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Visual Abstract
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Epilepsy affects 3.4 million people in the United States, and, despite the availability of numerous antiepileptic
drugs, 36% of patients have uncontrollable seizures, which severely impact quality of life. High-frequency os-
cillations (HFOs) are a potential biomarker of epileptogenic tissue that could be useful in surgical planning. As
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a result, research into the efficacy of HFOs as a clinical tool has increased over the last 2 decades. However,
detection and identification of these transient rhythms in intracranial electroencephalographic recordings re-
main time-consuming and challenging. Although automated detection algorithms have been developed, their
results are widely inconsistent, reducing reliability. Thus, manual marking of HFOs remains the gold standard,
and manual review of automated results is required. However, manual marking and review are time consuming
and can still produce variable results because of their subjective nature and the limitations in functionality of
existing open-source software. Our goal was to develop a new software with broad application that improves
on existing open-source HFO detection applications in usability, speed, and accuracy. Here, we present
HFOApp: a free, open-source, easy-to-use MATLAB-based graphical user interface for HFO marking. This
toolbox offers a high degree of intuitive and ergonomic usability and integrates interactive automation-assist
options with manual marking, significantly reducing the time needed for review and manual marking of record-
ings, while increasing inter-rater reliability. The toolbox also features simultaneous multichannel detection and
marking. HFOApp was designed as an easy-to-use toolbox for clinicians and researchers to quickly and accu-
rately mark, quantify, and characterize HFOs within electrophysiological datasets.
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Introduction
Epilepsy is one of the most common neurologic disor-

ders, affecting 3.4 million individuals in the United States
(Zack and Kobau, 2017). Despite the availability of numer-
ous antiepileptic drugs, ;36% of epilepsy patients live
with uncontrolled seizures, which is debilitating and
causes increased healthcare resource use. With average
hospital stays of 3.6 d, the aggregate hospital costs for
epilepsy totaled ;$2.5 billion in 2014 [Healthcare Cost
and Utilization Project, 2014 National Data (https://www.
hcup-us.ahrq.gov/)].

For a subset of patients with uncontrolled seizures,
surgical removal of epileptic brain tissue has been
demonstrated to be an effective treatment. This sur-
gery typically requires extensive presurgical evaluation
to define the resection target. High-frequency oscilla-
tions (HFOs) hold promise as a new biomarker for epi-
leptogenic tissue (Engel et al., 2009; Zijlmans et al.,
2012; Roehri et al., 2018), particularly for patients
undergoing presurgical evaluations. Identification and local-
ization of HFOs during presurgical evaluations can help to de-
fine resection targets by pinpointing pathologic tissue, the
removal of which has been shown to improve surgical out-
comes, reducing future seizure activity (Worrell et al., 2004;
Jacobs et al., 2010; Blanco et al., 2011; Fujiwara et al., 2012;
Zijlmans et al., 2012; Höller et al., 2015; Gliske et al., 2016;
Frauscher et al., 2017, 2018; Velmurugan et al., 2019).
Automated detection of HFOs remains challenging, as it

produces inconsistent results across methods, though sev-
eral automatic detectors have been developed (Crépon et
al., 2010; Zelmann et al., 2010, 2012; Cimbalnik et al., 2018;
Donos et al., 2020; Lachner-Piza et al., 2020; Lai et al.,
2020; for review, see Remakanthakurup Sindhu et al., 2020).
One significant challenge that remains for automatic detec-
tors is distinguishing HFOs from artifactual spikes as well as
epileptiform EEG spikes, because their spectrograms over-
lap. Therefore, to accurately identify HFOs, it is important to
examine not only the bandpass-filtered data, but also the
raw unfiltered data. Thus, visual identification with manual
marking of HFOs is still widely accepted as the gold stand-
ard (Zelmann et al., 2010).
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Significance Statement

We introduce a MATLAB-based graphical user interface designed to facilitate visual marking of high-fre-
quency oscillations in electrophysiological data by prioritizing usability, speed, and accuracy. It allows
clinicians and researchers to quickly and easily visualize and mark multiple channels of raw and bandpass-
filtered data simultaneously, either in the same window or in separate windows, facilitating fast and accurate
discrimination between real high-frequency oscillations and spike artifacts. The implementation of both au-
tomatic detection and interactive automation-assist options significantly speeds up visual marking of high-
frequency oscillations. The simple data structure used by the toolbox also increases its ease of use. These
features make it a useful toolbox that is valuable in the field.
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To best visually identify HFOs, the raw data are band-
pass filtered into high-frequency bands, typically 80–
250Hz for ripples and 250–500Hz for fast ripples. Then,
the bandpass-filtered signal and raw data are reviewed
together. Automated detection of HFOs can assist in this
process, but manual review of automated results is still
necessary. Therefore, there is a need for a software tool-
box that can take user-inputted intracranial electroen-
cephalographic (iEEG) data, display the raw data of each
channel along with bandpass-filtered and spectrogram
data, allow for quick and easy manual marking of HFOs,
and output detailed parameters of each HFO event. While
many researchers create custom MATLAB scripts to as-
sist in specific research projects involving manual marking
of HFOs, there are very few universal, open-source HFO
detection applications (Navarrete et al., 2016). Here, we
developed HFOApp, a broadly usable, open-source HFO
detection toolbox that incorporates critical features to im-
prove on existing toolboxes to increase usability, improve
speed, and decrease variability between users, thus in-
creasing accuracy.

Materials and Methods
Summary of improvements over existing open-source
HFO applications
HFOApp allows simultaneous marking of multiple chan-

nels, in contrast to other HFO applications. In HFOApp,
the user can do this by simply clicking between channels:
a click on any channel in any open display window will
allow marking on that channel. In addition, within chan-
nels, HFOs can be marked on the raw data or on any fil-
tered data or spectrogram window. The user can choose
to simultaneously display and mark as many data chan-
nels and as many bandpass-filtered time series windows
as needed.

Flexible display of data
HFOApp allows visualization of raw, filtered and spec-

trogram data in separate, but synchronized, windows,
which allows the user flexibility in positioning different
data display types on their monitor during marking, ac-
cording to their needs. HFOApp also allows the display of
filtered data below the raw data in the same window.

Usability
We designed HFOApp with the following three main us-

ability principles in mind: using the software should be (1)
intuitive, (2) comprehensible, and (3) familiar. The software
should not require extensive instruction to navigate, be-
cause it uses controls based on software typically in use
in clinics and research laboratories. Typical users will be
acquainted with the controls without training, the controls
will be where users expect them to be, and they will oper-
ate in a sensible way. Specifically, the use of drop-down
menus, list boxes, and keyboard shortcuts are all de-
signed for ease of use. In addition, HFOApp automatically
saves results as you go, minimizing accidental loss of
data. Because of this, manual and automation-assisted
marking of events is intuitive and fast.

Interactive automation-assisted manual marking on raw
and filtered time series
HFOApp allows interactive automation-assisted manual

marking. During a typical manual marking session, a user
will navigate through the data in time windows of �1 s,
visually examining the data in each time window for
HFOs. If an HFO is found, the user then marks its start
and end manually and adds the event to the results file.
HFOApp improves on this process by offering the fol-
lowing optional automated assistance feature: as users
advance through data, they have the option of using
an automated detector to identify events within the cur-
rent time window, across all displayed channels, by
simply pressing “d” (for “detect”). When “d” is pressed,
the HFOApp will outline any potential HFOs detected in
that time window based on user-set parameters, includ-
ing baseline length, cycle count, amplitude above baseline,
and onset threshold. The user can then easily interact with
the outlined events: they press “a” (for “add”) if they agree
that all detected events in that time window should be
marked, and all events will be marked and added to the
Events List, including events found across multiple channels.
If the user disagrees with any event, right clicking on the
event will deselect it, removing it from the display of potential
events. This automation-assisted detection greatly speeds
identification, selection, and deselection of events, allowing
manual marking with ease. Using keyboard shortcuts for this
feature eases the user’s ergonomic burden: users can simply
press “f” (for “forward”) to move to the next 1 s window,
press “d” to view and assess potential events, make any
neededmodifications using the mouse, then press “a” to add
all marked events to the Events List. This series of button
pressing can be repeated through the marking procedure,
making it extremely fast and streamlined. In addition, the user
can simultaneously perform manual marking of events not
detected by the automated detector. Note that as manual
marking of events is performed, it is also assisted by optional,
user-defined automated threshold detection, increasing ac-
curacy and consistency across raters.

Interactive automation-assisted manual marking on spec-
trogram data
HFOApp also offers the option of automatic detection

within a narrow frequency band with a mouse click in the
synchronized spectrogram window. This automated fre-
quency-band detection function is quick and easy to use
during manual marking, and significantly enhances the
detection of events that occur over a narrow frequency
band. To use this function, the user clicks on an event in
the spectrogram display window, and an event-specific
bandpass-filtering function is executed, recalculating
user-set event parameters within a narrow bandwidth,
thus optimizing the signal-to-noise ratio for that event at
the selected (clicked) frequency. For example, a user
marking the bandpass-filtered signal might come across
a complex event that may be an HFO, but the automatic-
assist detector does not detect it due to EEG artifacts
across the broadband signal. In cases like this, the user
can make use of the automatic frequency-band detection
feature in the spectrogram window. In this synchronized
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window, frequency-specific components of the event
are easily visualized, with any frequency-specific peaks
shown in both the spectrogram itself and in the fre-
quency–amplitude graph in the window sidebar, which
displays information for a small time window around the
cursor location. The user can simply click on the peaks in
the spectrogram window (easily seen as bright color dif-
ferences), which will prompt HFOApp to automatically
execute a bandpass filter within a user-set range and re-
calculate automated HFO detection within that narrow
frequency range, encompassing only the cluster that
was clicked. If an HFO is detected, it will be automati-
cally outlined on all synchronized display windows,
including the spectrogram, the raw data, and any
bandpass-filter display windows; the user can add it to
the Events List by pressing “a”.

App designer
In keeping with the MathWorks recommendations for the

development of Apps within MATLAB, we used App
Designer instead of GUIDE. App Designer is the MATLAB
replacement for GUIDE [https://www.mathworks.com/
products/matlab/app-designer/comparing-guide-and-
app-designer.html (accessed on July 12, 2021)], and it
offers a vastly expanded set of features and functions,
making it more versatile, easier to code, and easier for
maintenance and customization. Notably, MathWorks
has announced that it will offer ongoing support for
and updates to App Designer, while also issuing notifi-
cation that GUIDE will be removed from future releases
of MATLAB. Therefore, GUIDE is, both in terms of fea-
tures and support, obsolete. As prior MATLAB-based
HFO toolboxes were based on GUIDE, the use of App
Designer for HFOApp is another advantage over those
applications.
This dynamic combination of ease of use, comprehen-

sibility of design, flexibility of implementation, optional au-
tomation assist for on-the-fly use at multiple levels of
manual marking, and an architecture built on an active,
supported platform makes HFOApp a versatile and
powerful HFOmarking tool, with significant improvements
over existing applications.

Overview of HFOApp
HFOApp offers automated and manual HFO detection

and marking options with a high degree of flexibility and
user control. To use HFOApp, the user simply imports
iEEG data and can then choose to run any of five pre-
loaded automated detectors or add another automatic
detector by following instructions in the manual. For man-
ual marking, the user can first set the data display accord-
ing to their preference. HFOApp allows display of raw
iEEG data, bandpass-filtered data, and spectrograms em-
bedded either into the same window or into two or more
separated, but automatically synchronized, windows (Fig.
1A–C). This flexibility is very useful, as individual preferen-
ces may differ depending on how many channels are
being reviewed, the size of the monitor being used, and
other visual factors. Additionally, the user can generate as
many bandpass-filtered data displays as needed, each

with different user-defined frequency limits. To optimize
the display for manual marking, the user can set viewing
parameters, such as the length of time displayed in the
window, the amplitude of the data, the color of the dis-
played time series. The user can then scroll through the
data, marking the start and end locations of HFO
events manually, with ergonomically efficient controls,
such as using the mouse to position the cursor and
using keyboard shortcuts to scroll through the data
and to mark events. Events can be easily added to or
removed from the Events List. Controls for the identifi-
cation, marking, and management of events are intui-
tive and comprehensible.
HFOApp allows for simultaneous review and marking of

multiple channels. The user can display as many channels
and bandpass-filter windows as needed, reviewing and
marking within any displayed window. All displayed data
windows are synchronized by default. The toolbox was
designed such that the user can easily switch between
channels by simply clicking on any time series window.
To assist with manual review and marking, we introduce

an interactive, automatic Hilbert detector assist feature
that can be used on the fly within the graphical user inter-
face (GUI). This feature allows users who are manually re-
viewing data to simultaneously use automatic detection
to identify all events in all channels in the current time win-
dow. As the user manually scrolls through the data, they
can deploy the automatic detector on their current time
window with a button press, which prompts HFOApp to
outline any HFOs that were detected by the automated al-
gorithm. Identified HFOs are then easily managed with
mouse and keyboard controls. In addition, when the user
manually marks an HFO, they can use the automated as-
sist to define onset thresholds for that event.
An additional strength of HFOApp is the introduction of

a dynamic, automated frequency-band determination for
filtering based on the peak frequency of the spectrogram,
designed to increase the sensitivity of the Hilbert detector.
The first step of most automatic detectors includes band-
pass filtering the data into distinct, but broad, frequency
bands. However, broadband display can make discrimi-
nation between artifactual and real HFOs difficult in cases
where frequency components of both are present within
the broad band. HFOs may be apparent only in a narrow
band (Gliske et al., 2017), and, therefore, detection power
could potentially be weakened by using broadband filter-
ing. To address this problem, HFOApp allows users to
simply click on hotspots in the spectrogram to initiate au-
tomated narrow-band detection, based on user-defined
parameters.

Using HFOApp
HFOApp requires a MATLAB version from 2019 on

(2019a&b, 2020a&b, and 2021a) and will be kept up-to-
date with future MATLAB releases. In typical usage, once
iEEG data are loaded into HFOApp (see the section Data
structure), the raw data are displayed in a time series data
window (Fig. 1A). One or more bandpass-filtered time se-
ries can then be displayed, embedded either in the origi-
nal data window as a new row below the raw data or in a
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new window (Fig. 1B). A spectrogram window can also be
generated as a separate window (Fig. 1C). All windows
are automatically synchronized; as the user scrolls
through the data in any window, all windows move in
tandem.
The data can be analyzed for marking HFOs in the

following four ways: manual, manual with interactive auto-
mation-assisted thresholding, manual with interactive au-
tomation-assisted detection, and fully automatic. Within
all of these methods, HFOApp allows for simultaneous
analysis and marking of multiple data channels, broad
flexibility of display, and a high degree of usability. For the
three manual marking methods, the user can display and

mark as many channels, bandpass filter windows, and
spectrogram windows as needed. These windows are
user-generated using plain-language, intuitive con-
trols on popup windows prompted by drop-down
menu selections.

Four markingmethods of HFOApp
Manual marking of HFOs
To mark HFOs without using any automated features,

the user sets the fully manual mode by clicking on the
“Manual” button, and deselecting the “Manual auto ad-
justment” box, both of which are on the top right of the

A BMain window Bandpass filter window

Spectrogram windowC

Figure 1. Example usage and output of HFOApp. A–C, To visually detect HFOs in our test dataset, we opened the following three win-
dows: a main window that shows raw data (A); a bandpass-filtered window (80–250Hz for ripple detection; B); and a spectrogram window
for the first channel (C). The cursor is indicated as a blue (A, B) or black (C) vertical line. The red dashed rectangle indicates the boundaries
of a detected HFO. A summary of the characteristics of the detected event is shown above the plot in blue font.
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display window (Fig. 1A,B). The user then scrolls though
the data using either clickable controls on the GUI or key-
board shortcuts. At any time, the user can click on the
time series display in any bandpass-filtered data window
and the cursor location will appear as a vertical line (Fig.
1A), with the display showing the z score of the envelope
of the bandpass-filtered data at the cursor location. The
user can use this information to help determine whether
an event is an HFO and, if so, where the start and end
points are located. When an HFO is identified, the user
simply positions the cursor at the start of the event and
presses “s” (for “start”), then positions the cursor at the
end of the event and presses “e” (for “end”). The event
will then be outlined with a red dashed line, using the
marked start and end points, on all windows displaying
that channel, including the raw data. Information about
the selected event will be immediately displayed, includ-
ing the peak z score, the duration, and the number of
cycles. If the user wants to change the event, they can do
so by resetting the start or end points as above. If the user
is satisfied with the marking, they can add the event to the
Events List by pressing “a” on the keyboard. If the event
was added by mistake, the user can select the event in
the Events List and press the “Remove” button below the
Events List to delete it. The results will be automatically
updated whenever an event is added or removed from the
Events List if automatic saving was enabled.

Manual marking of HFOs with interactive
automation-assisted thresholding
To assist with manual marking, HFOApp features inter-

active automated thresholding to calculate the start and
end points of events, to speed marking and improve ac-
curacy. To use this feature, the user sets manual mode by
clicking on the “Manual” button at the top right of the dis-
play window (Fig. 1A,B), and confirms that the “Manual
auto adjustment” box just above the “Manual” button is
selected (it is selected by default). Then, when the user
follows the steps for marking an event (detailed above),
the manually selected start and end points are replaced
using automatically generated thresholds. This provides
the ability to set a precise, consistent, and accurate dura-
tion of every event, based on user-selected parameters
(see next section). In practice, this feature allows the user
to approximately set the start and end points of HFO
events, and then rely on the HFOApp automation to adjust
to precisely accurate points, greatly speeding marking
while increasing accuracy. This feature is interactive be-
cause the user has fine control over the settings used by
the automation and can deploy it on-the-fly by selecting
or deselecting the option while marking. The operations of
the thresholding function are detailed below.

Manual marking of HFOs with interactive
automation-assisted detection
To make manual marking even faster and more accu-

rate, HFOApp features manual marking with interactive
automation-assisted detection. This powerful automated
detection tool can be quickly deployed on-the-fly during
manual marking with both keyboard shortcuts and mouse
clicks, while providing the user with fine control over

parameters used by the automation. HFOApp starts in
this setting by default; no action is needed to set this
mode. As the user scrolls through the data, they can trig-
ger automated detection of HFOs within any displayed
bandpass-filtered time series in the following two ways:
by simply clicking anywhere on a bandpass-filtered time
series (to detect events within that channel) or by pressing
“d” on the keyboard (to detect events across all channels).
When the user clicks in a data window, the cursor location
appears as a vertical line (Fig. 1A) and the z score of the
time series is thresholded according to the user-set HFO-
onset threshold [Fig. 1B, Onset threshold (SD)]. Any clus-
ters that survive this initial threshold will be identified with-
in a contained search range (see section Implementation
of the Hilbert detector). A cluster will be considered an
HFO event if it meets the following two criteria: (1) the
maximal z score within the cluster meets the inclusion
threshold, which is typically larger than the onset thresh-
old [Fig. 1B, Inclusion threshold (SD)]; and (2) the number
of oscillatory cycles is greater than a certain threshold
(Fig. 1B, Number of cycles). Figure 1 shows an example
of HFO detection using the toolbox. In this example, we
display the raw data (Fig. 1A) and the bandpass-filtered
data (Fig. 1B) in two distinct windows, which is useful
when analyzing a large number of channels. Using the
keyboard shortcut “d” to run automated detection will
perform the above functions over all displayed channels
and windows (Fig. 2A,B). Once the multiple-channel de-
tection option is enabled by checking the “Enable multiple
channel detection” box (Fig. 2B), the user can press “d”
on the keyboard to run the automatic HFO detection as
above on all channels in the current time window.
Detected events that survive inclusion criteria are outlined
with a red dashed line (Fig. 2A,B). Any individual event
can be deselected with a right mouse click. Then all se-
lected events can be added to the Events List by pressing
“a”. This feature is interactive because it can be deployed
on-the-fly across or within channels while manually mark-
ing, and because the user has fine control over the detec-
tor’s inclusion criteria, including onset threshold, number
of cycles, and peak z value, as well as the definition of the
background. In practice, the user can press “f” (for
“Forward”) to scroll to the next time window of data
across all synchronized display windows, press “d” to
trigger auto detection, press “a” to add detected events
to the list, and press “f” to move on to the next window,
repeating this sequence while moving quickly through the
data. If the user visually identifies an event missed by the
automation, they can quickly add it by manually selecting
it with automated thresholding, as described in the previ-
ous section. This operating mode of HFOApp allows very
fast, easy, and accurate visual marking of HFOs.

Manual marking of HFOs with interactive
automation-assisted detection in the spectrogram
HFOApp also features on-the-fly automatic detection in

the spectrogram window. This automated function re-
quires only a single click on the spectrogram, making it
quick and easy to use during manual marking, and signifi-
cantly enhancing detection of events which occur over a
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narrow frequency band, especially when the broad band
is noisy. For example, an HFO may not be apparent in the
broad bandpass-filtered time series because the fre-
quency components of both the HFO and artifact overlap.
In these cases, reviewers often turn to the spectrogram to
look for HFOs in the colormap, where frequency-specific
components of the event are easily visualized by color. To
make this task faster and more accurate, HFOApp offers
an interactive automation-assist feature in the spectro-
gram window to detect and mark HFOs with a mouse
click. This feature executes an automated detector over a

narrow frequency and time around any location clicked on
the spectrogram colormap. If an HFO event is detected, it
is outlined with a dashed red line in all data windows, in-
cluding the spectrogram, the bandpass-filtered data, and
the raw data. The event can then be managed as above.
To use this feature, the user selects the “Event detect with
spectrogram” box in the “Event detection” section on the
right side of the spectrogram window (Fig. 1C). The detec-
tor determines the peak frequency within a narrow time
window (user set in the “Time window” box) around the
clicked point, and uses a narrow bandwidth around the

A BMain window Bandpass filter window

C

D

Figure 2. Multiple-channel HFO detection. When the “Enable multiple channel detection” option is enabled, all events for all chan-
nels in the current time widow can be detected by pressing “d” on the keyboard. A, B, Illustration of the automatically synchronized
main (raw) and bandpass-filtered windows of the toolbox. The blue vertical line indicates the cursor location, and the red dashed
rectangle indicates detected HFOs. C, Example of formatted output of HFOApp. Each row shows detailed information about each
event. The first 10 events are shown. D, A summary of events for each channel.
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peak frequency [user-set in “Bandwidth” box (or can be
set as a percentage of the peak by selecting the
“Percentage of peak” box)]. If an HFO is detected, the du-
ration, number of cycles, and peak z score are displayed,
and the event is outlined. This function is interactive be-
cause the key parameters can be adjusted during use, al-
lowing for a high degree of flexibility so that the user can
quickly adjust to the particular character of the data being
analyzed.

Fully automatic detection
To use the fully automated HFO detectors in HFOApp,

the user first selects Automated HFO detection from the
drop-down menu. This will prompt a popup window la-
beled HFO Auto Detectors. Within this window, the user
can choose from five different automatic detectors, in-
cluding both the HFOApp Hilbert detector (described
below) and the RippleLab Hilbert detector (Crépon et al.,
2010; Navarrete et al., 2016), the Short Time Energy de-
tector (Staba et al., 2002), the Short Line Length detector
(Gardner et al., 2007), and the Montreal Neurologic
Institute detector (Zelmann et al., 2012). Once a detector
is selected, the options of that detector will populate the
window, and the user can set the parameters. Then the
user simply clicks the “Run” button. The automated de-
tection will run on all channels loaded in the Display List.
Once the automation is finished, the main window will dis-
play the message “Automated detection done”, along
with the number of new events detected. All new events
will be displayed in the Events List. Events can then be
manually reviewed by clicking on any event in the list, or
by using the arrow keys on the keyboard to scroll through
the list. In both cases, as each event is highlighted in the
list, it is shown in all display windows (raw and filtered).

Implementation of additional automated detectors
HFOApp includes five different automated HFO detec-

tors, as described above. In addition, users can easily add
HFO detectors to HFOApp, and a detailed explanation
is provided in the user manual. In brief, we designed a
function (HFOAutoDetect.m) that takes a data matrix,
a sampling rate, and a configuration data structure as
input, and the function is independent from the graphi-
cal user interface itself. To configure the input argu-
ments that are required by the new detector, the user
simply adds the components to a graphical user inter-
face file (ConfigAutoDetector.mlapp).

Development of the toolbox
The graphical user interface toolbox was developed

using App Designer in MATLAB (version R2020b; RRID:
SCR_001622). The source code and source data are
freely available at https://github.com/zelanolab/hfoapp.
git and also as the Extended Data 1.

Data structure
A detailed description of the data structure for this tool-

box is provided in the user manual. Here, we will provide a
brief description of the data structure. To begin a session,

the raw data are first loaded and preprocessed into the
proper format for the graphical user interface. Loading of
the data can also be implemented separately from the
graphical user interface using the MATLAB function
HFOLoadData.m, adapted from fieldtrip (Oostenveld et
al., 2011; RRID:SCR_004849). This allows loading of
Micromed and European Data Format files and can be
easily modified to support the user’s own data format.
The resulting data are formatted into a MATLAB data
structure containing the following fields: (1) mat, which is
a two-dimensional data matrix of channel� sample; (2) la-
bels, which is a cell array of channel labels; (3) srate,
which is the sampling rate; (4) start_clock, which is the
clock time (the type in format of yyyy-MM-dd HH:mm:ss
in datetime in the MATLAB) of the first data point; and (5)
file, which specifies the full path to the file.
To facilitate the integration of this toolbox with results

from other automatic detector toolboxes, HFOApp can
read output events that are organized as a MATLAB struc-
ture array that contains the fields label and info. The label
field indicates the channel name, and info is an N � three
cell array, where N is the number of events for the chan-
nel. The first column of the cell array info indicates the lo-
cation of events, and the second column indicates the
type of events. The event type must be one or more of the
following: g , ripple, fastripple, ultrafast, and spike. The
last column of info is a data structure containing the fol-
lowing fields: AvgFreq (average frequency), NoCycles
(number of cycles of the oscillation), PeakZscore (maximal
z score of the event), and BPFreq (bandpass frequency
band). Once the events are organized in this format, they
can be loaded into HFOApp for reviewing or further edit-
ing. This feature makes HFOApp a useful visualization
and verification tool for the review of results of other auto-
matic detector tools.
The output of HFOApp is simply two text files. Within

one file, detailed information about all events from all
channels are organized as a formatted table (Fig. 2C). The
user can also organize their own events in this format to
be loaded into HFOApp for visual validation. The second
file is a summary file, which indicates the event informa-
tion of each channel (e.g., number of occurrences of each
event type, total duration), which is useful for a quick
glimpse at the results (Fig. 2D).

Graphical user interface layout
HFOApp displays time (Fig. 3) and spectrogram (Fig. 4)

domain windows. The bandpass-filter time window
shares an identical graphical user interface with the main
window. The user can filter the raw data into multiple dif-
ferent frequency bands, and each resulting time series
can be displayed either in a separate window or embed-
ded in the main window.
To specify a channel to mark, the user simply clicks on

the time series of a channel. The background of that chan-
nel will be highlighted, and the user can then mark events
on that channel. All relevant information pertaining to the
location of the click within that time series is immediately
displayed in the status bar (Fig. 3, status bar, event detec-
tion information). No menu-based setting or switching is
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required. We believe this feature significantly reduces the
time needed to mark HFOs on a dataset with multiple
channels. HFOApp was designed to minimize the number
of pop-up windows to speed navigation and improve the
user experience.
The spectrogram window looks similar to the main

window (Fig. 4). By default, only one spectrogram win-
dow is open at a time to conserve speed. However, it
is possible to open multiple spectrogram windows,
which is advisable only if the file size of the dataset is
small. When the “Event detection with spectrogram”

box (Fig. 4) is checked, the user can perform spectro-
gram-guided automated event detection by clicking
on any hotspot in the spectrogram, as described
above.

Implementation of the Hilbert detector
The default automated detector in HFOApp is custom

scripted using a Hilbert detector (Crépon et al., 2010;
Höller et al., 2018). This detector is used by default for
fully automated detection and is used in the interactive
automation-assist features. In detail, the raw time series is
bandpass filtered at a specified frequency band. A notch
filter can also be applied to remove 50/60Hz power line
noise. Then, the envelope of the bandpass-filtered time
series is obtained using the Hilbert transform (MATLAB
hilbert.m; Fig. 5A,B). Finally, the envelope is z score
normalized to a baseline, which can be the entire time se-
ries or a time window of specified length (Fig. 5C).
Normalization is performed by subtracting the mean of
the baseline and further dividing by the SD of the baseline.
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Figure 3. Features of the time series graphical user interface of HFOApp. The main window and bandpass-filter window share the
same graphical user interface.
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By default, the toolbox uses the filter functions imple-
mented in the fieldtrip toolbox to perform bandpass filter-
ing. For both bandpass and notch filtering, the user can
choose to use either a fourth order of Butterworth (IIR) fil-
ter or a window-based finite impulse response (FIR) filter,
which uses the MATLAB fir1 function. The default FIR filter
order is three times the sample rate, which is further di-
vided by the low cutoff frequency of the bandpass filter-
ing. However, the user can also implement their own
filtering procedure in HFOFiltData.m. To characterize an
event, the toolbox calculates the following features: (1) av-
erage frequency, (2) number of cycles, and (3) maximal z
score (Fig. 5D). To calculate the average frequency, the
peaks of the bandpass-filtered time series are located
within the event time window (MATLAB findpeak.m). Then
the average frequency is calculated by dividing the sam-
pling rate by the average peak-to-peak distance. The
number of cycles is obtained by dividing the duration of
the event by the average peak-to-peak distance.
Note, HFOApp has two different Hilbert detectors built

in: one introduced above, and the other from RIPPLELAB
(Navarrete et al., 2016). The default Hilbert detector in
HFOApp is different from that in RIPPLELAB. In
RIPPLELAB, the Hilbert detector uses three parameters,
including epoch length, SD threshold, and minimal

duration, to detect HFOs. In HFOApp, we use two SD
thresholds—onset and peak thresholds—instead of one
single threshold. Furthermore, in HFOApp the duration of
an HFO event is determined by the number of cycles in-
stead of duration in milliseconds.

Implementation of the spectrogram
To increase the sensitivity of the Hilbert detector, we in-

clude a feature to allow bandpass filtering of the raw time
series at a narrow frequency band. To do this, we first cal-
culate the time–frequency spectrogram (Fig. 6A) using a
Wavelet transform calculated using a continuous Gabor
wavelet (Navarrete et al., 2016). The wavelet is defined as
follows:

Cðs;tÞ ¼ 1ffiffiffi
s

p
ð1

�1
xðtÞ p c ðt-t

s
Þdt; � � � � c ðtÞ

¼ 1

ðs 2PÞ14
expð�t2

2s 2
Þeihst;

where the t, s, and t represent time, scale, and transla-
tion, respectively. h s is the angular frequency at s. s (de-
fault value of 6/ h s), indicates the SD of the Gaussian
window in time (Navarrete et al., 2016).
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Figure 4. Features of the spectrogram graphical user interface of HFOApp. The layout of the spectrogram window is similar to the
main window, with an extra panel added for spectrogram event detection.
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The user can modify HFOSpectrogram.m to implement
their preferred method of spectrogram computation. To
begin the spectrogram-guided HFO detection feature, the
user clicks on the hotspot of interest in the spectrogram. The
spectrogram at the cursor location will be extracted and aver-
aged over a small time window centered at the cursor, and
the peak frequency will be computed (Fig. 6B). The length of
the small time window can be changed by the user in the
spectrogram user interface [Fig. 6C, Time window (s)]. Then,
the raw time series will be bandpass filtered over a narrow fre-
quency band centered at the peak frequency, and the HFO
event will be detected and marked using the method de-
scribed above (Fig. 6C). The bandwidth can be set as a fixed
value [e.g., 20Hz; Fig. 6C, Bandwidth (Hz)], but the user can
also set the cutoff frequency based on the peak spectrogram.
If the “Percentage of peak” box (Fig. 6C) is selected, the
“Bandwidth (Hz)” will be interpreted as a percentage that
ranges from 0% to 100%, and the frequencies at which the
spectrogram (Fig. 6B) drops to the specified percentage of
the maximumwill be used as cutoff frequencies for the band-
pass filtering.

Simulated datasets for validation
The simulated datasets used in the validation experi-

ments were generated using Python toolboxes MNE
(RRID:SCR_005972) and MNE-HFO [Gramfort et al.,
2013; see also “MNE-HFO: an open-source Python

implementation of HFO detection algorithms” (https://
zenodo.org/record/4485036)]. For each simulated data-
set, sinusoidal data of different frequencies (2.5, 6.0, 10.0,
16.0, 32.5, 67.5, 165.0, 250.0, 425.0, 500.0, 800.0, and
1500.0 Hz) were added together, and a few HFOs were in-
serted into the simulated time series. The sampling rate
was set to 2000Hz. The frequencies of the simulated HFOs
were set to 100, 140, 180, and 220Hz, each consisting of
20 events. The number of cycles for each HFO was a ran-
dom integer between 3 and 10. Then, we added random
noise to the simulated data such that the signal-to-noise
ratio ranged from 1 to 10, in steps of 1. In total, we gener-
ated 110 datasets with varying levels of noise. Finally, the
HFOs of the simulated datasets were detected using both
HFOApp and RIPPLELAB, using the default Hilbert detec-
tor of each program. For HFOApp, the onset threshold, in-
clusion threshold, and number of cycles were set to 1, 5,
and 2.4, respectively. For RIPPLELAB, the threshold and
minimal duration were set to 3.5 and 10ms, respectively.
These parameters were chosen to detect HFOs with a min-
imum of four cycles, given the characteristics of the simu-
lated dataset. The epoch length was set to 600 s for both
HFOApp and RIPPLELAB Hilbert detectors.

Real datasets for validation experiments
The real datasets were recorded using a clinical acqui-

sition system (Blackrock) with a 4� 5 grid (Integra). This
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continued
frequency, oscillatory peaks for the event are identified (red dots) and all peak-to-peak distances are calculated, then the sampling
rate is divided by the average peak-to-peak distance. The number of cycles is estimated by dividing the duration of the event by the
average peak-to-peak distance. The red dashed boxes in B–D indicate an HFO event.
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dataset was part of a large study that was approved by
the Northwestern University Institutional Review Board.
To manually mark HFO events, the data were first bipolar
rereferenced and organized into the data format required
by either HFOApp or RIPPLELAB. Two channels were an-
alyzed per dataset. The raters were instructed to manually

mark ripples (frequency band, 80–250 Hz) using a band-
pass-filtered time series between 80 and 250Hz. Raters
used the default HFOApp manual marking setup, which
includes interactive automation-assist features (Fig. 1A–
C), and in RIPPLELAB they followed the instructions for
manual marking in the manual of the toolbox.

Results
Validation of HFOApp
We conducted a series of experiments to validate

HFOApp. In a first validation experiment, we tested how ac-
curately the HFOApp automated Hilbert detector could de-
tect HFOs in a simulated dataset that provided known,
ground-truth HFO events. In a second validation experi-
ment, we compared the performance of HFOApp with that
of a previously existing HFO marking software, RIPPLELAB
(Navarrete et al., 2016), on the same simulated dataset. In a
third validation experiment, we used real data to test
whether HFOApp improves manual marking speed and
inter-rater variability over previously existing methods.
In the first validation experiment, we tested how accu-

rately the HFOApp automated Hilbert detector could de-
tect HFOs in a simulated dataset which provided ground-
truth HFO events. This allowed us to confirm that the
HFOApp automated detector performs as intended. This
validation was conducted on 110 simulated datasets.
Each dataset was 10min long and contained 80 HFO
events. Datasets were generated to contain HFO events
of between 3 and 10 cycles, and frequencies ranging from
100 to 220Hz. To assess the ability of HFOApp to detect
HFOs within a noisy environment, the simulated datasets
had 10 different levels of background noise, ranging from
a signal-to-noise ratio of 1 to a signal-to-noise ratio of 10;
10 files were created for each noise level. HFO detection
was set to include events with four or more cycles. We
found that HFOApp detected events with accuracy rang-
ing from 99.7% at the lowest noise level, to 97.9% at the
highest noise level (Fig. 7A, left).
In the second validation experiment, we compared the

HFOApp results to those of existing software by using the
RIPPLELAB automated Hilbert detector to detect HFOs in
the same simulated dataset. This allowed us to confirm
that HFOApp is able to detect HFOs with an accuracy simi-
lar to those of other detectors that are currently available.
We analyzed the results across the two applications at
varying noise levels by comparing detection of real events,
detection of false events, and accuracy of detected event
duration. The two applications detected real events at a
similar rate across noise levels, though HFOApp slightly
outperformed RIPPLELAB (Fig. 7A,C, left and right col-
umns). RIPPLELAB accuracy ranged from 99.7% at the
lowest noise level, to 93.8% at the highest noise level (Fig.
7A, right). The HFOApp detection rate of false events over
the simulated datasets, defined as the number of nonsimu-
lated HFOs divided by the number of total detected events,
was similar to that of RIPPLELAB (Fig. 7B). Detected HFO
duration relative to the real duration was more consistent
across different levels of signal-to-noise ratio in HFOApp
than in RIPPLELAB (Fig. 7C). As expected, the detection
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time is slightly longer in HFOApp than in RIPPLELAB, as
more computations are involved in HFOApp (Fig. 7D).
Overall, these analyses confirmed that the HFOApp au-
tomated detector performs similar to or better than
RIPPLELAB in accurately and consistently detecting
HFO events across different levels of noise. Figure 8 indi-
cates the performance of other automatic detectors in
HFOApp. including the Montreal Neurologic Institute de-
tector (Fig. 8A–D, left column), the Short Line Length de-
tector (Fig. 8A–D, middle column), and the Short Time
Energy detector (Fig. 8A–D, right column). The parame-
ters for each detector, which can be found in the toolbox,
were optimized for maximal detection on the simulated
data without noise.
In the third validation experiment, we tested improve-

ments in the manual marking speed and inter-rater vari-
ability of HFOApp. To do this, we asked four expert raters
to manually mark HFO events in 10 two-channel, 3min,

real datasets from surgical patients. Each rater performed
manual marking using both HFOApp and RIPPLELAB.
Raters used HFOApp default manual marking settings,
which include the interactive automation-assist features.
This resulted in 40 manually marked datasets for both
HFOApp and RIPPLELAB. We then compared marking
time and inter-rater variability across the two different appli-
cations. We found that HFOApp markings were statistically
significantly faster, and that HFOApp produced significantly
reduced inter-rater variability (Fig. 7E,F). To calculate the
manual marking time, we averaged the time across raters for
each dataset and each toolbox. The results indicated that the
average time for marking two channels was 9.046 0.89min
for HFOApp and 26.496 3.14min for RIPPLELAB. The data
are presented as the mean 6 SE unless stated otherwise.
The time difference was statistically significant, as revealed
by a two-tailed paired t test (p=0.00,015, t(9) = –6.26; Fig. 7E).
To evaluate inter-rater variability, we calculated the Fleiss k
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value using a MATLAB toolbox developed by Giuseppe
Cardillo (https://github.com/dnafinder/Fleiss). Our re-
sults indicated improved Fleiss’ k values for HFOApp
(0.02160.037), compared with RIPPLELAB (–0.1196
0.052), suggesting that HFOApp has statistically high-
er inter-rater reliability (two-tailed paired t test; p =
0.013, t9 = 3.11; Fig. 7F). We note that Fleiss’ k is not
ideal for indexing inter-rater agreement measures for
HFO detection, but was used here as a rough measure,
and for lack of a better alternative (Zelmann et al.,
2009; Menendez De La Prida et al., 2015; Navarrete et
al., 2016). Fleiss’ k is typically used in the psychologi-
cal and psychiatric fields, and is designed to assess
the reliability of agreement between raters who assign
ratings within a set number of exclusive categories.
HFO detection in electrophysiological data are a poor
fit for Fleiss’ k , as it does not have a set number of
exclusive categories for rating, lacks a reference—or
ground-truth—interpretation, and is a difficult EEG in-
terpretation category, with typically low signal-to-
noise ratios. Rater agreement in the interpretation of
such data, when measured with Fleiss’ k , has been
found to be typically low (Gerber et al., 2008; Grant et
al., 2014). As expected, both programs scored on the
low end of the Fleiss’ k index, but HFOApp scored sig-
nificantly higher than RIPPLELAB. Together, these
findings suggest that HFOApp is significantly faster,
with higher inter-rater reliability, two particularly signif-
icant advantages for clinicians and researchers who
are manually reviewing and marking iEEG data.

Discussion
In this article, we introduced HFOApp, a MATLAB graph-

ical user interface for manual marking of HFOs in intracra-
nial electroencephalographic recordings. The advantages
of this toolbox, compared with existing software, include
ease of use, comprehensibility of design, flexibility of im-
plementation, optional automation-assist for on-the-fly use
at multiple levels of manual marking, and an architecture
built on an active, supported platform, making HFOApp a
versatile and powerful HFO marking tool, with significant
improvements over existing applications. We believe that
these features will make HFOApp a useful tool for clinicians
and researchers who study HFOs.
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