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Abstract: Copper-based chalcogenides that contain abundant, low-cost and environmentally-friendly
elements, are excellent materials for numerous energy conversion applications, such as photocatalysis,
photovoltaics, photoelectricity and thermoelectrics (TE). Here, we present a high-yield and upscalable
colloidal synthesis route for the production of monodisperse ternary I-III-VI2 chalcogenides
nanocrystals (NCs), particularly stannite CuFeSe2, with uniform shape and narrow size distributions
by using selenium powder as the anion precursor and CuCl2·2H2O and FeCl3 as the cationic
precursors. The composition, the state of valence, size and morphology of the CuFeSe2 materials were
examined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron
microscope (SEM), transmission electron microscope (TEM) and high resolution transmission electron
microscope (HRTEM), respectively. Furthermore, the TE properties characterization of these dense
nanomaterials compacted from monodisperse CuFeSe2 NCs by hot press at 623 K were preliminarily
studied after ligand removal by means of hydrazine and hexane solution. The TE performances of
the sintered CuFeSe2 pellets were characterized in the temperature range from room temperature
to 653 K. Finally, the dimensionless TE figure of merit (ZT) of this Earth-abundant and intrinsic
p-type CuFeSe2 NCs is significantly increased to 0.22 at 653 K in this work, which is demonstrated
to show a promising TE materialand makes it a possible p-type candidate for medium-temperature
TE applications.
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1. Introduction

During the past few decades, significant increases in the efficiency of thermoelectric (TE)
materials have attracted widespread research interest in the development of potential applications
for waste heat-to-electricity conversion, cooling and thermal sensing [1–5]. An efficient TE material
must exhibit a high TE figure of merit, ZT, at the temperature of operation, T. The dimensionless
TE figure of merit is defined as: ZT = σS2T/κe + κL, where σ, S, T, κe and κL are the electrical
conductivity, the Seebeck coefficient, the absolute temperature and the electronic and lattice thermal
conductivity, respectively [6,7]. There is no known limitation to ZT and, thus, except for the Carnot
limit, to the maximum energy conversion efficiency of TE devices. Therefore, TE materials struggle to
simultaneously display high electrical conductivities, low thermal conductivities and large Seebeck
coefficients, since these three parameters are tightly interrelated.
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Recent progress in the field is related to one efficient way to increase ZT by the control
of the material’s structure from the mesoscale to the nanoscale in order to scatter phonons in
a wide range of wavelengths, resulting in a low thermal conductivity without compromising the
electronic properties. The nanostructuration had shown outstanding results or embedding nanoscale
precipitates [8], and at the same time, enhancements in their power factors have also been achieved [6],
which include introducing a resonance level in the valence band (for example, in Tl-PbTe [9]) or
synergistic nanostructuring [10]. Solution processed nanoparticles have emerged as an important
opportunity to control the composition and morphology of the nanostructured TE materials at the
nano- and meso-scale, and the rational engineering of multicomponent and doped nanomaterials
and nanocomposites is possible due to the great control and versatility that the solution processed
nanoparticles provide to the construction of highly efficient TE materials [11]. Nevertheless, this is one
of the major challenges that has to be solved for colloidal nanomaterials. It needs to be considered
how to choose the proper inorganic salts or solvents with the effective process for the ligands’
displacement or organic removal, and it is critical to optimize the transport properties for the final
bulk nanostructured material.

However, taking into account the materials’ side, the TE figure of merit at the relevant temperature
range needs to be increased using materials that do not incorporate highly toxic or scarce elements such
as Pb and Te. In this contribution, copper-based chalcogenide multinary semiconductors, containing
abundant, low-cost and environmentally-friendly elements have recently emerged as some of the best
performing p-type TE materials [12], such as Cu2CdSnSe4 [13,14], Cu2ZnGeSe4 [15], Cu3SbSe4 [16–18],
Cu2SnSe3 [19–21], etc. One potentially attractive, yet not well-studied, copper-based material is
CuFeSe2, which represents a well-known class of I-III-VI2 group ternary chalcogenides. Among the
I-III-VI2 group, such as CuInS2 [22–24], CuInSe2 [24–26], CuInTe2 [27] and CuFeS2 [24,28–30], materials
have attracted extensive attention due to their high absorption coefficient, high conversion efficiency,
low toxicity and other physical properties and unique chemical properties and have been explored for
the fabrication of photovoltaic solar cells in very recent years. However, among these, less attention
been paid to the CuFeSe2 material, as eskebornite with a narrow band gap of 0.16 eV belongs to the

tetragonal structure type [31] and the crystal structure of the CuFeSe2 has the space group P
−
42c with

cell parameters a = 5.521 Å and c = 11.04 Å [32].
There are only several reports on the solid-state strategy or surface modified for the synthesis

of bulk structures of CuFeSe2 materials and the study of the TE properties of compacted dense
materials [33] or nanostructured bulk CuFeSe2 thin films [34]. The solid-state strategy requires either
complex and very high temperature or a long reaction time, and thin films have poorer conductivity
due to much lower density. However, up to now, there have been only a few reports on a solution-based
synthesis of nanostructured CuFeSe2 [35–37]. For example, Hsu and his coworkers synthesized cuboid
CuFeSe2 nanocrystals (NCs) in the presence of solvent octadecylamine without applications [36].
Very recently, Yang and his coworkers reported synthesis of quasi-cubic-shaped CuFeSe2 NCs with the
magnetic and photoelectric properties by using the reaction of metallic acetylacetonates with diphenyl
diselenide (Ph2Se2) in oleylamine (OLA) with addition of oleic acid (OA) [37]. It is noteworthy that the
precursor of Ph2Se2 is very expensive and toxic, so limiting its scale up, which makes it impossible for
TE or other applications for which samples are needed on the order of grams. It is, therefore, not only
essential to find a facile way for the large-scale synthesis of high-quality monodispersed and uniform
CuFeSe2 NCs from low cost chemicals, but also crucial to produce nanostructured materials with
a proper ZT value. Herein, we present a solution-based scalable synthesis approach to produce several
grams of ~6 nm monodisperse CuFeSe2 NCs with a uniform shape and narrow size distributions for the
production of efficient and environmentally-friendly TE nanomaterials. Furthermore, the composition,
the state of valence and the morphology of the CuFeSe2 NCs were examined by corresponding test
methods. Finally, after organic ligands’ removal, we demonstrate their bottom-up processing into bulk
nanostructured materials with high relative density, and the dimensionless figure-of-merit ZTmax for
this pristine CuFeSe2 reaches a peak value of 0.22 at 653 K in this work.
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2. Materials and Methods

2.1. Chemicals

Copper (II) chloride dihydrate (CuCl2·2H2O, 99.99%), ferric chloride (FeCl3, AR), selenium
powder (Se, 99.99%), dodecanethiol (DDT, technical grade 98%), oleylamine (OLA, technical grade
70%) and oleic acid (OA, technical grade 99%) were ordered from Aladdin Reagent Co., Ltd. (Shanghai,
China). Anhydrous ethanol (CH3CH2OH, 99%), chloroform (CHCl3, AR), hexane (C6H14, 97%) and
hydrazine hydrate (N2H4·H2O, 85%, wt %) were purchased from Sinopharm Group Chemical Reagent
Ltd. (Suzhou, China). All chemicals were used without further purification. All the syntheses were
carried out using standard airless techniques: a vacuum/dry argon gas Schlenk line was used for
the synthesis.

2.2. Synthesis of Selenium Precursor Solution

Selenium powder (1.5792 g, 20 mmol) was dissolved in 20 mL OLA and 20 mL DDT at room
temperature, cycled between vacuum and argon to remove the oxygen in the flask, and then stirred
under argon atmosphere until the Se powder was completely dissolved.

2.3. Synthesis of CuFeSe2 Nanocrystals

In a typical synthesis, 10 mmol of CuCl2·2H2O, 10 mmol of FeCl3, 90 mL of DDT and 60 mL
of OA were mixed in a 500-mL three-neck flask under magnetic stirring at room temperature with
a big heating mantle. The solution was kept at 130 ◦C under vacuum for 30 min and then heated
to 180 ◦C with argon. Forty milliliters of selenium precursor solution were quickly injected into the
reaction under magnetic stirring, and the color of the solution changed immediately from brown to
dark, indicating that the nucleation and subsequent growth of CuFeSe2 NCs occurred. After injection,
the temperature of the reaction mixture dropped to ~160 ◦C, and it was allowed to recover to the
pre-injection temperature. The overall reaction time after recovering to 180 ◦C was 30 min, and then,
the sample was rapidly cooled to room temperature through a water bath. The resultant dark product
was thoroughly washed at 6000 rpm for 5 min by multiple precipitation/redispersion steps using
chloroform as the solvent and ethanol as a non-solvent. The product was then dried under vacuum
and collected for characterization.

2.4. Structure and Characterization

The crystal phase was characterized by the AXS D8 ADVANCE X-ray diffractometer (XRD)
(Karlsruhe, Germany). X-ray photoelectron spectroscopy (XPS) was used for constant analysis on a VG
ESCA θ probe spectrometer (East Grinstead, UK). The size and initial morphology of the product were
measured using a ZEISS LIBRA 120 Transmission Electron Microscope (TEM) (Oberkochen, Germany),
operating at 120 KV. High resolution TEM (HRTEM) micrographs were obtained using a Tecnai
F20 field-emission gun microscope (Hillsboro, OR, USA) with a 0.19 nm point-to-point resolution at
200 kV with an embedded Gatan QUANTUM image filter for electron energy loss spectroscopy (EELS)
analyses. The Zeiss Auriga Scanning Electron Microscope (SEM) (Oberkochen, Germany) was used to
observe the particle size and morphology at 5.0 kV, and the nanomaterials were analyzed by an Oxford
energy dispersive X-ray spectrometer (EDX) attached to Zeiss Auriga (Oberkochen, Germany) SEM
at 20.0 kV. The organic molecules on the product surface were measured by Alpha Bruker Fourier
Transform Infrared Spectroscopy (FTIR) (Ettlingen, Germany). Thermal gravimetric analyses (TGA)
were done using Perkin-Elmer TGA 4000 equipment (Waltham, MA, USA). The dried CuFeSe2NCs
and pellet pieces were heated up to 600 ◦C under a nitrogen flow and a heating ramp of 5 ◦C/min.

2.5. Ligand Removal and Bulk Nanomaterial Fabrication

The 3.0 g synthesized CuFeSe2 NCs were added to a mixed solution of hydrazine hydrate
and hexane with a 1:2 volume ratio to remove the organic long-chain molecules from solvents
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by the principle of ligand replacement, then stirred continuously for 4–6 h until the NCs easily
entered into the hydrazine hydrate phase; next, the hexane phase, which had adsorbed the organic
residue, was discarded. New hexane was added into the above hydrazine hydrate phase, and the
NCs were washed again. This operation was carried out three times until the supernatant hexane
organic phase was clearly transparent, indicating that the organic residue on the NCs’ surface had
been completely removed. The clean NCs without organic residue were obtained after centrifuging
the excess hydrazine hydrate phase by chloroform after a few minutes of mixing using vortexing
and vacuum-dried for hot-pressing. The powders were loaded into a graphite die and compacted
into pellets (Ø10 mm × 1.5 mm) in an Ar atmosphere using a custom-made hot press for 30 min at
a temperature of 623 K under a pressure of 60 MPa. In this system, the heat is provided by an induction
coil operated in the RF range applied directly to a graphite die acting as a susceptor, at a temperature
20 ◦C/s. The density of the pressed pellets was always higher than 90% of the theoretical value.

2.6. Thermoelectric Property Measurements

The Seebeck coefficient was measured by using a static direct current (DC) method. Electrical
resistivity data were obtained by a standard four-probe method. Both the Seebeck coefficient and the
electrical resistivity were measured simultaneously in an LSR-3 LINSEIS system (LINSEIS GmbH,
Vielitzerstr, Selb, Germany) in the range between room temperature and 653 K, under helium
atmosphere. An XFA 600 Xenon Flash Apparatus (LINSEIS GmbH, Vielitzerstr, Selb, Germany) was used
to determine the thermal diffusivities of the pellets. The thermal conductivity was calculated by κ = λCpρ,
where λ is the thermal diffusivity, Cp is the heat capacity and ρ is the mass density of the specimen.
The constant pressure heat capacity (Cp) was estimated from empirical formulas by the Dulong-Petit
limit (3R law), and the density (ρ) value used here was calculated using Archimedes’ method.

3. Results and Discussion

From the XRD pattern of the obtained samples (Figure 1a), all observed diffraction peaks are
consistent with the standard JCPDS Card No. 44-1305 [38], without any impurity peaks. Several
major peaks are shown at 15.99◦, 27.9◦, 36.31◦, 46.43◦ and 55.08◦, respectively corresponding to the
(100), (112), (104), (204) and (312) crystal plane of CuFeSe2 NCs with a tetragonal structure. Figure 1b
displays the typical unit cell structure of the product.
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Figure 1. (a) X-ray diffraction (XRD) pattern for the obtained samples; the red vertical is the standard
literature data; (b) unit cell of tetragonal CuFeSe2.

Electron microscopy was employed to characterize the morphology of the product. Figure 2a
shows a transmission electron microscope (TEM) image of the as-prepared CuFeSe2 NCs, highlighting
the uniformity and quasi-spherical morphology of the product. The particle size distribution is shown
in the inset of Figure 2a, and the average diameter of NCs was 6 ± 2 nm. The product can be well
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dispersed in non-polar solvents before ligand exchange, such as toluene or chloroform, forming a stable,
dark dispersion (inset of Figure 2a). The seven diffraction rings of the obtained samples corresponding
to the (100), (112), (104), (204), (312), (400) and (316) planes can be clearly seen from the selected
area electron diffraction pattern (Figure 2b). Further structural characterization was done by HRTEM
(Figure 2c). The lattice spacing was measured to be 1.95 Å, corresponding to the expected lattice spacing
for the (204) plane of CuFeSe2 (Figure 2c). Figure 2d–g shows the results from EELS analysis performed
in the sample. The elemental mapping in a region containing the particles is shown and reveals that all
elements expected (Cu, Fe and Se) are present in the sample and are equally distributed throughout
all the particles. Furthermore, this synthesis protocol was optimized to obtain more than 3.0 g of
NCs per batch with a 95% material yield (Figure 3a), which was the amount required for a complete
characterization of the material at the laboratory scale. The SEM-EDX shows the stoichiometric ratio of
CuFe0.97Se2.07 (Figure 3b), which is very close to the stoichiometric ratio of 1:1:2.
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Figure 2. (a) general overview transmission electron microscope (TEM) image of the obtained samples,
the inset shows the histogram for the measured particle size distribution (6 ± 2 nm) and a photograph
of a vial of chloroform solution containing stably-suspended samples; (b) selective-area electron
diffraction (SAED); (c) a general overview high resolution transmission electron microscope (HRTEM)
image of the obtained samples; (d) annular dark field scanning TEM (ADF-STEM) image of the
obtained samples and (e–g) areal density of each of the elements extracted from the electron energy
loss spectroscopy (EELS) spectrum image.
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Figure 3. (a) The scanning electron microscope (SEM) image shows the surface-clean samples after
ligand removal, and the inset in (a) shows the typical yield of the samples in this work by one large-scale
synthesis (~3 g); (b) energy dispersive X-ray spectrometer (EDX) spectrum of the obtained samples
and quantitative analysis of the as-synthesized samples with a formula of CuFe0.97Se2.07 in accordance
to the atomic number ratio.
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To further confirm the valence states of the individual elements in the obtained samples,
the surface-clean products are characterized by XPS. The XPS spectra in the range of 0~1100 eV
are shown in Figure 4a. The X-ray photoelectron peaks of Cu (2p), Fe (2p), Se (3d) C 1s (284.6 eV) and O
1s (531.5 eV) are displayed. Two characteristic Cu 2p peaks are located at 932.1 eV (2p3/2) and 951.9 eV
(2p1/2) with a binding energy splitting of 19.8 eV, indicating the presence of Cu1+ (Figure 4b) [39].
The 2+ valence 2p3/2 and 2p1/2 peaks are located at 933.7 eV and 953.6 eV, respectively. There is
a weak peak (at 953.6 eV) much closer to the Cu2+2p1/2 reported [40], which reveals that the valences
of Cu are mainly +1 and probably contain a very small contribution of +2. The binding energies are at
711 eV (2p3/2) and 724.6 eV (2p1/2) with the peak energy difference of 13.6 eV, which is in agreement
with the reported Fe3+ spectrum (Figure 4c) [41,42]. Normally, the 2p peaks have associated satellite
peaks that may partially overlap the main peaks. According to what has been reported, the satellite
peak of Fe 2p3/2 for the oxidation states is located ~8 eV higher than the main Fe 2p3/2 peak [42,43].
Thus, the main satellite peak obtained at ~719 eV can be seen clearly in this work. In addition, there are
some other weak satellite peaks for Fe 2p1/2 at 729 eV and 733 eV. From Figure 4d, the Se 3d5/2
and 3d5/2 peaks are confirmed at 54.3 eV and 55.1 eV, which is consistent with the values reported
previously and can be assigned to Se2− [44–46].
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Figure 4. The X-ray photoelectron spectroscopy (XPS) spectra of the obtained samples: (a) survey
spectrum of surface-cleanCuFeSe2; (b) Cu 2p; (c) Fe 2p; (d) Se 3d.

The organic groups on the surface of the product hinder the transfer of electrons among the
nanomaterials and reduce the conductivity of the product. To promote the charge transport of samples,
the organic groups in the surface of CuFeSe2 NCs should be thoroughly removed. Among the potential
candidates to remove organic ligands from the CuFeSe2 NCs surface, we employed hydrazine, although
it is toxic and dangerous to manipulate, because it is very efficient. Figure 5a shows the FTIR spectra
of the products before and after removal of organic groups. From the figure, we can see that the
original sample spectra show a strong absorption peak in the high frequency region (2850–3000 cm−1)
and various absorption peaks in the low-frequency region (700–1650 cm−1). However, these peaks
disappeared after the sample had undergone washing treatment by a mixed solution of hydrazine
hydrate and hexane, indicating that the organic groups on the NCs’ surface were removed completely.
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In addition, using other non-toxic inorganic salts can be considered for the ligand removal in order
to implement this material in TE devices in future work, such as sodium salts [47] and ammonium
salts [18].
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Figure 5. (a) Fourier transform infrared spectroscopy (FTIR) spectra of dried CuFeSe2 before
(CuFeSe2-organic ligands; CuFeSe2-OL) and after (CuFeSe2-ligands removal; CuFeSe2-LR) ligands’
removal; FTIR spectra of pure solvent dodecanethiol (DDT), oleic acid (OA) and oleylamine (OLA)
are shown as well, respectively; (b) thermal gravimetric analyses (TGA) of the CuFeSe2, black and red
curves refer to the results of the samples before (original NCs) and after pellet fabrication, respectively.

CuFeSe2NCs’ growth was controlled by capping agents. After NCs’ purification by multiple
precipitation and redispersion steps, a significant amount of ligands remained attached to the surface.
According to TGA (Figure 5b), it allowed us to quantify the amount of the surface ligands at ~7% of
the total mass. Meanwhile, the mass loss of the surface clean sample after pellet fabrication did not
show an obvious change when the temperature was up to 450 ◦C, indicating that the pellet has good
stability due to the organic ligands’ removal and the hot press process treatment. Some selenium of the
pellet probably was lost at the high temperature. As can be seen from Figure 6a, SEM characterization
showed large grains after hot pressing at high temperature and high pressure, up to several tens or
hundreds of nanometers. The density of the pellet is 5.02 g/cm3 using Archimedes’ method, which is
approximately 91.8% of the relative theory value. The XRD pattern (Figure 6b) after hot pressing
shows that the peak width at half the height of the diffraction peaks became sharp, and the intensity
increased significantly, without impurity peaks appearing, indicating that the phase of the sample
remained unchanged after hot pressing. The grain size of the bulk nanomaterials further increases to
~120 nm, which was calculated by Scherrer’s equation from the fitting of the XRD pattern.
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Figure 6. (a) SEM image showing the obtained CuFeSe2 NCs after the hot-pressing temperature of
623 K; the inset shows a photograph of the hot-pressed pellet; (b) XRD pattern of the bulk CuFeSe2

nanomaterial pellet.
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The TE transmission properties of the hot-pressed pellet have been measured in the temperature
range from room temperature to 653 K, and the results are shown in Figure 7. The electrical conductivity
(σ) decreases as the temperature increases (Figure 7a), due to lattice defects in the product after hot
pressing or carrier scattering from the particle boundary at high temperature caused by the material
metalloid [19,21]. The Seebeck coefficient (S), shown in Figure 7b, is positive over the entire temperature
range, indicating the behavior of the p-type semiconductor material, and the majority carriers are
holes. It increases with rising temperature, allowing the product to have a higher power factor at high
temperatures. The electrical conductivity (σ) and the Seebeck coefficient (S) were used to calculate
the power factor (PF) by the formula PF = σ × S2, which in all cases monotonically increases with
temperature, and it can be found that the maximum power factor (PF) reached ~0.37 mW·m−1·K−2

at 653 K.Nanomaterials 2018, 8, 8  9 of 13 
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Figure 7. Temperature dependence of (a) electrical conductivity (σ); (b) Seebeck coefficient (S); (c) power
factor (PF); (d) thermal diffusivity (λ); (e) thermal conductivity (κtotal) and lattice thermal conductivity
(κL); the inset shows electronic contribution thermal conductivity (κe); (f) the figure of merit (ZT) of
CuFeSe2.

The thermal diffusivity λ, total thermal conductivity (κtotal), lattice thermal conductivity (κL) and
electron contribution thermal conductivity (κe) of the hot-pressed pellet are shown in Figure 7d–e,
respectively. From Figure 7d, it can be seen that thermal diffusivity (λ) increased slightly before 495 K
and then decreased with the temperature increasing. Therefore, similarly, the total thermal conductivity
(κtotal = λ × Cp × ρ) of our pristine CuFeSe2 nanomaterials increased first and then decreased with
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increasing temperature, with a maximum value of 1.16 W·m−1·K−1 at 495 K, as well, which is much
lower than that reported of bulk CuFeS2(1−x)Se2x samples [48], due to efficient multi-level phonon
scattering at point defects, nanomaterials’ grain boundaries and the highly disordered lattice in
our bulk nanocrystalline samples as compared to other CuFeX2 (X = S, Se)-based bulk materials by
solid-state synthesis. The lattice thermal conductivity (κL = κtotal − LσT; here, L represents the Lorentz
number of 2.0 × 10−8 W·Ω·K−2) of this pristine CuFeSe2 can be calculated with a maximum value
of 0.97 W·m−1·K−1 at 473 K. As illuminated in the inset of Figure 7e, the maximum contribution of
electronic thermal conductivity (κe = κtotal − κL) is around 0.22 W·m−1·K−1 at 653 K in the measured
temperature range.

Figure 7f shows ZT as a function of T, in which ZT reaches up to 0.22 at 653 K for this
pristine CuFeSe2 nanomaterial, which is among the largest values obtained for a tellurium-free
material comparable with doped CuFeX2 (X = S, Se) materials in this similar temperature range
(Figure 8) [33,48–53], with the additional advantage of low-cost associated with solution processing
strategies. Most importantly, the mid-temperature ZT has been significantly increased caused by
the higher power factor (PF) and simultaneously reduced thermal conductivity (κtotal) over a wide
temperature range. Furthermore, the ZT value can be improved by doping proper elements such as
In/Ge/Sb/Sn/S or by controlling the composition, which will be beneficial for our further study of
the TE properties of CuFeSe2 NCs. The nanocrystalline CuFeSe2 materials presented here showed
good stability in this work, and the sample was measured three consecutive times during heating up
to around 653 K under the same conditions; minor differences were observed (Figure 9).
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Figure 8. (a,b) The comparison of our obtained ZT value with the reported values by the solid-state
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Figure 9. (a–c) Temperature dependence of the electrical conductivity (σ), Seebeck coefficient (S) and
power factor (PF) of nanocrystalline CuFeSe2 measured three consecutive times during heating up to
653 K.



Nanomaterials 2018, 8, 8 10 of 12

4. Conclusions

In summary, we have developed a novel solution-based strategy for successful large-scale
synthesis of uniform and monodisperse CuFeSe2 NCs, with high production yields. Furthermore,
after ligand removal, the as-prepared NCs were sintered into a high density pellet at the temperature
of 623 K for TE application measurements in this work. The largest ZT reached up to 0.22 at 653 K for
this pristine nanomaterial, which is among the best ZT value obtained with a Te-free material in the
I-III-VI2 group in a similar temperature range, with the additional advantage of abundant components,
being environmentally-friendly and low-cost, associated with the solution processing technologies.
Taking advantage of this process ability and on the practicality side for the device, this nanomaterial
makes TE energy conversion applications possible.

Acknowledgments: The authors are thankful for the support rendered by the National Science Foundation
of China (NSFC) (Grants 21641007, 21471001), the Natural Science Foundation of Anhui Province (Grant No.
1508085MB22) and the Major Project of the Education Department of Anhui Province (KJ2016SD63). We also
thank the Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials.

Author Contributions: Bing-Qian Zhang and Yu Liu contributed equally to this article. In this work, Ji-Ming Song
conceived and guided the project, and supervised this work. Bing-Qian Zhang and Yu Liu designed the experiments,
produced the nanomaterials, performed the thermoelectric characterization and wrote the manuscript. Yu Liu and
Yong Zuo performed FTIR and TGA measurements and analyzed the results. The manuscript was corrected and
improved by all authors.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xie, W.J.; Weidenkaff, A.; Tang, X.F.; Zhang, Q.J.; Poon, J.; Tritt, T.M. Recent advances in nanostructured
thermoelectric half-heuslercompounds. Nanomaterials 2012, 2, 379–412. [CrossRef] [PubMed]

2. Sootsman, J.R.; Chung, D.Y.; Kanatzidis, M.G. New and old concepts in thermoelectric materials.
Angew. Chem. Int. Ed. 2009, 48, 8616–8639. [CrossRef] [PubMed]

3. Chieruzzi, M.; Pagano, S.; Moretti, S.; Pinna, R.; Milia, E.; Torre, L.; Eramo, S. Nanomaterials for tissue
engineering in dentistry. Nanomaterials 2016, 6, 134. [CrossRef] [PubMed]

4. Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [CrossRef] [PubMed]
5. Ortega, S.; Ibáñez, M.; Liu, Y.; Zhang, Y.; Kovalenko, M.V.; Cadavid, D.; Cabot, A. Bottom-up engineering of

thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks. Chem. Soc.
Rev. 2017, 46, 3510–3528. [CrossRef] [PubMed]

6. Biswas, K.; He, J.; Zhang, Q.; Wang, G.; Uher, C.; Dravid, V.P.; Kanatzidis, M.G. Strained endotaxial
nanostructures with high thermoelectric figure of merit. Nat. Chem. 2011, 3, 160–166. [CrossRef] [PubMed]

7. Ibáñez, M.; Luo, Z.; Genç, A.; Piveteau, L.; Ortega, S.; Cadavid, D.; Dobrozhan, O.; Liu, Y.; Nachtegaal, M.;
Zebarjadi, M. High-performance thermoelectric nanocomposites from nanocrystal building blocks.
Nat. Commun. 2016, 7, 10766. [CrossRef] [PubMed]

8. Mehta, R.J.; Zhang, Y.; Karthik, C.; Singh, B.; Siegel, R.W.; Borca-Tasciuc, T.; Ramanath, G. A new class of
doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nat. Mater. 2012, 11,
233–240. [CrossRef] [PubMed]

9. Heremans, J.P.; Jovovic, V.; Toberer, E.S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.;
Snyder, G.J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states.
Science 2008, 321, 554–557. [CrossRef] [PubMed]

10. Sootsman, J.R.; Kong, H.; Uher, C.; D’Angelo, J.J.; Wu, C.I.; Hogan, T.P.; Caillat, T.; Kanatzidis, M.G.
Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic
nanostructuring. Angew. Chem. Int. Ed. 2008, 47, 8618–8622. [CrossRef] [PubMed]

11. Ibáñez, M.; Zamani, R.; Gorsse, S.; Fan, J.; Ortega, S.; Cadavid, D.; Morante, J.R.; Arbiol, J.; Cabot, A.
Core-shell nanoparticles as building blocks for the bottom-up production of functional nanocomposites:
PbTe-PbSthermoelectric properties. ACS Nano 2013, 7, 2573–2586. [CrossRef] [PubMed]

12. Coughlan, C.; Ibáñez, M.; Dobrozhan, O.; Singh, A.; Cabot, A.; Ryan, K.M. Compound copper chalcogenide
nanocrystals. Chem. Rev. 2017, 117, 5865–6109. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/nano2040379
http://www.ncbi.nlm.nih.gov/pubmed/28348315
http://dx.doi.org/10.1002/anie.200900598
http://www.ncbi.nlm.nih.gov/pubmed/19866458
http://dx.doi.org/10.3390/nano6070134
http://www.ncbi.nlm.nih.gov/pubmed/28335262
http://dx.doi.org/10.1038/nmat2090
http://www.ncbi.nlm.nih.gov/pubmed/18219332
http://dx.doi.org/10.1039/C6CS00567E
http://www.ncbi.nlm.nih.gov/pubmed/28470243
http://dx.doi.org/10.1038/nchem.955
http://www.ncbi.nlm.nih.gov/pubmed/21258390
http://dx.doi.org/10.1038/ncomms10766
http://www.ncbi.nlm.nih.gov/pubmed/26948987
http://dx.doi.org/10.1038/nmat3213
http://www.ncbi.nlm.nih.gov/pubmed/22231596
http://dx.doi.org/10.1126/science.1159725
http://www.ncbi.nlm.nih.gov/pubmed/18653890
http://dx.doi.org/10.1002/anie.200803934
http://www.ncbi.nlm.nih.gov/pubmed/18846585
http://dx.doi.org/10.1021/nn305971v
http://www.ncbi.nlm.nih.gov/pubmed/23448184
http://dx.doi.org/10.1021/acs.chemrev.6b00376
http://www.ncbi.nlm.nih.gov/pubmed/28394585


Nanomaterials 2018, 8, 8 11 of 12

13. Fan, F.-J.; Yu, B.; Wang, Y.-X.; Zhu, Y.-L.; Liu, X.-J.; Yu, S.-H.; Ren, Z. Colloidal Synthesis of Cu2CdSnSe4

Nanocrystals and Hot-Pressing to Enhance the Thermoelectric Figure-of-Merit. J. Am. Chem. Soc. 2011, 133,
15910–15913. [CrossRef] [PubMed]

14. Liu, M.-L.; Chen, I.-W.; Huang, F.-Q.; Chen, L.-D. Improved thermoelectric properties of Cu-doped
quaternary chalcogenides of Cu2CdSnSe4. Adv. Mater. 2009, 21, 3808–3812. [CrossRef]

15. Ibáñez, M.; Zamani, R.; LaLonde, A.; Cadavid, D.; Li, W.; Shavel, A.; Arbiol, J.; Morante, J.R.; Gorsse, S.;
Snyder, G.J. Cu2ZnGeSe4 nanocrystals: Synthesis and thermoelectric properties. J. Am. Chem. Soc. 2012, 134,
4060–4063. [CrossRef] [PubMed]

16. Yang, C.; Huang, F.; Wu, L.; Xu, K. New stannite-like p-type thermoelectric material Cu3SbSe4. J. Phys. D
Appl. Phys. 2011, 44, 295404. [CrossRef]

17. Wei, T.-R.; Wang, H.; Gibbs, Z.M.; Wu, C.-F.; Snyder, G.J.; Li, J.-F. Thermoelectric properties of Sn-doped
p-type Cu3SbSe4: A compound with large effective mass and small band gap. J. Mater. Chem. A 2014, 2,
13527–13533. [CrossRef]

18. Liu, Y.; García, G.; Ortega, S.; Cadavid, D.; Palacios, P.; Lu, J.; Ibáñez, M.; Xi, L.; De Roo, J.; López, A.M.; et al.
Solution-based synthesis and processing of Sn- and Bi-doped Cu3SbSe4 nanocrystals, nanomaterials and
ring-shaped thermoelectric generators. J. Mater. Chem. A 2017, 5, 2592–2602. [CrossRef]

19. Song, J.-M.; Liu, Y.; Niu, H.-L.; Mao, C.-J.; Cheng, L.-J.; Zhang, S.-Y.; Shen, Y.-H. Hot-injection synthesis and
characterization of monodispersed ternary Cu2SnSe3 nanocrystals for thermoelectric applications. J. Alloys
Compd. 2013, 581, 646–652. [CrossRef]

20. Ibáñez, M.; Cadavid, D.; Anselmi-Tamburini, U.; Zamani, R.; Gorsse, S.; Li, W.; López, A.M.; Morante, J.R.;
Arbiol, J.; Cabot, A. Colloidal synthesis and thermoelectric properties of Cu2SnSe3 nanocrystals. J. Mater.
Chem. A 2013, 1, 1421–1426. [CrossRef]

21. Shi, X.; Xi, L.; Fan, J.; Zhang, W.; Chen, L. Cu-Se bond network and thermoelectric compounds with complex
diamondlike structure. Chem. Mater. 2010, 22, 6029–6031. [CrossRef]

22. Tapley, A.; Vaccarello, D.; Hedges, J.; Jia, F.; Love, D.A.; Ding, Z. Preparation and characterization of CuInS2

nanocrystals for photovoltaic materials. Phys. Chem. Chem. Phys. 2013, 15, 1431–1436. [CrossRef] [PubMed]
23. Gromova, M.; Lefrançois, A.; Vaure, L.; Agnese, F.; Aldakov, D.; Maurice, A.; Djurado, D.; Lebrun, C.;

de Geyer, A.; Schulli, T.U.; et al. Growth Mechanism and Surface State of CuInS2 Nanocrystals Synthesized
with Dodecanethiol. J. Am. Chem. Soc. 2017, 139, 15748–15759. [CrossRef] [PubMed]

24. Sandroni, M.; Wegner, K.D.; Aldakov, D.; Reiss, P. Prospects of Chalcopyrite-Type Nanocrystals for Energy
Applications. ACS Energy Lett. 2017, 2, 1076–1088. [CrossRef]

25. Reifsnyder, D.C.; Ye, X.; Gordon, T.R.; Song, C.; Murray, C.B. Three-dimensional self-assembly of chalcopyrite
copper indium diselenide nanocrystals into oriented films. ACS Nano 2013, 7, 4307–4315. [CrossRef]
[PubMed]

26. Xu, L.-C.; Wang, R.-Z.; Liu, L.-M.; Chen, Y.-P.; Wei, X.-L.; Yan, H.; Lau, W.-M. Wurtzite-type CuInSe2 for
high-performance solar cell absorber: Ab initio exploration of the new phase structure. J. Mater. Chem. 2012,
22, 21662–21666. [CrossRef]

27. Kim, S.; Kang, M.; Kim, S.; Heo, J.-H.; Noh, J.H.; Im, S.H.; Seok, S.I.; Kim, S.-W. Fabrication of CuInTe2

and CuInTe2−xSex ternary gradient quantum dots and their application to solar cells. ACS Nano 2013, 7,
4756–4763. [CrossRef] [PubMed]

28. Wu, Y.; Zhou, B.; Yang, C.; Liao, S.; Zhang, W.-H.; Li, C. CuFeS2 colloidal nanocrystals as an efficient
electrocatalyst for dye sensitized solar cells. Chem. Commun. 2016, 52, 11488–11491. [CrossRef] [PubMed]

29. Gabka, G.; Bujak, P.; Ostrowski, A.; Tomaszewski, W.; Lisowski, W.; Sobczak, J.W.; Pron, A. Cu–Fe–S
Nanocrystals Exhibiting Tunable Localized Surface Plasmon Resonance in the Visible to NIR Spectral Ranges.
Inorg. Chem. 2016, 55, 6660–6669. [CrossRef] [PubMed]
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