
Superficial and Inkjet Scalable Printed Sensors Integrated with Iron
Oxide and Reduced Graphene Oxide for Sensitive Voltammetric
Determination of Lurasidone
Samar Y. Al-nami, Ali Q. Alorabi, Zehbah A. Al-Ahmed, Amal T. Mogharbel, Hana M. Abumelha,
Mohammed A. Hussein,* and Nashwa M. El-Metwaly*

Cite This: ACS Omega 2023, 8, 10449−10458 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The present work demonstrated the fabrication and the
electrochemical characterization of novel printed electrochemical sensors
integrated with an innovative nanosensing platform based on the synergic
electrocatalytic effect of iron oxide nanoparticles (FeONPs) and reduced
graphene oxide (rGO) for precise voltammetric determination of the
antipsychotic drug lurasidone hydrochloride (LUH). The features of the
electrode surface fabricated using the ordinary inkjet printer were
characterized by scanning electron microscopy and electrochemical
impedance spectroscopy. Among different ink formulations, integration of
the printing ink with the ratio 15 mg FeONPs and 20 mg rGO was found to
be the most appropriate for sensitive quantification of LUH in biological
fluids and pharmaceutical formulations in the presence of LUH degradation
products. Under the optimized experimental and electroanalytical parame-
ters, the recorded square-wave voltammograms were correlated to LUH within the linear concentration ranging from 50 to 2150 ng
mL−1 with detection limit and limit of quantification values of 15.64 and 47.39 ng mL−1, respectively. Based on the cyclic
voltammograms recorded for LUH at different scan rates, the electrode reaction was assumed to be a diffusion reaction mechanism
accompanied by the transfer of two electrons/protons through the oxidation of the five-membered ring nitrogen atom as assumed by
the molecular orbital calculations carried out on the LUH molecule. The Cmax of LUH and the efficiency of the fabricated sensors
enabled their clinical application for monitoring LUH in human biological fluids and pharmaceutical formulations in the presence of
degradants for diverse quality control applications and green chemistry analysis.

1. INTRODUCTION
Lurasidone hydrochloride (LUH) is one of the common drugs
for treatment of bipolar disorder among other antipsychotic
drugs for schizophrenia and marketed under the trade name
Latuda.1−3 In bipolar disorder, LUH can be administered with
a mood stabilizer, e.g., valproate. The common side effects
involve drowsiness, nausea, diarrhea, and movement disor-
ders.4 Other severe critical side effects include late movement
disorder dysfunction, high blood sugar levels, angioedema,
raised risk of suicide, and the neuroleptic malignant
syndrome.5,6

Owing to high chemical stability, a noticeable low
biodegradation rate, and a high toxicity level, quantification
of LUH represents a crucial issue.7,8 LUH is not official in any
pharmacopeia, and surveying up to date has revealed the
spectrophotometric9−11 and chromatographic methods12−16 as
the common approaches for monitoring LUH residues in
biological and pharmaceutical samples. Furthermore, the
aforementioned techniques were reported to be time-
consuming with multiple pretreatment steps, employing
expensive operational instruments and solvents; therefore,

they are not suitable for routine analysis and in situ
measurements.17 Introducing new pharmaceutical formulations
represents a new challenge for their quantification and
validation, and there is a continuous demand for the
development of reliable, precise, sensitive, and selective
analytical approaches for the detection and validation of
newly approved medicines in their pharmaceutical dosage
forms and biological fluids.
Electroanalytical approaches with the aid of tailor-made

sensors have been proven to be an excellent choice for
monitoring pharmaceutical compounds in biological and
pharmaceutical samples.18−21 In comparison to other techni-
ques, electroanalytical methods showed significant advantages
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such as good reusability, excellent selectivity, and flexibil-
ity.22,23 With their improved performance, electroanalytical
approaches can be combined with other spectrometric and
chromatographic techniques for monitoring pharmaceutical
residues in biological and pharmaceutical samples. Carbona-
ceous-based electrodes represent a major category of the
voltammetric working electrodes.24−30 For biomedical and
healthcare monitoring, the well-known glassy carbon and
carbon paste electrodes are too bulky to be applied with the
necessity for sterilization and regeneration which oppose the
commercialization of such sensors. Therefore, introduction of
disposable electrochemical printed sensors with their mini-
aturized planner structure is welcomed. Growing interest is
reported for electroanalytical applications of the printed
disposable sensors based on their mass production with a
high degree of precision, accuracy, and excellent reproduci-
bility.31−38

While developing a novel voltammetric sensor, investiga-
tions were carried out to improve the sensor performance
through integration of the electrode matrix with various
carbonaceous and metal/metal oxide nanostructures.39−44 The
electrocatalytic activity of the nanostructured materials and
their ability to catalyze the electrode process enhance the
kinetics of the electron-transfer process at the electrode
surface, which in turn improves the electrode performance.
Fortification of the working electrode matrix with different

metal oxide nanostructures is characterized by the strong
adhesion of the metallic nanostructure to the graphite
substrate, offering a stable electrocatalytic effect of the metallic
centers. Iron oxide nanoparticles (FeONPs) represent one of
the most popular electrode modifiers with a high electro-
catalytic effect based on their band gaps and overall redox
potentials.45−49

To the best of our knowledge, no electroanalytical approach
has been reported for assaying LUH, and the electrochemical
analysis of LUH with printed sensors integrated with FeONPs
and reduced graphene oxide (rGO) is presented for the first
time. The simple and reproducible mass production of the
disposable carbon-based sensors represents the promising
future of the present work. The impact of the electrode
modifier, pH of the supporting electrolyte, variation of the scan
rate, and other measuring parameters was evaluated. The
reported sensors showed low detection limits with a prolonged
operational lifetime.

2. EXPERIMENTAL SECTION
2.1. Reference Drug and Reagents. The standard LUH

fresh solution was prepared by dissolving the appropriate
amount of LUH standard material (3a,4,7,7a)-2-{(1,2)-2-[4-
(1,2-benzisothiazol-3-yl)piperazin-1-ylmethyl] cyclohexyl
methyl]hexahydro-4,7-methano-2-isoindole-1,3-dione,
C28H37ClN4O2S, 529.18 g mol−1) in demineralized water and
kept at 4 °C.
Graphite carbon powder (1.0−2.0 μm, Aldrich), reduced

graphene nanopowder (rGO), and iron oxide nanopowder
(<50 nm, Sigma-Aldrich) were used for the preparation of the
printing ink. Ink binders including carboxymethyl cellulose,
isopropyl alcohol, and polyvinyl-pyrrolidone were analytical
grade reagents. Universal Britton−Robinson (BR) buffer
covering the pH range from 2 to 8 was prepared where the
desired pH value was adjusted with NaOH solution.
2.2. Apparatuses. A Metrohm voltammetric analyzer (797

VA, Metrohm, Switzerland) was used for voltammetric

measurements. The electrochemical cell was composed of a
Ag/AgCl double-junction reference electrode, a platinum wire
auxiliary electrode, and the printed sensor as working electrode
(Figure S1). For the electrochemical characterization and
screening of the tested nanomaterials, cyclic voltammetry
(CV) and electrochemical impedance spectroscopy (EIS) were
performed in ferricyanide (FCN) as the standard redox probe.
A scanning electron microscope (S-4800, Hitachi Transport
Co., Ltd., Japan) was used to investigate the precise
morphology of the inkjet-printed electrodes.
2.3. Fabrication of rGO/FeONPs-Functionalized

Printed Sensors. Printing ink with the desired formulation
composed of 465 mg of synthetic graphite powder, 15 mL of
isopropyl alcohol, and 5 mL of polyvinylpyrrolidone (10%)
was mixed thoroughly with 200 mg of carboxymethyl cellulose
in 40 mL of deionized water. The produced matrix was
sonicated for 2 h and centrifuged at 5000 rpm for 30 min to
assure its homogeneity. The produced ink was integrated with
different ratios of FeONPs and rGO as follows: matrix I (0, 0),
II (25 mg FeONPs, 10 mg rGO), III (20 mg FeONPs, 15 mg
rGO), IV (15 mg FeONPs, 20 mg rGO), and finally matrix V
(10 mg FeONPs, 25 mg rGO). After continuous stirring for 10
min, the mixture was further sonicated for 15 min to achieve
complete homogeneity. The conductivity of the printing inks
with different formulations was tested using a multimeter
(Jenway 4510 Conductivity/TDS Meter) and found to be 220,
198, 165, 142, and 158 μS for matrices I to V, respectively.
Furthermore, the viscosity of the produced ink matrix was
measured using a NETZSCH rheometer, and the viscosity
values ranged from 10 to 15 cps. The homemade FeONPs/
rGO/graphite ink showed decent stability at room temperature
for 30 days.
An Epson Eco-Tank L3160 Inkjet printer with a Micro Piezo

print head, nozzle configuration: 180 Nozzles Black, minimum
droplet size (3pl) with 5760 × 1440 DPI resolution (Epson
Co., Ltd., China) was used for printing of the sensors on
transparent overhead projector polyvinyl chloride (PVC)
sheets (Figure S1). The ink cartridge was washed with water
and ethanol, and 20 mL of the aforementioned ink matrices
were transferred into the Eco-Tank System, and the electrodes,
with dimensions 20 × 3 mm, were printed on the PVC sheets
producing uniform quality and smooth lines. The printed
flexible sensors were cured at 80 °C for 20 min, and their
conductivities ranged from 8 to 10 kΩ/sq.
2.4. Analytical Procedures. The supporting electrolyte at

pH 2 was fortified with different aliquots of the fresh LUH
stock solution, and square-wave voltammograms were
recorded at the optimal measuring parameters: voltage step,
6 mV; amplitude, 20 mV; frequency, 50 Hz; and scan rate,
0.2975 V. Calibration graphs were illustrated by plotting the
current density against the LUH concentration.
2.5. Pharmaceutical and Biological Samples. Five

tablets of the commercial Latuda pharmaceutical sample
(assigned to contain 20 mg of lurasidone HCl, Sunovion
Company) were weighed, crushed, and an amount equivalent
to one tablet was dissolved in 50 mL of demineralized water.
The drug solution was sonicated for 20 min at room
temperature and filtered. Aliquots of the sample solution
were analyzed following the voltammetric procedures in
comparison with the chromatographic approach.50

Urine samples fortified with LUH standard solution were
mixed with methanol, centrifuged to remove the protein, and
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the LUH content in the clear solution was tested voltam-
metrically in comparison with the chromatographic method.
2.6. Forced Degradation of LUH. The hydrolytic

degradation of the LUH compound was carried out by
dissolving 50 mg of the LUH standard sample in 50 mL of 2 ×
10−1 mol L−1 NaOH or HCl under reflux at 130 °C for 3 h,
where the progress of the LUH degradation was followed
spectrophotometrically at 230 nm.10 After cooling, the
resultant degradant solutions were neutralized, and the volume
was completed to the mark with water.
For oxidative degradation, 20 mg of standard LUH sample

was dissolved in 10 mL of 10% H2O2 solution and incubated
overnight at 50 °C. The final required concentration was made
up by serial dilution with demineralized water, and voltammo-
grams were recorded to check the interference from the
degradation products.
2.7. Computational Calculations. Molecular orbital

calculations by different Hukel, MM94, and MOPAC models
were performed to confirm the proposed LUH redox
mechanism at the FeONPs/rGO-functionalized electrode
surface. Such estimations were performed with Gaussian
ChemOffice 2017 suite programs.51,52

3. RESULTS AND DISCUSSION
3.1. Characterization of the Printed Electrode.

3.1.1. Morphological Studies. The surface morphology of
the carbon printed sensors functionalized with different ratios
of rGO and FeONPs was evaluated by performing scanning
electron microscopy (SEM) and atomic force microscopic
studies on different regions of the electrode surface (Figure 1).
SEM images of the electrodes reveal a highly porous and rough
surface with a large number of small particles distributed
throughout. The particles are typically in the range of 10−50
nm in size and are composed of iron oxide nanocrystals. The
nanocrystals are arranged in an ordered array, with each
particle having a distinct shape and size. The particles are
interconnected by thin layers of metal oxides, which form a
network that helps to increase the surface area available for
electrochemical reactions.53−56 Moreover, the nano iron oxide-
modified screen-printed electrodes have a high degree of
porosity, which increases their reactivity and enables them to
be used for electrochemical sensing applications. The pores on
the surface provide pathways for ions to move through,
allowing for efficient electrochemical reactions to take place.

Additionally, the porous nature of these electrodes allows them
to absorb more electrolyte solution than conventional
electrodes, resulting in improved performance. AFM can be
used to measure the topography of the electrode surface,
providing information on its roughness, grain size, and other
features. The AFM images of nano iron oxide-modified screen-
printed electrodes show a homogeneous distribution of
nanoparticles at the electrode surface with an average particle
size of around 20 nm. The particles are well-dispersed and have
a uniform shape and size. The surface morphology is also
characterized by a high degree of porosity, with many small
pores visible in the AFM images. The AFM images also reveal
that there is no significant agglomeration or clustering of
nanoparticles on the electrode surface, indicating good
dispersion and adhesion properties. Overall, these results
indicate that nano iron oxide-modified screen-printed electro-
des have a highly uniform and porous surface morphology
which is suitable for electrochemical applications.

3.1.2. Electrochemical Characterization. In the present
study, potassium ferricyanide [K3Fe(CN)6] was selected as the
redox couple system to estimate the electroactive surface area
of the printed sensors through recording successive cyclic
voltammograms at different scan rates ranged from 0.1 to 0.55
V s−1, following the Randles−Sevcik equation.57 As illustrated
in Figure S2, well-defined reversible redox peaks (anodic and
cathodic peaks) were recorded for ferricyanide/ferricyanide,58

where the difference from the anodic peak to the cathodic peak
ranged from 90 to 110 mV, and the ratio relationship of the
anodic or cathodic peak current of (Ipc/Ipa) was in the range
from 0.99 to 1.10. The relationship between the anodic or
cathodic peak current versus the square root of the scan rate
(υ1/2) can be expressed by the equation59

I An D C v(2.69 10 ) Rpa
5 3/2 1/2

0
1/2= ×

where Ipa refers to the anodic peak current, A is the surface area
of the electrode, DR is diffusion coefficient, v is the scan rate, n
is the number of electrons transferred, and C0 is the
concentration of K3Fe (CN)6. Thus, the estimated electro-
active areas of FeONPs/rGO printed sensors (I−V) were
0.014, 0.02, 0.023, 0.028, and 0.024 cm2, respectively. The
highest electroactive surface area was recorded for electrode
(IV) with the printing ink integrated with 15 mg of FeONPs
and 20 mg of rGO. Moreover, ratios between the electro-
chemical surface area (ESA) or effective area (Aeff) and the

Figure 1. Morphological characteristics of FeONPs/rGO printed sensors (I−V) through SEM and AFM images.
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geometric area (Ag) were calculated to be Rf = 3.5:1, 5:1,
5.75:1, 7:1, and 6:1 for the aforementioned sensors in the same
order.
EIS has been used to scrutinize the electron charge-transfer

resistance and exchanges between the electrode surface and
electrolyte solution (Figure 2). The estimated Rct values were

889, 617, 438, 75.75, and 157.6 Ω corresponding to the
sensors from I to V, respectively. Among the printed sensors,
electrode (IV) exhibited the lowest Rct value, suggesting its
excellent electrical conductivity and surface wettability and
exhibiting its optimized electrocatalytic activity. Based on the
obtained Rct values, the standard heterogeneous electron-
transfer rate constant (k0) of various modified electrodes was
calculated using the following equation

k
RT

n AF R C
0

2 2
ct

=

where n, T, R, F, and C represent the number of electrons,
temperature (298 K), gas constant, Faraday constant, and
concentration of the FCN solution, respectively (5.0 × 10−3

mol L−1 K3Fe(CN)6−3/−4). The calculated k0 value for the
printed sensors integrated with FeONPs/rGO nanostructures
were 4.03 × 10−6, 2.15 × 10−6, 3.11 × 10−6, 1.08 × 10−6, and
2.18 × 10−6 cm s−1, respectively. These findings indicate that
the proposed composite has greater conductivity, excellent

electron transferability, and superior electrocatalytic activity
among other electrodes.
3.2. Electrochemical Behavior of LUH. To explore the

electrochemical behavior of the LUH molecule at the
fabricated FeONPs/rGO printed sensors, cyclic voltammo-
grams were recorded in BR buffer at pH 2.0 as illustrated in
Figure 3a. On the unmodified graphite printed sensors, the
LUH molecule exhibited a broad single irreversible anodic
oxidation peak at 0.970 V. Upon fortification of the electrode
matrix with FeONPs/rGO nanostructures, more than 10-fold
amplification of the peak current was recorded, which may be
attributed to the electrocatalytic effect of the fortified
nanostructure toward the oxidation of LUH at the electrode
surface in addition to the enhancement of the electroactive
surface area of the electrode surface which facilitates the
electron-transfer process. Gradual improvement of the peak
height was monitored to reach its maximum performance on
applying the electrode IV with the matrix composition 15 mg
FeONPs and 20 mg of rGO (Figure 3b).
3.3. pH Effect on the Voltammetric Behavior of LUH.

One of the crucial points for studying the electrochemical
behavior of any oxidizable organic compound is the selection
of the optimum pH value at which the oxidation peak reaches
its maximum current value. Lurasidone hydrochloride showed
two pKa values at 1.96 and 8.50; therefore, its electrochemical
behavior will be influenced by the pH value of the supporting
electrolyte. For this investigation, cyclic voltammograms for
LUH were recorded at various pH values ranging from 2.0 to
8.0 (Figure 4a). Within the pH range 2−3, LUH exhibited a
well-defined single anodic peak which was further split into
two peaks at a higher pH value (4−5). At lower pH values
(<4), the LUH molecule mainly presents as a protonated form
and provides the ionic bond N+−H, while at higher pH values
(>6.0), LUH exists as a deprotonated form. Thus, at pH 4−5,
both forms are present, resulting in splitting of the oxidation
peak.60 The highest peak current was recorded at pH 2, which
was around the pKa1 of the LUH molecule.
Additionally, negative shift of the peak potential was

monitored by increasing the pH value of the supporting
electrolyte (Figure 4b), postulating the involvement of the
hydrogen proton in the oxidation of the LUH molecule at the
electrode surface.61,62 A linear relationship was illustrated
between the oxidation peak potential and the pH value of the

Figure 2. EIS for the printed sensors modified with different rGO/
FeO ratios in 5.0 × 10−3 mol L−1 [Fe (CN)6]−3/−4/1.0 × 10−1 mol
L−1 KCl solution.

Figure 3. (a) Cyclic voltammograms recorded in the presence of 0.5 μg mL−1 LUH at FeONPs/rGO printed sensors and (b) peak height at
different nanocomposite contents. Scan rate 100 mV s−1 at pH 2.
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supporting electrolyte [E(V) = −0.041 [pH] + 1.1; r2 = 0.9909].
The low value of the intercept indicates that there are no side
reactions accompanying the oxidation of the LUH molecule,
while the near Nernstian slope value assumes that equal
number of electrons and protons are involved in the
electrooxidation of the LUH molecule.63,64

3.4. Electrochemical Behavior at Different Scan Rate
Values. The kinetics of the electrode reaction was studied
through recording the successive cyclic voltammograms at
different scan rates. As illustrated in Figure 5a, CVs were
scanned at different scan rate values ranged from 0.040 to
0.300 V s−1. Shifting of the peak potential to a more positive
value with gradual improvement of the peak height was
observed at higher scan rates. Additionally, an appropriately
low background current was noticed at the electrode surface

which may be explained on the basis of low interfacial
capacitance.
Figure 5b illustrates the linear relationship between the

anodic peak currents and the square root of the scan rate (Ip
(A) = −2.22 × 10−6 + 2.08 × 10−5 ν1/2, r2 = 0.9980). The high
correlation coefficient indicates the irreversibility of the
reaction at the electrode surface. Moreover, the relationship
between the logarithm value of the redox peak current (log I)
against the logarithm value of the scan rate (Figure 5c) shows
that a near theoretical slope value of 0.553 was estimated,
indicating that the redox process of the LUH molecule transfer
to the electrode surface followed a diffusion-controlled
reaction.62,63,65

Moreover, the peak potentials recorded at different scan
rates showed a linear relationship against logarithmic values of
the sweep rate (E(V) = 0.555 + 0.0445 log υ; r = 0.9871, Figure

Figure 4. (a) Voltammetric behavior of 0.5 μg mL−1 LUH recorded at different pH values performed at FeONPs/rGO electrode (IV) and (b) peak
currents and peak potentials recorded at different pH values. Scan rate was 100 mV s−1.

Figure 5. (a) Cyclic voltammograms for 0.5 μg mL−1 LUH at FeONPs/rGO printed sensors recorded at different sweep rates, (b) peak current
against the square root of the scan rate, (c) log (I) of the peak current against log value of the scan rate, and (d) peak potential against log value of
the scan rate.
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5d), suggesting the participation of 2.456 electrons (≈2) in the
oxidation of the LUH molecule at the electrode surface.66

Alternately, for irreversible reactions, the number of electrons
that participated in the electrode reaction can be estimated
based on the Nicholson and Schein equation67

E E E n(mV) (47.7/ )p p p/2= =

where ΔEp is the potential difference, α is the charge-transfer
coefficient, and n is the number of electrons. Consequently, the
computed value αn was equal to 1.09, and in the case of
irreversible voltammetric processes, α was considered to be
equal to 0.5; thus the number of electrons transported in LUH
oxidation was calculated as 2.18 (≈2).
3.5. Mechanism. Ultimately, to support the postulated

oxidation mechanism of the LUH molecule at the electrode
surface, the Chem office-17 theoretical simulation software was
used.51,52 Thus, the proposed mechanism for the irreversible
electrochemical oxidation of LUH involves the transfer of two
electrons and two protons based on the scan rate studies and
pH effect and was confirmed by molecular orbital calculations
(Table S1, Figure S6). The high-electron-density amine
nitrogen group (with IUPAC count no. 21) in the aliphatic
piperazine ring was oxidized through two-electron transfer and
liberation of two protons (Scheme 1).68

3.6. Validation of the LUH Sensor. The electroanalytical
parameters for the square-wave voltammetry (SWV) measure-
ments such as voltage step and pulse amplitude were optimized
to achieve the highest performance (Figures S4 and S5). Based
on the achieved results, the optimal measuring parameters
were as follows: voltage step 6 mV, amplitude 20 mV,
frequency 50 Hz, and scan rate 0.2975 V.
Under the optimized analytical experimental condition, the

performance characteristics of the printed graphite sensors
integrated with FeONPs/rGO nanoparticles were evaluated
based on the ICH guidelines.69 Different ascending increments
of the LUH stock solution were added to the supporting
electrolytes at pH 2, square-wave voltammograms were
recorded, and the estimated peak heights were plotted against
LUH concentration in a nanogram range (Figure 6 & Table 1).
The limit of detection (LOD) and limit of quantification
(LOQ) were estimated as LOD equal to 3.3 × (SD/S) and
LOQ equal to 10 × (SD/S), where SD is the standard
deviation of the intercept, and S is the slope of the calibration
curves (n = 14) The corresponding LOD and LOQ values
were 15.64 and 47.9 ng mL−1, respectively.
The accuracy and precision were assessed using three

different LUH concentrations: 550, 950, and 1600 ng mL−1

(Table S2), where each concentration was prepared in
triplicate. The average recovery for each concentration was
within 100.25 ± 0.92%, indicating a satisfactory accuracy. The
% RSD for the nine preparations (three at each level) was
found to be ≤2.0%, indicating acceptable precision of the
method. The intermediate precision was investigated by the
determination of LUH over 3 consecutive days. The % RSD
for the intermediate precision is shown in (Table S2). The low
% RSD indicates a satisfactory precision of the developed
method.
The stability of the fabricated sensors was evaluated over a

prolonged shelf life storage period through recording of the
square-wave voltammograms at a fixed LUH concentration.
Within the first month, the peak height remained constant
(96.0% of the primary peak heights), which was diminished to
about 92.5 and 89.2% after 30 and 60 days, respectively
(Figure S6). The fabricated sensors showed high reproduci-
bility measurements of the peak current and peak potential.
The fabricated sensors are disposable, and the same electrode
can be used for more than seven successive measurements
without diminishing its performance of the peak height with an
average recovery of 100 ± 1.09% (Figure S7).
3.7. Specificity (Interference Studies). To test the

interference of various LUH degradation products, SWV was
carried out for LUH at the optimal measuring conditions in an
authentic mixture containing its alkaline, acidic, and oxidative
degradants. No obvious interferences were recorded in the

Scheme 1. Computed Systematic Proposed Electrooxidation
of LUH at the Electrode Surface

Figure 6. Square-wave voltammograms for different LUH concen-
trations recorded at FeONPs/rGO printed sensors in BR buffer pH 2.

Table 1. Analytical Performance and Linear Regression
Curve of the Square-Wave Voltammograms Recorded at
Different LUH Concentrations at FeONPs/rGO Printed
Sensorsa

parameters

optimal pH value 2.0
peak potential 1.02 V
linearity range (ng mL−1) 50−2150
slope (μA mL−1ng−1) 0.0096
SD of slope (μA mL−1ng−1) 0.001
intercept (μA cm−2) 1.02
SD of intercept (μA cm−2) 0.0458
correlation coefficient (r) 0.9999
precision (% RSD)
repeatability 0.86
intermediate precision 1.17
LOD (ng mL−1) 15.64
LOQ (ng mL−1) 47.9

an = mean of five determinations. n = 13.
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existence of the aforementioned degradation products (Figure
S8); therefore, it is possible to identify LUH among the
corresponding degradants, and the proposed analysis protocol
can be introduced as a stability-indicating approach.
The impact of the excipients and additives present in Latuda

tablet (croscarmellose sodium and magnesium stearate,
glucose, starch, citric acid, and propylene glycol) was examined
through conducting SWV for 0.5 μg mL−1 of LUH in the
absence and the presence of such interferents. The recorded
average recoveries were acceptable, ranging from 95.96 ± 0.69
to 98.42 ± 0.35%, demonstrating the premium specificity of
the introduced sensor.
3.8. Analytical Applications. To estimate the applic-

ability of the SWV procedure for the identification and
quantification of LUH, the presented method was applied for
LUH content in a marketed Latuda 40 mg tablet in
comparison to the reported HPLC method.50 The results
agreed effectively with the nominal content, and a standard
addition scheme was implemented as shown in Table 2, which
indicates values of the t-test and F-test less than the tabulated
critical values.

Additionally, the bio-analytical validation was verified,
including the accuracy and precision of the proposed
voltammetric measurement method in spiked urine. In drug-
free urine samples, as explained before in the experimental
section, no peak was observed at the predetermined potential
of LUH. Then, the spiking of urine samples was elevated with
predetermined concentrations of LUH, and the quantity of
LUH recovered was determined. Statistical analysis of the data
obtained was performed to test the reliability of the results and
is displayed in Table 3.

3.9. Green Chemistry Assessment. The prepared inkjet
and procedures applied in the electroanalytical measurements
were assessed in terms of environmental risks, suitability, and
reliability for the environment using a semi-quantitative
environmental analytical scale as an evaluation scale.70,71 The
systematic environmental scale is built on penalty points for
demonstrated chemical hazards, potential exposure to occupa-
tional hazards, energy consumed by electrical devices, and
waste-treatment methods; these are recorded by subtraction of
the determined penalty points from 100 as an assessment
metric. If the result is >50, green analysis is considered
acceptable (Table S3). The overall penalty score for the
proposed prepared inkjet and the voltammetric method was
65, indicating a suitable green analysis method.72 The
diminution in the score had been because of nanoparticle
substances and printed substrate. We want to emphasize that
some precautionary measures must be followed in order to
minimize the risk of exposure, particularly for the analyst
involved in the manufacturing and processing procedures. We
want to assure that if certain preventive measures are followed,
the risk of exposure, particularly to the analyst involved in
handling and industrial procedures, is decreased.

4. CONCLUSIONS
The present work was devoted for the development of a novel
printing ink matrix integrated with reduced graphene oxide and
iron oxide nanostructures for the fabrication of flexible printed
sensors. The surface morphological and electroanalytic features
of the printed sensor were considered by using microscopic
and voltammetric techniques, which indicates that the inkjet-
printed sensor has good uniformity and stability and had no
effect on the electrolyte solution. The constructed sensors were
optimized and validated for sensitive and selective SWV
determination of lurasidone in authentic samples in the
presence of its degradants, spiked urine, and market
pharmaceutical formulations. With an enhanced sensitivity,
LUH molecule was oxidized at the electrode surface with a
diffusion-controlled electrode reaction through the participa-
tion of two electrons/protons as assumed by the pH, scan rate,
and molecular orbital calculation studies. At the optimum
measuring conditions, LUH can be assayed within the linear
concentration range from 0.050 to 2150 μg mL−1, revealing an
LOD value of 15.4 ng mL−1. The fabricated sensor exhibited
improved performance and can be introduced as an efficient
tool for the sensitive and reliable voltammetric determination
of LUH in pharmaceutical and biological samples. These
results are expected to provide new insight into the effective
sensing ability of our low-cost printed nanomaterials-based
sensors that could provide a valuable tool for monitoring of
pharmaceutical residues and drug-quality control.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.3c00040.

Photographs of the sample printed substrate for the
FeONPs/rGO printed sensor and connector; cyclic
voltammograms; molecular orbital model of lurasidone
hydrochloride; HOMO structure of the LUH molecule;
effect of voltage step potential on the anodic peak
currents of LUH versus voltage step potential using the
FeONPs/rGO printed sensor at pH 2.0; effect of pulse

Table 2. Statistical Analysis of Outcomes as per the Plot
(SWV) for LUH at FeONPs/rGO Printed Sensors
Compared With the Chromatographic Techniquesa

parameters (SWV) reported HPLC method65

meana 100.044 100.032
SD 0.10 0.11
variance 0.01258 0.01037
N 5 5
student’s t-test (1.860) 0.431
F-test (6.39) 1.213

aMean of five measurements, values in parentheses are the theoretical
values corresponding to t and F at P = 0.05.

Table 3. Estimation of the Precision and Accuracy of the
SWV Technique for Quantification of LUH in Spiked Urine
Samples at FeONPs/rGO Printed Sensors

parameters sample 1 sample 2

added μg mL−1 0.5 1.2
founda 0.502 1.195
recovery % 100.4 99.58
bias (%) 0.002 0.005
ref. method70 (% found) 99.70 99.50
SD 0.114 0.272
RSD % 0.62 0.84
SE 0.120 0.087

aSD = standard deviation; RSD = relative standard deviation, SE =
standard error. Mean of five measurements.
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amplitude on the anodic peak currents of LUH versus
pulse amplitude using the FeONPs/rGO printed sensor
at pH 2.0; intra- and inter-day precision and recovery
data for SWV determination of LUH at the rGO/FeO/
Gr sensor; and penalty points of the SWV method
(PDF)
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