly upregulated in C2 and C4. Moreover, several 
DEGs (e.g., HLA-DMA, HLA-DRB5, HLA-DRB1, and HLA-DQA1) were identified only in C4. The heatmaps for DEGs for cancer tissues 
and peripheral blood derived clusters are shown in Fig. 4. 

Fig. 3. Correlation analyses of different clusters and analysis of cell-cell communications by excavating ligand-receptor interactions 
among clusters. A) Correlation heatmap of clusters from tumor tissue T cells. Apparent positive correlations exist between clusters 7 and 8, clusters 
6 and 2, and clusters 1 and 2. B) Correlation heatmap of clusters from peripheral blood T cells. There are positive correlations between clusters 1 and 
3, clusters 1 and 4, and clusters 2 and 4. The color gradient from dark blue to red represents the highest positive correlations to highest negative 
correlations (r = 1 to r = − 1). The size of nodes is proportional to the absolute value of the correlation coefficient. C) The top 20 ligand-receptor 
interaction pairs for growth factor type, cytokine type, checkpoint type, and other types of clusters from tumor tissue T cells. D) The top 20 ligand- 
receptor interaction pairs for growth factor type, cytokine type, checkpoint type, and other types of clusters from peripheral blood T cells. Different 
colors in the outer circle represent different cell clusters, while colors in inner circle represent different gene types. Arrows indicate the receptor, and 
the size of the arrow is proportional to receptor expression level, while the thickness of the line is proportional to ligand expression level. The line 
links the receptor in one cell cluster to a ligand in another cell cluster. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

Table 1 
The counts of total T cells from tissue-derived (A) and peripheral blood-derived (B) metastatic and non-metastatic CRC samples.  

A Clusters C1 C2 C3 C4 C5 C6 C7 C8  

Non-metastasis 212 282 173 201 302 278 116 191  
Metastasis 314 492 524 249 356 308 309 348 

B Clusters C1 C2 C3 C4      
Non-metastasis 379 395 336 168      
Metastasis 513 412 636 164      
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3.6. Functions of DEGs in CRC T cell subtypes between metastatic and non-metastatic CRC 

The DEGs in 8 clusters from tissue and 4 clusters from peripheral blood were subjected to functional enrichment analyses. For 
tissue-derived DEGs, the DEGs were totally enriched in 307 GO BP terms and 32 KEGG pathways. Based on clustering of similarity 
terms or pathways, 20 representative terms or pathways were obtained (Fig. 5A). The DEGs from all clusters except for cluster 1 were 
most significantly enriched on GO BP term “T cell activation”, while all clusters except for cluster 2 were enriched in “positive 
regulation of cell death”. Five clusters (C2, C3, C4, C6, and C8) involved in “cytokine-mediated signaling pathway”, “leukocyte 
activation involved in immune response”, and “leukocyte migration” were significantly associated with C2 and C8. The “T cell co- 
stimulation” GO term was only associated with C2. The pathway of “Cell adhesion molecules (CAMs)” was significantly enriched in C7 
and C8. 

For DEGs from peripheral blood, the DEGs were completely involved in 307 GO BP terms and 32 KEGG pathways. Twenty 
representative terms or pathways were presented in Fig. 5B. The GO BP terms, “cytokine-mediated signaling pathway” and 
“lymphocyte activation” in all clusters, “adaptive immune response” in C1, C3 and C4, and “leukocyte activation involved in immune 
response” in C1–C3, and the pathways of “Epstein-Barr virus infection” were significantly enriched in all clusters. Interesting, the GO 
terms, “cell chemotaxis” and “negative regulation of immune system process” were only significantly enriched in C4. 

PPI networks of DEGs of each cluster in CRC T cell subtypes between metastatic and non-metastatic CRC. 
The DEGs of each cluster were used to construct the PPI network, and the nodes and PPI pairs in the PPI network of each cluster 

from tissue (Table 3A) and peripheral blood (Table 3B) were counted. For tissue-derived cluster, the PPI network of C6 had the most 
nodes, in which several heat shock protein family members, HSP90AA1, HSPB1, HSPD1, HSPA1B, and HSPA1A had more interactions 
(Fig. 5C). For peripheral blood derived cluster, the PPI network of C4 had the most nodes, JUN and MYC were highlighted in this 
network, and a subnetwork with most major histocompatibility complex family members, including HLA-DMA, HLA-DRB5, HLA- 
DRB1, and HLA-DQA1, were obtained (Fig. 5D). 

3.7. Mutation frequencies of DEGs between non-metastatic and metastatic CRC 

From TCGA database, the somatic mutation data of 233 metastatic and 296 non-metastatic samples from colon and rectal cancer 
were obtained. In non-metastatic and metastatic CRC cancer samples, the gene mutation frequencies of most DEGs identified from each 
cluster did not show great differences, while a few had obvious differences. KIAA1551 and ATP8B4 were both exclusively expressed in 
tissue C4 and the gene mutation frequencies of KIAA1551 and ATP8B4 were 1% vs 6% and 0% vs 6% between metastatic and non- 
metastatic samples, respectively. In tissue C8, LNPEP was also specially expressed, and the gene mutation frequencies of LNPEP 
were 0% vs 5% (Fig. 5E). SORL1 that was exclusively expressed in peripheral blood C4 had 1% mutation frequency in metastatic CRC 

Table 2 
The counts of most abundance T cell subset in each cluster tissue-derived (A) and peripheral blood-derived (B) metastatic and non-metastatic CRC 
samples.   

T cell subset Clusters Metastasis Non-metastasis Counts 

A CD8 C07-LAYN 
_ 

C1 237 176 413 

CD8 C07-LAYN 
_ 

C2 171 98 269 

CD8 C04-GZMK 
_ 

C2 156 145 301 

CD4 C12-CTLA4 
_ 

C3 407 112 519 

CD4 C09-CXCL13 
_ 

C4 106 66 172 

CD4 C12-CTLA4 
_ 

C5 331 269 600 

CD8 C04-GZMK 
_ 

C6 145 47 192 

CD4 C05-CXCR6 
_ 

C7 112 30 142 

CD4 C05-CXCR6 
_ 

C8 63 49 112 

B CD4 C10-FOXP3 
_ 

C1 123 83 206 

CD4 C02-ANXA1 
_ 

C1 179 120 299 

CD8 C03-CX3CR1 
_ 

C2 285 279 564 

CD4 C01-CCR7 
_ 

C3 245 117 362 

CD8 C03-CX3CR1 
_ 

C4 2 70 72  
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cancer and 8% mutation frequency in non-metastatic CRC cancer (Fig. 5F). The results suggested that the frequency of gene mutation 
of T cells in the metastatic samples was lower than that in the non-metastatic samples. 

3.8. Ligand-receptor interactions for T cell subsets between metastatic and non-metastatic CRC 

DEGs in CRC T cell subtypes between metastatic and non-metastatic CRC were used to further analyze the communications by 
excavating ligand-receptor pairs. The top 20 ligand-receptor pairs of 4 clusters from peripheral blood and 8 clusters from tissue are 
shown in Fig. 6A and B, respectively. In the T cell from peripheral blood, the highly expressed receptor CXCR3 was detected in C1, C2 
and C4, the highly expressed receptor ITGB1 was detected in C1 and C3, and the highly expressed receptor SELL was detected in C2 and 
C3 from peripheral blood. The highly expressed interactions included IL16-CD4, IL16-KCNA3 in C2 and C3, and CXCL13-CXCR3 in C1 
and C4. In the T cell subsets from tissues, the highly expressed receptors were CCR1 and CXCR3 in C1 and C2. The most highly 
expressed interactions included CCL5-CCR1, CCL5-CXCR3, CXCL13-CXCR3, and CXCL13-CXCR5 in C1 and C2. Thus, these receptors, 
including CXCR3, ITGB1 and SELL in T cell subsets from peripheral blood, and CCR1 and CXCR3 in T cell subsets from tissues were 
associated with CRC metastasis. 

4. Discussion 

Treating cancer metastasis is usually more difficult for its uncontrollability, and tumor microenvironment is a critical determinant 
for distant metastasis, which elucidates the underlying mechanisms during metastasis, especially in tumor microenvironment is of 

Fig. 4. Heatmaps of differentially expressed genes (DEGs) in-between CRC metastatic and non-metastatic samples from tumor tissue and 
peripheral blood. 
A) Heatmaps of DEGs in C1–C8 between CRC metastatic and non-metastatic samples from tumor tissue. B) Heatmaps of DEGs in C1, C2, C3, and C4 
between CRC metastatic and non-metastatic samples from peripheral blood. 
The genes with |logFC| >1.5 are marked. The blue color in the X-axis is the non-metastatic samples, while red in the X-axis marks the metastatic 
samples. The color gradient from blue to red represents the express changes of downregulation to upregulation. (For interpretation of the references 
to color in this figure legend, the reader is referred to the Web version of this article.) 
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great importance [36]. In this study, unsupervised clustering was used to identify new T cell clusters on the bias of previous single-cell 
RNA sequencing data, and the annotation of the identified clusters was conducted. High CD8+TEX, CD4+TRM, tumor-Treg, and 
TH1-like T cell counts were found in tissue-derived metastatic samples, and significantly higher levels of CD4+TN were found in 
peripheral blood-derived metastatic samples rather than non-metastatic samples. Furthermore, the biological interpretation and DEGs 
of each cluster in terms of metastasis were analyzed. These findings may offer potential targets for CRC metastasis immunotherapy and 
provide related insights for CRC metastasis prediction and prognosis in clinic. 

Single RNA sequencing identified 4655 T cells from tissue and 3003 T cells from peripheral blood. Tumor-Treg cells (1192, 25.6%) 
were most abundant in overall tissue T cell populations followed by exhausted CD8+T cells, while CD8+TEMRA/TEFF (638, 21.2%) 
was most abundant T cell subset in peripheral blood, which revealed the heterogeneities of T cells from different sources. In addition, it 
was found that CD8+TEX, CD4+TRM, TH1-like T cells, tumor-Treg, and CD8+TEM from tissue, and CD4+TN from peripheral blood 
were higher in metastatic samples than non-metastatic samples. Tregs are a kind of important T cell subset for peripheral tolerance and 
restraining autoimmunity responses. An interesting study proved that the increase of tumor-infiltrating Tregs may facilitate metastasis 
development of pancreatic cancer by establishing an immunosuppressive microenvironment, while reduced Tregs may suppress 
metastasis formation [37]. The accumulation of tumor-associated Tregs is critical in suppressing auto-tumor specific T cell responses in 
liver cancer and CRC liver metastases, thus leading to immune evasion [38]. CD8+TEX is named as exhausted T cells that present with 
the loss of effector functions, and it could potentially accelerate progression or deterioration of the cancer [39]. Reportedly, breast 
cancer patients with a high percentage of T exhaustion markers are likely to develop the progressive types, such as metastatic in-
flammatory [40]. In addition, the elevated CD4+naïve/memory ratio reflects the progression of pancreatic cancer and is associated 
with poorer clinical response and prognosis [41]. Moreover, the circulating lower CD4+TN cells are detected in response to 
post-stereotactic body radiotherapy in lung metastasis [42]. Our results demonstrated that CD8+TEX, CD4+TRM, TH1-like T cells, 
CD8+TEM, and tumor-Treg from tissue, and CD4+TN from peripheral blood that function as essential components of immune 
microenvironment are potential biomarkers for CRC metastasis prediction. 

The results of correlation analysis indicated that there were significant positive correlations between C1 and C2, C3 and C5, C6 and 
C2, and C7 and C8 from tissue, as well as between C1 and C3, C1 and C4, and C2 and C4 from peripheral blood. It was inferred that 
these results might be associated with similarity of T cell subsets of each cluster. In tissue-derived clusters, CD8+TEX cells were most 
abundant in cluster 1 and in C2 as a main T cell subtype. In addition, the highest dominance of Tumor-Treg was in clusters 3 and 5, 
CD8+TEM in C2 and C6, and CD4+TRM in C7 and C8. Ligand-receptor interaction between cells is a main type of cell communication. 
In this study, several significant ligand-receptor interactions between different clusters were screened, and the highest scoring pairwise 
interaction was the ligand CCL4 from C1 and C2, and their shared receptor CCR8 from C3 and C5. CCR8, as a chemokine receptor, is 
mainly expressed in Tregs and can regulate the antitumor immunity in tumor microenvironment [43]. Notably, the CD8+T cells with 
CCL4 expression had lower potential for immune reconstitution [44]. In peripheral blood derived clusters, it was also found that SELL, 
a receptor of C3, had more interactions with ligands from other clusters. Selectin L (SELL), an adhesion/homing receptor, is necessary 
for CD4+TN cell extravasation from peripheral blood to peripheral lymph nodes [45]. Also, circulating lower naïve CD4+T cells are 

Fig. 5. Functional enrichment results for the DEGs identified between CRC metastatic and non-metastatic samples in each cluster, PPI 
network for DEGs between CRC metastatic and non-metastatic samples in each cluster, and comparison of mutation frequencies of DEGs 
between non-metastatic and metastatic samples. A) The clustergram shows top 20 representative terms or pathways for DEGs from tumor tissue. 
B) The clustergram shows top 20 representative terms or pathways for DEGs from peripheral blood. X-axis represents different cell clusters, while Y- 
axis presents the terms of biological processes or pathways. The darker the color is, the smaller the p value is. C) PPI network for DEGs in tumor 
tissue derived cluster. D) PPI network for DEGs in peripheral blood derived cluster. Red and triangle nodes represent the up-regulated genes, while 
green V-shaped nodes represent the down-regulated genes. The size of node is proportional to the degree values of the node itself. E) Oncoplots show 
mutation frequencies of DEGs in tumor tissue derived C4 and C8, counted by 233 metastatic and 296 non-metastatic samples of colon and rectum 
cancer from the TCGA database. F) Oncoplots show mutation frequencies of DEGs in peripheral blood derived C4 counted by 233 metastatic and 296 
non-metastatic samples of colon and rectum cancer from the TCGA database. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 

Table 3 
Attribute statistics of PPI network of each cluster from cancer tissues (A) and peripheral blood (B).  

A cluster node edge  

C1 13 10 
C2 9 8 
C3 17 19 
C4 18 15 
C5 8 5 
C6 40 144 
C7 4 2 
C8 16 13 

B C1 10 10 
C2 11 17 
C3 8 9 
C4 32 47  
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positively corrected with distant metastatic spread of cancer [46]. Moreover, our study proved that SELL, as DEG identified from 
peripheral blood C3, was downregulated in naïve CD4+T cells from CRC metastases samples. Taken together, the development and 
metastases of CRC may be co-regulated by different T cell subsets through ligand-receptor interaction communications with each 
other. 

Furthermore, the similarities and differences of molecular expression between metastasis and non-metastasis samples were 
analyzed, and several common and specific DEGs among different clusters were identified. For tissue-derived clusters, LAG3 was 
specifically upregulated in C1, and GNLY and PHLDA were specifically upregulated in tissue C4. Three common DEGs, namely PDCD1, 
PFKFB3, and FAM46C, were only specifically identified in C1 and C2 (exhausted CD8+T cells), while other DEGs (eg., DUSP10, 
HIVEP1, AOAH, SNX9, PMAIP1, and UBE2B) were only specifically identified in C3 and C5. Reportedly, exhausted T cells are char-
acterized by higher expression of multiple inhibitory receptors (eg., PDCD1 and LAG3) [47], which is consistent with our results. For 
peripheral blood derived clusters, the DEGs TXNIP, NR4A2, and ZNF331 were identified in all clusters, and DEGs [eg., HLA-DMA 
(MHC Class II Antigen DMA), HLA-DRB5, HLA-DRB1 (MHC Class II HLA-DR Beta 1 Chain), and HLA-DQA1] were only identified in 
C4. The differential expression of these genes in T cells may simultaneously affect the functions and number of T subsets to contribute 
to the metastasis of CRC. 

This study identified PFKFB3 of C1 and GNLY of C4 in tissues and NR4A2 and TXNIP of C1 in peripheral blood from metastatic and 
non-metastatic CRC. PFKFB3 did not affect cancer cell proliferation but could inhibit cancer metastasis [48]. The upregulation of 
PFKFB3 promoted PD-L1 expression in T cells and reduced the function of cytotoxic T cells [49]. GNLY (granulosin) secreted by 
cytotoxic T lymphocytes played an important anti-cancer role by inducing apoptosis [50]. Low expression of GNLY in 

Fig. 6. Ligand-receptor interactions for T cell subsets between metastatic and non-metastatic CRC. A1-A8) The top 20 ligand-receptor 
interaction pairs for growth factor type, cytokine type, checkpoint type, and other types of clusters from tumor tissue T cells. B1–B4) The top 20 
ligand-receptor interaction pairs for growth factor type, cytokine type, checkpoint type, and other types of clusters from peripheral blood T cells. 
Different colors in the outer circle represent different cell clusters, while colors in inner circle represent different gene types. Arrows indicate the 
receptor, and the size of the arrow is proportional to receptor expression level, while the thickness of the line is proportional to ligand expression 
level. The red arrow represents the Gain relationship, while the blue arrow stands for the Loss relationship. The line links the receptor in one cell 
cluster to a ligand in another cell cluster. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version 
of this article.) 
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tumor-infiltrating effector memory T cells was associated with metastasis and poor prognosis in CRC [51]. circDCUN1D4 inhibited the 
metastasis of lung adenocarcinoma by stabilizing TXNIP expression [52]. TXNIP deficiency increased the function of effector T cells 
but did not affect T cell development and homeostasis [53]. NR4A2 deficiency can regulate the aggravation of colitis by regulating 
Treg cells and affecting the function of Th1 cells [54]. NR4A2 regulated CRC invasion, metastasis, and poor prognosis through 
Wnt/β-catenin pathway [55]. Our findings are consistent with these relevant studies. In conclusion, the discovery of differential genes 
in T cells may provide potential targets for immunotherapy of CRC metastasis and relevant insights for clinical prediction and 
prognosis of CRC metastasis. 

Additionally, it was found that DEGs from most tissue and peripheral blood-derived clusters were both closely associated with 
“cytokine-mediated signaling pathway” and “leukocyte activation involved in immune response”. Cytokine-mediated signals can 
differentially regulate T cell behavior, which is pivotal for the control of immune responses [56]. PPI analysis showed that Jun/Myc 
signaling pathway in peripheral blood C4 (CD4+TEMRA/TEFF) was associated with CRC metastasis. An interesting study results [57] 
showed that Myc was a negative regulatory factor and could effectively inhibit CRC cell invasion and migration. What’s more, the high 
expression of c-Myc in colorectal cancer was positively correlated with cancer metastasis [58]. Reportedly, Myc can promote CD4 + T 
cell proliferation by down-regulating microRNA-451A [59]. Therefore, it was concluded that the up-regulation of Jun/Myc pathway in 
CD4+TEMRA/TEFF could reduce the number of CD4+TEMRA/TEFF and inhibit immune function, which suggested that Jun/Myc 
might involve in the T cell regulation of CRC metastasis. 

Additionally, the numbers and activities of T lymphocytes may influence immunocompetence [60], and the co-effecters of 
immunocompetence and immunosuppression of immune response may be responsible for cancer metastasis [61]. These findings 
revealed the importance of the two main functions during the progression of CRC. Current studies [62] showed that increased Treg cell 
frequency in tumors is associated with disease progression and poor prognosis in cancer patients. The study revealed that DEGs, 
including CD274 andCD83 in C5, were enriched in “T cell activation” and “positive regulation of cell death” in the metastatic group, 
which was consistent with relevant studies. The results indicated that DEGs in C5 can affect CRC metastasis through activating Treg 
cell and promoting Treg cells proliferation. In the present study, it was found that adhesion signaling pathways in T cells were also 
related to metastasis. Adhesion signaling pathways are involved in cancer metastasis. In the present study, adhesion signaling path-
ways in T cells were also related to metastasis, which is an interesting discovery. Whether the metastasis of cancer cells is accompanied 
by the metastasis of immune cells is a topic worthy of further exploration. The “negative regulation of immune system process” was 
enriched in the C4 cluster, which means that this cluster takes on a more Treg phenotype. The “Epstein-Barr virus infection” pathway 
was related to tumor T cell responses. Some specific genes, such as NR4A2, ZNF331, TXNIP and JAML, might be associated with poor 
immune control of metastasis. 

Most studies on genetic mutations focused on cancer cells, but relatively few studies focused on genetic mutations in immune cells. 
It was found that the frequency of gene mutation of T cells in the metastatic samples was lower than that in the non-metastatic samples. 
It is speculated that the frequency of gene mutation in T cells could affect cancer metastasis. The frequency of gene mutation in T cells 
can provide a potential predictive marker for cancer metastasis. 

This study provides evidence for the similarities and differences on infiltrating T subsets of tissue or peripheral blood derived from 
different clusters at both cellular and molecular levels, which may offer potential targets for the immunotherapy of CRC progression. 
Although only 5 non-metastatic and 6 metastatic CRC samples from both tissues and peripheral blood were analyzed in this study, the 
transcriptomes of single T cells of 3,003 T cells from peripheral blood and 4,656 T cells from cancer tissues were also included. 
Therefore, the sample size was sufficient for our subsequent analysis, as each individual cell amounted to one sample. In addition, 
despite the previous definitions of T cell subset, all the T cells obtained from samples were re-classified into different clusters using 
unsupervised clustering based on different algorithms. Unsupervised clustering is a powerful tool for identifying the putative T cell 
types [63]. 

5. Conclusion 

T cell subsets isolated from CRC tumor tissue and peripheral blood metastasis and non-metastasis samples were clustered, and it 
showed that significant heterogeneity existed in the infiltrating T cell clusters. The high levels of CD8+TEX, CD4+TRM, TH1-like T 
cells, CD8+TEM, and tumor-Treg from tissue, and CD4+TN from peripheral blood may be essential components of immune micro-
environment for the prediction of CRC metastasis. Moreover, exhausted T cells are characterized by higher expression of multiple 
inhibitory receptors, including PDCD1 and LAG3. Some genes such as PFKFB3, GNLY, circDCUN1D4, TXNIP and NR4A2 in T cells of 
cluster are statistically different between CRC metastasis and non-metastasis. The ligand-receptor interactions identified between 
different cluster cells and metastases related DEGs identified from each cluster revealed that the communications of cells, alterations of 
functions, and numbers of T subsets may contribute to the metastasis of CRC. The mutation frequency of KiAA1551, ATP8B4 and 
LNPEP in T cells from tissues and SOR1 from peripheral blood were higher in metastatic CRCs than that in non-metastatic CRCs. In 
conclusion, the discovery of differential genes in T cells may provide potential targets for immunotherapy of CRC metastasis and 
relevant insights for clinical prediction and prognosis of CRC metastasis. 
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