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The incidence and prevalence rate of chronic inflammatory disorders is on the rise in the
pediatric population. Recent research indicates the crucial role of interactions between the
altered intestinal microbiome and the immune system in the pathogenesis of several
chronic inflammatory disorders in children, such as inflammatory bowel disease (IBD) and
autoimmune diseases, such as type 1 diabetes mellitus (T1DM) and celiac disease (CeD).
Here, we review recent knowledge concerning the pathogenic mechanisms underlying
these disorders, and summarize the facts suggesting that the initiation and progression of
IBD, T1DM, and CeD can be partially attributed to disturbances in the patterns of
composition and abundance of the gut microbiota. The standard available therapies for
chronic inflammatory disorders in children largely aim to treat symptoms. Although
constant efforts are being made to maximize the quality of life for children in the long-
term, sustained improvements are still difficult to achieve. Additional challenges are the
changing physiology associated with growth and development of children, a population
that is particularly susceptible to medication-related adverse effects. In this review, we
explore new promising therapeutic approaches aimed at modulation of either gut
microbiota or the activity of the immune system to induce a long-lasting remission of
chronic inflammatory disorders. Recent preclinical studies and clinical trials have
evaluated new approaches, for instance the adoptive transfer of immune cells, with
genetically engineered regulatory T cells expressing antigen-specific chimeric antigen
receptors. These approaches have revolutionized cancer treatments and have the
potential for the protection of high-risk children from developing autoimmune diseases
and effective management of inflammatory disorders. The review also focuses on the
findings of studies that indicate that the responses to a variety of immunotherapies can be
enhanced by strategic manipulation of gut microbiota, thus emphasizing on the
importance of proper interaction between the gut microbiota and immune system for
sustained health benefits and improvement of the quality of life of pediatric patients.
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INTRODUCTION

The role of the immune system is to efficiently target diverse
pathogens, such as viruses and bacteria, to keep cancer cells in
check and avoid reactions against its own tissues and organs (1,
2). Inflammation is the defense mechanism of the body by which
the immune system recognizes and removes harmful and foreign
stimuli and initiates the healing process (3). There are two types
of inflammation: acute and chronic (4). Acute inflammation
starts rapidly, becomes severe in a short period of time and lasts
for a few days (5), whereas chronic inflammation is slow and lasts
for prolonged periods of time–from several months to years.
Chronic inflammation can result from a failure in eliminating
pathogenic organisms during acute inflammation, prolonged
exposure to irritants or foreign materials, defects in the
immune system, or autoimmune disorders (6).

During inflammation in response to foreign antigens, the
immune cells of the tissue, such as macrophages and dendritic
cells, release cytokines [e.g. interleukin-1 (IL-1) and tumor
necrosis factor-a (TNF-a)] that stimulate the infiltration of
circulating leukocytes (7, 8). In addition to the recruitment of
leukocytes, the tissue immune cells also play a role in antigen
removal by phagocytosis and serve as antigen-presenting cells
(APCs) to lymphocytes (9). Neutrophils are the first leukocytes
that enter the local injury site. They destroy the antigen by
phagocytosis and release granules rich in enzymes, reactive
oxygen species, and cytokines, such as IL-1, IL-6, and TNF-a
(10, 11). Lymphocytes, including different types of T and B cells,
are the next line of defense. They play a crucial role in
inflammation by secreting cytokines, producing antibodies and
immune complexes (12, 13). The production of inflammatory
cytokines, growth factors, and enzymes during inflammation
may lead to tissue damage and secondary repair processes (4).

Inflammation in autoimmune disorders is distinct; the
immune system recognizes the normal components of the
body as foreign antigens and attacks healthy tissues (2, 14).
Auto-reactive T cells attack and damage specific tissues and
organs. Several models for explaining molecular mechanisms
triggering autoimmunity have been developed, including
molecular mimicry, breach in central tolerance, non-specific
bystander activation and persistent antigenic stimuli (15). A
recent review provided a comprehensive summary of the
concept of molecular mimicry and its potential involvement in
different autoimmune diseases (16). The hypothesis of molecular
mimicry of foreign antigens by the structures of the body
assumes that two different molecules (such as foreign and self-
Abbreviations: APC, antigen-presenting cell; CAR, chimeric antigen receptor;
CD, Crohn’s disease; CDI, Clostridioides difficile infection; CeD, celiac disease;
DCs, dendritic cells; DGP, deamidated gliadin peptide; EmA, anti-endomysium
antibodies; FMT, fecal microbiota transplantation; GF, germ-free; GFD, gluten-
free diet; GMP, good manufacturing practice; GALT, gut-associated lymphoid
tissue; HLA, human leukocyte antigen; IBD, Inflammatory bowel disease; IBDU,
IBD unclassified; Ig, immunoglobulin; IFN-g, interferon-g; IL, interleukin; NK,
natural killer; RA, retinoic acid; SCFA, short-chain fatty acid; T1DM, type 1
diabetes mellitus; TCR, T-cell receptor; Teff, effector T cells; TNF-a, tumor
necrosis factor-a; Treg, regulatory T cells; tTG, tissue transglutaminase; UC,
ulcerative colitis.
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peptide) have antigenic structures similar enough to be
recognized by the same antibodies or T cells (antigenic cross-
reaction). Regulatory T cells (Treg) are the major cell subset
maintaining tolerance to self-antigens as they can potently
suppress the over-activation of different immune cells,
including effector T cells (Teff), B cells, natural killer (NK) cells,
macrophages, and dendritic cells, and hence, they can maintain
the balance between autoimmunity and self-tolerance (2, 17–19).
Figure 1 summarizes factors that participate in the pathogenesis
of chronic inflammatory disorders.

In this review, we discuss common chronic inflammatory
disorders in children, such as type 1 diabetes mellitus (T1DM),
celiac disease (CeD), and inflammatory bowel disease (IBD),
with a focus on the role of microbiota in their pathogenesis. We
describe current clinical approaches with manipulation of gut
microbiota for pediatric therapy. Since many chronic
inflammatory disorders arise from an imbalance between Teff

cells and Treg cells, we point out the challenges in the
development of effective therapies, disabling over-activated Teff

cells, as well as the adoptive cell therapies, employing suppressive
Treg cells.
MICROBIOTA

The human intestine harbors approximately 1013 to 1014

commensal microorganisms, such as bacteria, viruses, and
fungi, collectively termed as the microbiota (20). The intestinal
microbiota maintains the integrity of the intestinal wall, protects
against the overgrowth of pathogenic microorganisms by
competing for the same nutrients and synthesizing protective
substances, assists in food digestion, and produces vitamins and
immunomodulating compounds such as short-chain fatty acids
(SCFAs) (21–27). Although, some comprehensive reviews have
summarized recent discoveries on the role of microorganisms in
human health (28–30), in the following parts, we highlight a few
important facts related to changes in microbiota composition
and diversity during a life-time.

Microbial colonization of the human gut from maternal (for
example, breast milk or birth canal) and non-maternal sources
(for example, the diet and environment) and maturation of the
gut barrier occur during early life (31–33). The contact with
specific microbes during the first 6 months of life is considered as
most crucial for the gut maturation (34). Finally, by three years of
age, the microbiome profile exhibits the maturity similar to that
found in adults (35, 36). Approximately 2000 bacterial species
have been isolated from the intestine and most of them belong to
four phyla: Firmicutes, Bacteroidetes, Proteobacteria, and
Actinobacteria. About 60% of the human gut bacteria belong
to the phylum Firmicutes, most of which have gram-positive cell
wall structure. They are present mainly in the mucus layer of the
intestine. Bacteroidetes, the second most abundant phylum,
constitutes about 30% of all bacteria in the gut and are gram-
negative bacteria localized primarily in the gut lumen (37–39).
The Firmicutes : Bacteroidetes ratio has been considered to be an
indicator of the degree of maturation of the human gut
June 2021 | Volume 12 | Article 642166
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microbiota and is lower in infants and the elderly compared to
that in adults (40). Clostridium, Streptococcus, Ruminococcus,
Lactobacillus, and Bifidobacterium (gram-positive bacteria) as
well as Bacteroides and Escherichia (gram-negative bacteria) are
the most prevalent bacterial genera in the human intestine (41).
A recent large cohort study compared the stool microbiome of
children and adults, revealing that children exhibit lower
microbiota diversity with higher Bacteroides abundance and
different metabolic pathways (42).

The presence of a large number of symbiotic microorganisms
near the epithelial surface is an enormous challenge for the
mucosal immune system because it must avoid harmful
inflammatory responses to the symbionts, while preserving the
ability to mount an immune response against pathogens (43).
The interaction between gut microbiota and host cells is
regulated by the immune system through pattern recognition
receptors, including Toll-like and NOD-like receptors (44).
Immunoglobulins (Ig) A and G are the predominant antibody
isotypes contributing to intestinal barrier maintenance,
microbiome selection, and decreased activation of innate
immunity (45, 46). Microbiota-specific IgA and IgG are
transmitted to newborns via maternal milk, to protect the
neonatal intestine from bacterial translocation across the
intestinal epithelium (46). Later in life, IgA and IgG are
produced at mucosal sites by gut-associated lymphoid tissues
Frontiers in Immunology | www.frontiersin.org 3
(GALTs) and secreted into the intestinal lumen, where they limit
the translocation of microorganisms into the body (47–49).

Recent findings associating colonization of the infant
intestine by commensal microorganisms with the proper
development and maturation of the immune system in
mucosal tissues have been comprehensively reviewed (50–53).
The early life seems to be a critical period in which immune
system education takes place and the immune cells learn to
tolerate commensal microbiota. Therefore, perturbed crosstalk
between the microbiota and the immune system at this time can
lead to serious life-lasting health defects. For example, an
elevated risk of developing chronic inflammatory disorders,
including T1DM (54, 55), CeD (56) and IBD (57), is associated
with microbial dysbiosis in infants. Numerous studies using
germ-free (GF) animals have provided insights into the
mechanisms, by which the microbiota influences immune
system development and maturation [reviewed in Ref (50, 52)].
Very limited exposure of the immune system to appropriate
microbiota in early life leads to morphological abnormalities in
GALTs, including Peyer’s patches, isolated lymphoid follicles
and mesenteric lymph nodes (50). Functional impairment of the
mucosal immune system in GF animals is related to decreased
quantities of certain T cell subsets, including Teff and Treg cells,
and decreased production of anti-microbial IgAs and IgGs. Such
defects can be partially restored through gut colonization by a
FIGURE 1 | Risk factors for development of chronic inflammatory disorders. These types of diseases are thought to develop as result of complex interactions
between the immune system, microbiome, and environment in genetically-susceptible hosts.
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diverse microbial population (58–63). In contrast, the increased
accumulation of invariant natural killer T (iNKT) cells in colons
of GF animals has been detected and associated with
susceptibility to colitis (64, 65). Interestingly, in mice the
inhibition of iNKT cell expansion and susceptibility to colitis
can be reversed only in the first 2 weeks of life, with the presence
of Bacteroides fragilis in the colon (64, 65).

Perturbations in the Human Gut
Microbiota
There are several factors that can influence intestinal
homeostasis, including cesarean delivery, feeding infant
formula instead of breastfeeding, antibiotics, diet, geography,
and hygiene (66) (Figure 2). A higher degree of gut microbial
diversity, with an increased abundance of Bacteroides, was
observed in infants delivered vaginally than in those by C-
sections (67, 68). These differences persisted up to the second
year of life and are believed to result from the contact of the
infant with vaginal microbiota (for example, Lactobacillus) of the
mother during birth (68–71). Conversely, C-sections are
associated with increased levels of intestinal pathogens such as
Klebsiella, Citrobacter, and Escherichia coli (72, 73).
Frontiers in Immunology | www.frontiersin.org 4
Breastfeeding and antibiotics use are the most significant
factors associated with shaping the development of
microbiome structure during the first year of life. Breast milk
plays a major role in limiting intestinal permeability and
establishing a healthy gut barrier, as it contains a variety of
nutrients, vitamins, macromolecules, and immunoglobulins (46,
74, 75). Moreover, it contains probiotic bacteria, such as
Lactobacillus rhamnosus, L. gasseri, Lactococcus lactis,
Leuconostoc mesenteroides, and Bifidobacteria (76, 77). The
microbiota in breast milk induces immune tolerance, prevents
infection, and participates in the maintenance of the epithelial
barrier (76, 78). The oligosaccharides in breast milk act as
prebiotic substrates for bacterial fermentation and contribute
to the establishment of the infant gut microbiota (77). SCFAs
that are released upon the breakdown of these oligosaccharides
maintain intestinal integrity and minimize the growth of
pathogenic microorganisms (79). These oligosaccharides have
also been shown to inhibit the adhesion of pathogenic bacteria
such as E. coli, Vibrio cholerae, and Salmonella fyris to epithelial
cells (80). Oligosaccharide concentrations are higher in
colostrum on the fourth day post childbirth (preterm mother’s
milk) than that in mature milk at thirty days post childbirth,
FIGURE 2 | Main factors influencing the gut microbiota. Factors, such as mode of delivery, type of baby feeding, diet, age, environment and antibiotics may act
positively or negatively on the intestinal microbiota composition and abundance.
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highlighting the importance of breastfeeding during the first days
of life (81).

It has been reported that in formula-fed infants the
microbiota exhibits a lower abundance of Firmicutes,
Actinobacteria, and Bifidobacterium compared to breastfed
infants (67, 68). Proper gut barrier maturation, manifested by
the decrease in intestinal permeability, is particularly important
in preterm infants, who are susceptible to necrotizing
enterocolitis illness, resulting from a “leaky gut” and dysbiosis
(82, 83). Importantly, gut barrier maturation in preterm infants
can be induced by exclusive breastfeeding till the tenth day after
birth (31, 82). The abundance of the members of Clostridiales in
fecal microbiota seems to be associated with early breastfeeding
(31). Moreover, breastfeeding decreases the incidence of
gastrointestinal tract infections in infants (84).

Antibiotic treatments may also influence the microbiota by
providing favorable conditions for the survival and overgrowth
of pathogenic microorganisms in the intestine, such as S.
typhimurium and Clostridium difficile (85, 86). It has been
shown that oral antibiotics alter the gut microbiota for periods
of time ranging from a few weeks to years (87–89). Increased
antibiotic use, cleaner living conditions, and urbanization have
also changed the exposure to different microorganisms.
According to the hygiene hypothesis, decreased exposure to
microbial antigens during early life could have a negative effect
on the development of the adaptive immune response and may
eventually lead to the development of autoimmune disorders.
Evidence to support this hypothesis is the observation that both
the temporal and geographic incidence of autoimmune and
inflammatory diseases is seen to be parallel with the
industrialization and urbanization of societies (90–92).

Modulation of Microbiota Composition
Recent advances in main microbiota-modulating methods have
been described in details by Quigley and Gajula (93). The most
common interventions include lifestyle modifications, such as
diet changes, caloric restriction, and exercise, as well as clinical
interventions, such as administration of probiotics, prebiotics, or
antibiotics, and fecal microbiota transplantation (93). It is worth
underlining that dietary changes, if sufficiently drastic, can
rapidly change the gut microbiota, even in the span of 24
hours. Changes in dietary practices usually have long-term
effects on the composition and functional capacity of the
microbiota (94). It has been reported that diets high in
fermentable plant sources lead to an increased abundance of
Firmicutes, which metabolize dietary plant polysaccharides. In
contrast, high-meat/low-plant diets lead to increased abundance
of bile-tolerant microorganisms, such as Alistipes, Bilophila,
and Bacteroides species, and a decreased abundance of
Firmicutes (95).

Prebiotics, other important microbiota-modulatory factors,
have been broadly defined by the International Scientific
Association for Probiotics and Prebiotics as “substrates that are
selectively utilized by host microorganisms conferring a health
benefit” (96). The most commonly used are carbohydrate-based
prebiotics, metabolizable by the gut microbiota, leading to
selective stimulation of growth or activity of beneficial gut
Frontiers in Immunology | www.frontiersin.org 5
microorganisms. The fermentation products of prebiotics,
mainly SCFAs, help to maintain the gut barrier integrity (97, 98).

Probiotics are live microorganisms that provide health
benefits upon consumption by improving or restoring the gut
flora. They exert their effects by reducing colonization by
pathogenic microorganisms, enhancing mucus production,
improving epithelium integrity, and balancing the interactions
between gut bacteria and the immune system (99–101). In
infants who receive probiotics, the changes induced by
antibiotic treatment and cesarean delivery are reversed, and the
normal composition and function of gut microbiota is restored
(102–105).

The last method of modulating gut microbiota that we discuss
here is fecal microbiota transplantation (FMT), which involves
the transfer of fecal bacteria from a presumptively healthy donor
into the gastrointestinal tract of affected patient, in order to treat
microbial dysbiosis (106). This method reduces intestinal
inflammation, as demonstrated by decreased levels of
proinflammatory cytokines such as TNF-a, IL-1b, and
interferon-g (IFN-g), and helps in restoring the intestinal
homeostasis. It has been successfully used for treating
recurrent and antibiotic-refractory C. difficile infections (107–
110), even in pediatric patients (111).
TYPE 1 DIABETES MELLITUS

T1DM is an autoimmune disease resulting from an
inappropriate immune response that causes the destruction of
insulin-secreting b-cells of the pancreatic islets, mediated mainly
by autoreactive effector T cells [reviewed in (112)]. Destruction
of pancreatic b-cells leads to the loss of endogenous insulin
production, and results in impaired glucose metabolism. T1DM
is usually diagnosed in children or young adults, but it can
appear at any age (113, 114). With the increasing incidence of
this disorder, the peak age at diagnosis has shifted to a younger
age (115).

The major genetic risk factors involved in the development of
T1DM are located within the class II human leukocyte antigen
(HLA) region (116). The most important loci encode HLA-DR
and HLA-DQmolecules that bind and present antigenic peptides
to T cells. The high degree of polymorphism in the HLA region
indicates that it is possible to mount an antibody response
against a large number of constantly mutating microbial
pathogens. Consequently, this wide diversity of recognized
epitopes may cause the generation of antigenic cross-reactions
due to molecular mimicry. Approximately 70% of T1DM cases
carry HLA risk alleles (117, 118). The loci identified outside the
HLA region are associated with polymorphisms of the insulin
gene INS and lymphocyte protein tyrosine phosphatase PTPN22
gene, resulting in an increased risk of development of T1DM. A
disease-associated genotype of the INS gene is associated with a
poor expression of insulin in the thymus, leading to autoreactive
INS-specific T cells not being destroyed during the thymic
education of T cells (116, 119).

Autoantibodies that recognize insulin, glutamic acid
decarboxylase 65, islet antigen 2, and zinc transporter 8 are
June 2021 | Volume 12 | Article 642166
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most often present in the serum of patients with T1DM, and are
the best characterized autoantibodies associated with T1DM
(120). These autoantibodies are usually present before any
dysglycemia or clinical symptoms appear (121). If only one of
these major autoantibodies is present, the risk of T1DM is small;
however, the presence of two or more autoantibodies indicates a
high probability of developing the disease (122). Interestingly,
children of mothers with T1DM have a relatively low genetic risk
of developing T1DM themselves, as they are at half of the same
genetic risk compared to children with a father who has T1DM.
This observation shows that islet-specific autoantibodies found
in the sera of mothers with T1DM transferred to the fetus do not
damage the fetal pancreatic b-cells (123).

The diagnosis of diabetes is based on the measurement of
blood glucose concentration and the presence of symptoms
(124). Although in the early stages the disease is clinically
silent, hyperglycemia and increased production of ketones
from fatty acids eventually lead to polydipsia, polyuria, weight
loss, and diabetic ketoacidosis (125). The chronic long-term
complications associated with the disease include retinopathy,
nephropathy, neuropathy, and cardiovascular disease (126, 127).
T1DM during puberty appears to accelerate the development of
complications (128).

Role of Gut Microbiota in T1DM
Recently, increasing incidence of T1DM in children within
genetically stable populations has been observed (129), with less
than 10% of genetically susceptible people developing clinical
T1DM (130). This indicates that non-genetic factors also play an
important role in the development of T1DM. Among the
environmental factors that affect the development of T1DM
microbiota composition, microbial infection and nutrition
appear to be key factors. Recent reviews have addressed the
involvement of dysbiosis in the pathogenesis of T1DM (131–
135). Here we very briefly highlight some of the key findings.

Increased permeability of the intestine and changes in the
composition of microbiota seem to be associated with T1DM
pathogenesis (54, 136–143). Comparison of multiple islet
autoantibodies-positive children with healthy controls
demonstrated increased abundance of the Bacteroides species
compared with Firmicutes species (137, 143, 144). The association
of Bacteroides stercoris, B. fragilis, B. intestinalis, B. bifidum as well as
Synergistetes taxa with diabetes was recently confirmed by machine-
learning analyses of bacterial taxa and their metabolic pathways in
children at T1DM onset (145). Autoantibody-positive children
exhibit a low abundance of microbiota that produce butyrate
(137, 141, 146). It has been reported that butyrate-induced mucin
production is important for the integrity of the gut mucosa, and low
levels of species that degrade mucin might imply an increased gut
permeability (147). Moreover, a reduction in SCFA-producing
bacteria was observed in T1DM at the onset of autoimmunity,
which is associated with impaired gut barrier functions (148, 149).
Decreased diversity of the intestinal microbiome has been reported
in pediatric patients with b-cell autoimmunity and in those who
progressed to clinical T1DM compared with non-seroconverted
controls (137, 141). A marked drop in the diversity of the gut
microbiota was also noted in infants genetically predisposed to
Frontiers in Immunology | www.frontiersin.org 6
T1DMduring the time window between seroconversion and T1DM
diagnosis (54). At the same time, a higher abundance of several
pathobionts, including Ruminococcus gnavus and Streptococcus
infantarius, and a lower abundance of bacteria known to
counteract inflammation, such as Lachnospiraceae and
Veillonellaceae, were detected in T1DM-affected patients.
Moreover, there is a correlation between the changes in the gut
microbiota and the pattern of T1DM progression, because the
seroconverted group of patients revealed intermediate abundance
of all these microorganisms compared to the non-converted and
T1DM groups (54).

Some studies showed that delivery by C-section can increase
the risk of T1DM in infants (150–153), suggesting that
microbiota transfer from the mother’s birth canal to the
newborn may be protective against T1DM incidence in infants.
Moreover, a higher T1DM risk was observed in children born
through planned C-sections than in those born via unscheduled
C-sections (154). Therefore, the high number of C-sections in
developed countries may be partially responsible for the
observed increased rate of diabetes (155). However, it should
be emphasized that other studies found no increased cesarean
delivery-associated T1DM risk (156, 157).

After delivery, breast milk is usually the first food that enters
the gut of the newborn. It has been shown that breastfeeding
lowers the risk of developing T1DM compared with formula
feeding (158–160). Human milk oligosaccharides protect against
autoimmune T1DM development in high-risk individuals (161).
As mentioned above, breast milk has a significant effect on the
composition of the gut microbiota of infants, and favors the
dominance of Bifidobacterium because of its specific ability to
degrade human milk oligosaccharides (162–164). The decrease
in the proportion of Bifidobacterium, especially B. longum subsp.
infantis, is temporally associated with the increased incidence of
T1DM in childhood (165).

Several studies have reported that antibiotic use increases the
risk of T1DM development, in contrast to antiviral or antifungal
drugs (166–168). It was shown that exposure to a single
antibiotic is not associated with higher diabetes risk, but taking
two to five antibiotic courses is associated with an increase in
diabetes risk (166). Another study found that the use of broad-
spectrum antibiotics during the first 2 years of life is associated
with an increased risk of T1DM during the later years of life
(167). Moreover, the antibiotic-associated risk for T1DM is
influenced by the mode of delivery, being higher in children
delivered by a C-section than those delivered vaginally (167).
However, it is important to note that other studies did not find a
correlation between antibiotic use and T1DM (169, 170).

In agreement with the hygiene hypothesis, newborn infants
from less-developed areas who are exposed to a wide range of
microbial antigens and therefore receive strong immune signals
are protected from diabetes (171).

Treatment of T1DM
Management of T1DM requires daily administration of
exogenous insulin and frequent monitoring of blood glucose
levels (172, 173). Despite ongoing technological advances in
recombinant insulin, and technologies to deliver insulin and
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monitor blood glucose levels, the majority of affected patients
cannot achieve the recommended glycemic targets (174–177).
Particularly in children and young adults, blood glucose control,
measured using glycated hemoglobin levels, is typically poor,
reaching >8% in the majority when the desired levels are below
7.5% (174). As a result, patients remain at risk of acute and
chronic long-term complications associated with the disease.

As multiple islet-specific autoantibodies are found in
circulation from a few weeks up to 20 years before the clinical
onset of this disease, there is a potential opportunity to prevent
or postpone pancreatic b-cell loss. Therefore, other approaches
are sought to maintain endogenous insulin secretion or impede
the already-developed islet autoimmunity. These approaches
include therapy with Treg cells (178–180), treatment with Fc
receptor non-binding anti-CD3 monoclonal antibodies
(teplizumab and otelixizumab) (181), and antigen-specific
peptide immunotherapy that sequesters auto-antibodies
(182–184).

Microbiota in T1DM Therapy
Modulation of the intestinal microbiome of affected individuals
seems to be an obvious therapeutic approach for alleviating
T1DM. The most promising T1DM treatments, leading to the
improvement of the composition and diversity of gut microbiota
include strategies such as increasing infant exposure to beneficial
bacteria during early life, the transfer of gut microbiota (FMT
approach) from presumptively healthy donors to T1DM-prone
individuals, and administration of probiotics and prebiotics
to replenish or repair the missing bacterial taxa [summarized
in a recent review (185)]. It has been shown that probiotics
administered in early infancy positively correlated with
decreased islet-specific autoantibodies (186). Probiotic
treatment improves overall islet function and gut islet
immunomodulation and helps to control diabetes (187).
Moreover, administration of the natural prebiotic, inulin-type
fructans, improve gastrointestinal tract functions with a relative
increase in Bifidobacterium species compared to the controls
(188). In addition, experiments in mouse models of T1DM
provide evidence that microbial metabolites, namely the SCFAs
(products of fermentation by anaerobic intestinal microbiota),
protect genetically-susceptible mice from developing diabetes
(189). Nevertheless, the strategies for reshaping gut microbiota
require further research exploration, since the “healthy”
microbiota composition has not been precisely defined yet.
Therefore, only limited conclusions concerning the directions
toward modulation of the microbiota can be drawn for
now (185).

Adoptive Therapy for T1DM
As mentioned above, Treg cells are the guardians of immune
homeostasis and can inhibit autoreactive immune responses. In
healthy individuals, Treg cells migrate to target tissues and
suppress inflammation either by direct contact with antigen-
presenting cells (such as dendritic cells), metabolic disruption
and cytolysis of effector T cells (Teff), or secretion of soluble
inhibitory cytokines that dampen the function of autoreactive
cytotoxic cells (190–192). Importantly, the loss or defect in Treg
Frontiers in Immunology | www.frontiersin.org 7
cell function is implicated in the development of autoimmune
diseases like T1DM (179), where the immunosuppressive
function of Treg cells is impaired due to the reduction in the
cell number, survival, or activity (190). The pathogenesis of
diabetes is well mimicked in non-obese diabetic mouse models,
where defects in function of Treg cells are also reported (193,
194). Hence, in order to establish immune tolerance, cellular
therapies employing thymic Treg cells expanded in vitro, under
conditions of good manufacturing practice (GMP), are emerging
as potentially attractive therapeutic strategies. These cells have
been extensively tested for the treatment of T1DM and have been
shown to either prevent the development or reverse diabetes in
preclinical studies (195, 196), and the first clinical trials with
autologous polyclonal Treg cells expanded in vitro (178–180, 197,
198). Although no serious adverse effects were reported during
the therapy (178, 179), an important concern is the in vivo
stability of the Treg cell phenotype upon adoptive transfer. This
feature of Treg cells is strictly dependent on the stable expression
of the master transcription factor FOXP3 (199, 200).

Recently, a new experimental strategy has been designed to
generate genetically engineered T cells from the patient that can
function, persist and proliferate like normal Treg cells in vivo after
infusion, enter the pancreas, and protect the function of islet cells
(201). Gene editing techniques based on homology-directed
repair were employed in this study. This strategy allows
persistent and high expression of FOXP3 from the endogenous
locus in patient CD4+ T cells, which is sufficient to convert them
into functional Treg cells with sustained expression of canonical
phenotypic markers and cytokine profiles (201) (Figure 3).

The immunosuppressive functions of genetically engineered
Treg cells have been demonstrated in a previously characterized
murine model of inflammatory disease, where the injection of
human Teff cells into immunodeficient NOD/SCID/gamma mice
led to extensive Teff cells infiltration into numerous mice tissues
followed by an immune response leading to severe xenogeneic
graft-versus-host-like disease (202). In such a mouse model, the
pre-injection of genetically engineered human Treg cells three
days before injection of autologous Teff cells completely
suppressed the activation of Teff cells and the development of
graft-versus-host disease (201).

The specificity of immunosuppression executed by
engineered Treg cells towards autologous pathogenic Teff cells
can be enhanced by the expression of either the antigen-specific
T-cell receptor (TCR) or the chimeric antigen receptor (CAR) on
the surface of the Treg cells (203, 204). Studies using mouse
models of autoimmune diabetes have demonstrated that therapy
with antigen-specific Treg cells can improve the targeting of the
adoptively transferred cells to specific tissues, and allow the
specific recognition of common antigens in autoimmune
diseases (195, 205, 206). Therefore, the antigen-specificity of
Treg cells can improve their suppressive potency as well as the
safety and efficacy of Treg cell-based therapies (201, 207).

However, some important considerations concerning the
effect of transgenic expression of antigen-specific TCRs or
CARs on Treg cell function should be kept in mind. It has been
recently shown that the progression of T1DM is associated with
reduced diversity of T-cell clones due to the expansion of clones
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with antigens-specific (mainly proinsulin-specific) TCRs in both
autoaggressive Teff and suppressive Treg cell populations. This
suggests that some common antigens stimulate the expansion of
both T-cell subsets (208). Since the final outcome of the adoptive
Treg cell therapy may depend on the balance between Teff and
Treg subsets, the therapeutic Treg cells should theoretically be
equipped with TCRs or CARs specific to antigens with higher
affinity toward Treg cell populations only.

Controversies and Current Research
Gaps in Adoptive Therapies for T1DM
and Potential Future Developments
in This Field
The treatment of T1DM remains within the definition of ‘unmet
medical need’ as there is no approved therapy stopping the
progression of this disease and the only standard of care therapy
is substitution with different forms of insulin injections.
Undoubtedly, T1DM is the result of an immune-mediated
destruction of pancreatic islets, but the primary trigger of this
Frontiers in Immunology | www.frontiersin.org 8
reaction is elusive. Until recently, the autoimmune background
has been considered as the most probable mechanism (209), but
recent reports also bring up the role of gut-associated
microbiome and inflammation (210). The autoimmune
background is suggested mainly by the linkage of T1DM with
particular HLA haplotypes and organ-specific autoantibodies
whose sensitivity and specificity allows them to be used as a
laboratory marker of the diagnosis. On the other side, there are a
number of autoantigens postulated triggers of autoimmune
activation in T1DM, but none of them have been definitively
confirmed as a single cause of the disease (211). Moreover, the
trials with the use of these autoantigens as agents inducing
tolerance in humans failed (212). The inflammatory
background also remains unclear. Although the distinct pattern
of gut bacteria in T1DM has been described, there is no direct
evidence that the disease can be induced by these bacteria or
cured by microbiome transplantation (149).

Having no clear target for precisely directed interventions,
current attempts of the treatment focus on wider approaches.
FIGURE 3 | Schema of possible therapeutic approaches with adoptive cell therapies involving genetically modified regulatory T cells. The blood of patient with type
1 diabetes mellitus (T1DM) is used for isolation of CD4+ T cells. These cells, expanded in vitro, undergo transition to regulatory T cells (Treg) by genetic modification,
leading to stable expression of the FOXP3 protein (master transcription factor of Treg cells). These cells are further modified by the expression of antigen-specific T-
cell receptor (TCR) or chimeric antigen receptor (CAR). Upon infusion, the genetically modified Treg cells localize to the pancreas of the patient, where they inhibit the
cytotoxic function of effector T cells (Teff), responsible for destruction of pancreatic islet cells.
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The most promising studies at the stage of clinical trials in
humans cover the use of depletion agents, such as teplizumab
(anti-CD3 antibody) (213), or adoptive transfer or induction of
tolerogenic cells, such as polyclonal T regulatory cells (197).
Briefly, depletion therapies are directed towards elimination
(physical or functional) of autoreactive T effector cells,
including islet-reactive T cells. The increase in the level of
tolerogenic cells aims to switch off unwanted autoantigen
presentation and autoimmune response by effector cells, even
though the autoantigens are not clearly defined. These
approaches come along with the pathogenesis of the disease as
it is not only the autoimmunity itself, but rather an imbalance
between effector and regulatory subsets, which is regarded as the
factor facilitating the onset of T1DM (208). A common feature in
this new wave of trials is the attempt to recruit patients who are
in a very early stage of the disease, possibly at the asymptomatic
phase. Some trials recruit healthy subjects susceptible to the
development of the disease, such as members of the families of
T1DM patients, offering the therapy as a kind of prophylaxis.
These trials give the advantage of a less exacerbated immune
process, probable lower numbers of autoantigens involved in the
process before substantial epitope spread, and a higher
proportion of the pancreas preserved. Novel diagnostic tools
already allow us to identify such subjects (214). Scientifically,
having insight into such early-phase trials, we might also be able
to finally establish the autoantigens that are pivotal for the
induction of the disease. It is highly possible that autoantigens
change during the course of the disease due to the epitope spread,
and particular stages of the disease may require interventions
towards different autoantigens. Unfortunately, all these attempts
leave behind patients with overt T1DM. It can be assumed that
antigen-specific reactions are massive in these cases, and
therefore they are much more difficult to harness (215). At the
same time, the destruction of the islets is advanced to a high level
at this stage. While exogenous insulin remains the only routinely
available solution for these patients, they are good candidates for
regenerative therapies, but these are slow and tedious to be
adopted into clinics (216). Nevertheless, immune interventions
might also be necessary here, as the autoimmune reactions are
long-term memorized and can reappear many years after the
onset of the disease as seen post islet allotransplantation in long-
term T1DM patients (217).
CELIAC DISEASE

CeD is a chronic autoimmune disease caused by a dysregulated
immune response to gluten, characterized by remodeling of the
small intestinal mucosa and villus atrophy. It is triggered by the
ingestion of gluten in genetically predisposed individuals (218, 219).
Gluten is a protein component of grains, consumed nowadays in
significant quantities. While archeological research has provided
evidence of grain consumption as early as 100,000 years ago (220),
the more recent (10,000-20,000 years ago) domestication of grains,
such as wheat, may have resulted in increased exposure to the gluten
protein. Peptides that are the final products of partial gluten
digestion can trigger increased gut permeability, gluten trafficking
Frontiers in Immunology | www.frontiersin.org 9
to the lamina propria, innate and adaptive immune response, and
tissue damage (221–226). Tissue transglutaminase (tTG) has been
identified as the autoantigen in CeD (227).

The genetic susceptibility to CeD is majorly contributed by
HLA-DQ2 and/or -DQ8 (219), since the HLA-DQ molecules are
responsible for the binding and presentation of gluten-deriving
peptides to effector memory T cells that appear to drive the
development of CeD (228). Apart from that, at least 39 non-HLA
genes that predispose certain individuals to the disease have been
identified, most of which are involved in inflammatory and immune
responses (229). It is estimated that up to 40% of the general
population carries the susceptibility genes, but the prevalence of
CeD is only about 1% of the general population (230–232) and is
higher among women (233, 234). The average age at diagnosis is the
scholar age, which is between 6 and 9 years (235), but the disease
can occur at any time from early childhood to old age.

Classical CeD is defined as CeD presenting with signs and
symptoms of malabsorption: diarrhea, steatorrhea, weight loss,
and growth failure. Other intestinal manifestations frequently
described are bloating, aphthous stomatitis, alternating bowel
habits, constipation, and gastroesophageal reflux disease.
Classical malabsorptive symptoms of CeD are more commonly
detected in the pediatric population. Up to two-thirds of cases
exhibit classical presentations, and atypical symptoms, such as
abdominal pain and poor growth, can be the chief complaint in
the rest of the cases (236). Extraintestinal manifestations include
osteopenia/osteoporosis, anemia, elevation of liver enzymes, and
recurrent miscarriages in adults (237). Short stature is the most
common extraintestinal manifestation in children, sometimes
being the only clinical sign of the disease, and iron deficiency-
induced anemia dominates in adults (238–240). Some
extraintestinal manifestations are clearly correlated with the
severity of intestinal damage (239, 241, 242). Anemia is
associated with malabsorption of iron, vitamin B12, and folate
(243, 244). Growth retardation is caused by nutrient
malabsorption (245), and osteopenia may occur due to
malabsorption of calcium and vitamin D and the consequent
high bone turnover (246). Another specific manifestation of CeD
is dermatitis herpetiformis, which is an itchy blistering skin
disease typically observed on the elbows, knees, and buttocks,
and occasionally in the scalp and upper back (247).

For the diagnosis of CeD, duodenal biopsy plus positive
serological tests (anti-tTG antibodies, anti-endomysium
antibodies (EmA), and deamidated gliadin peptide (DGP)
antibodies) are the gold standard (248, 249). Pediatric patients
with high titers (over ten times the cutoff) of anti-tTG antibodies,
detectable EmA antibodies, HLA-DQ2/HLA-DQ8 positivity, and
symptoms of CeD may skip the duodenal biopsy (230).

Role of Gut Microbiota in CeD
The incidence of CeD has increased in the past decades,
suggesting the role of environmental factors in addition to
gluten (250, 251). Patients with CeD present increased
intestinal permeability; this may favor gluten sensitization as
the characteristic adaptive immune response in patients with
CeD takes place in the lamina propria (252). Disruption of the
functional epithelial barrier of the intestine by opportunistic
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pathogens or infections may favor this condition [addressed in
depth by a recent review (253)]. In patients with CeD, a shift
toward a proinflammatory community and an increase of
Proteobacteria and opportunistic pathogens, such as Neisseria
or E. coli, as well as higher bacterial virulence genes have been
observed (254–259). Bacteroides fragilis strains expressing
metalloproteases, which have often been reported in patients
with CeD, may lead to increased intestinal permeability,
production of immunogenic peptides, and provoke an
inflammatory response (260). Increased prevalence of
pathogenic bacteria is also observed in the intestines of infants
at risk of developing CeD (261).

CeD has been generally associated with alterations in the
microbiome composition in both pediatric and adult populations
(254, 261–264). Numerous studies have shown that the
abundance of certain microbial taxa is significantly different in
patients with CeD compared to that in healthy controls. Studies
on intestinal biopsies and fecal samples have shown an increased
abundance of Bacteroidetes (265) and Proteobacteria phyla
(266), and a higher frequency of Clostridium (267), Bacteroides
(265, 268), and Prevotella spp (269) in patients with CeD. The
abundance of Lactobacillus and Bifidobacterium spp., on the
contrary, is lower than that in controls (265, 270). It may be
noted that Bifidobacterium can degrade proinflammatory gluten
peptides and reduce their immunogenic potential (271, 272).
Some lactobacilli have been shown to digest amylase-trypsin
inhibitors, which are wheat proteins other than gluten that
induce an innate immune response. Moreover, the
administration of certain Lactobacillus species decreases both
the permeability and inflammation stimulated by amylase-
trypsin inhibitors (273).

Specific changes in the microbiota of patients with CeD have
also been described and associated with poor clinical
responsiveness to GFD (274) and the clinical manifestations of
the disease (275). For example, compared to patients with other
clinical features of CeD, the microbiota of patients with dermatitis
herpetiformis is more similar to that of the controls (275).

A recent analysis of the gut microbiota and diet-related
metabolites in a large cohort of children affected with CeD
revealed specific microbiota signatures for both untreated
individuals with new-onset CeD and individuals treated with
GFD, with respect to the healthy controls (276). The authors
confirmed the overabundance of the microbiota taxa mentioned
above, such as Bacteroides. Additionally, they detected a lower
abundance of Alistipes in children with new-onset CeD. The
reduction in Megamonas, Ruminococcus, and Holdemanella was
recognized as a consequence of the treatment with GFD.
Importantly, the authors identified a lower abundance in 11
specific bacterial taxa considered as biomarkers of CeD, with
Clostridium sensu stricto 1 as the most influential one (276).

Changes in the microbiome have also been correlated with
alterations in microbiota-derived metabolites (270, 277, 278). It
has been shown that patients with CeD have altered fecal SCFAs,
the end products of fermentation of dietary fiber by the intestinal
microbiota, and increased proteases (254, 279). Duodenal
biopsies of patients with CeD show a high proteolytic activity
that correlates with the proliferation of protease-producing
Frontiers in Immunology | www.frontiersin.org 10
pathogens such as Pseudomonas aeruginosa (254). P.
aeruginosa cleaves gliadin peptides, whose immunogenicity can
be reduced by lactobacilli found in non-CeD controls (254, 273).
In addition to intestinal dysbiosis, the salivary microflora, which
plays a role in hydrolyzing proline and glutamine-rich peptides,
has also been shown to be altered in patients with CeD (280).

It has been shown that environmental factors, such as
breastfeeding (281), influences the composition of the
intestinal microbiota and may play a role in the development
of CeD (282, 283). Oligosaccharides present in human milk
enhance the gut barrier integrity by making the epithelium less
vulnerable to bacteria-induced innate immunity (284).
According to some studies, antibiotic exposure during the first
year of life has been associated with an increased risk of
developing CeD (285, 286), however, other reports have not
found this type of causal association (170, 287). Some studies
(234, 288), but not all (289), reported an association between
changes in infant feeding practices and an increased incidence
or earlier onset of CeD. In particular, a decreased duration of
breastfeeding and the discontinuation of breastfeeding upon the
introduction of gluten-containing complementary foods to the
infant diet has been attributed to the “epidemic” of CeD in a
Swedish population of children (234). The protective effect of
concomitant breastfeeding and the introduction of gluten might
result from the development of oral tolerance to gluten,
enhanced by either breast milk-derived immunomodulatory
factors or breast milk-stimulated infant gut colonization by
beneficial microorganisms (290, 291). On the other hand, large
amounts of gluten introduced to the diet of < 2-year-old children
increases the risk of CeD (292).

Interestingly, several studies indicate that the HLA-DQ
genotype may regulate gut colonization (261, 293, 294). The
genotype of infants at risk of developing CeD influences the
intestinal microbiota composition (294). Compared to control
infants, neonates carrying the CeD-predisposing HLA haplotype
show increased Firmicutes and Proteobacteria, and reduced
Bacteroidetes and Actinobacteria. These patterns persist up to
2 years of age and are correlated with alterations in microbial
metabolite production (295). For more details, concerning the
association of changes in gut microbiota with risk of CeD
development in children and adults, please see recent reviews
(296–299).

Treatment of CeD
The only effective treatment available for CeD to resolve the
symptoms associated with the disease and normalize the
intestinal villi architecture is a strict gluten-free diet (GFD)
(300–302). Generally, the clinical response to this treatment
occurs much faster in children than in adults (238, 239).
Problems arise when the GFD is not properly followed, which
occurs mostly in adolescents (303). Seropositive patients with
CeD may gain significant symptom improvement with
administration of a mixture of two gluten-targeting
recombinant proteases that decrease the immunogenicity of
gluten in the small intestine by degrading it in the stomach
(304, 305). Another novel oral agent, larazotide acetate, functions
by regulating intestinal tight junctions, thereby preventing gluten
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from reaching the small intestinal submucosa and triggering an
immune response (306).

Since the gluten antigen-specific memory T cells are the key
players in the pathogenesis of CeD and they are able to persist in
patient’s blood and gut for decades (307), new approaches to
target such T cells can be considered as promising alternative
therapeutic strategies for CeD. Antigen-specific immunotherapy,
aimed at tolerance induction, is particularly relevant, since CeD
is one of few autoimmune diseases where the antigens and
driving pathogenic T cell responses are known (308). In order
to induce immune tolerance, gradually escalating doses of
disease-relevant antigens can be delivered by systemic or local
administration. Different protocols for allergen desensitization
have been developed for tolerogenic immunotherapies, with an
aim to trigger either reprogramming of antigen-specific T cells
into Treg cells or their clonal deletion by inducing cell death. The
gluten antigens, delivered with gradual dose escalation, are
presented to T cells in a tolerogenic manner. These approaches
are either based on the systemic delivery of:

• Vaccines containing gluten-deriving antigenic peptides [such
as Nexvax2; clinical trial NCT03644069 (309)],

• Synthetic nanoparticles coated with complexes consisting of
antigenic peptides bound to MHC molecules (310),

• Nanoparticles loaded with the antigens, together with
immunomodulatory agents [clinical trial NCT03486990
(311, 312)],
Frontiers in Immunology | www.frontiersin.org 11
• Engineered erythrocytes, loaded with the antigens (313, 314)

or the delivery of antigenic peptides to mucosal tissue, mediated
by genetically modified Lactobacillus lactis bacteria (315).

Additionally, methods to selectively eliminate disease-driving
memory T cells have been tested, including restimulation-
induced cell death (such as continuous activation of T cells
with antigen and agonists of activating pathways (316), cytokine
withdrawal-induced death (317), and selective induction of cell
death by interfering with metabolic pathways of activated T cells
(318). Figure 4 summarizes selected approaches for the
treatment of CeD.

Microbiota in CeD Therapy
Compliance with the gluten-free diet (GFD) is difficult (319), and
thus, alternative therapies are more feasible (320). The use of
probiotics has been suggested as a supplemental treatment for
patients with refractory CeD (321). Specific Lactobacillus strains
have been shown to reduce the immunotoxicity of gluten (322),
and probiotic cocktails including L. rhamnosus have been shown
to improve intestinal barrier function (323). B. breve and B.
longum have been shown to have anti-inflammatory properties
in children with CeD (324). In the future, findings on gluten-
degrading activities by specific microorganisms may open new
possibilities for a probiotics-based complementary therapy of
CeD. Many clinical trials involving the use of probiotics to treat
and prevent CeD are promising (325), but more studies are needed
FIGURE 4 | Antigen-specific therapies aiming at tolerance induction in celiac disease. (A). Peptides deriving from poorly digested gluten, enter lamina propria, where
they are taken up by antigen presenting cells (APCs). Only HLA-DQ2 or -DQ8 molecules are able to bind antigenic gluten-deriving peptides and present them to
gluten-specific CD4+T cells. These cells become activated, proliferate, release cytokines (e.g. IFN-g and IL-21) and migrate to the lamina propria, where they induce
cytotoxic function of intraepithelial lymphocytes (IELs), that kill epithelial cells. (B, C). Therapy-induced tolerance is based on the gradual dose escalation of delivered
gluten peptides (e.g. released from nanoparticles or bound to MHC molecules on nanoparticles). Presentation of antigens to gluten-specific CD4+T cells in a
tolerogenic manner, leads to either death of these T cell clones (B) or their differentiation to Treg cells (C), that are able to inhibit immune reaction by multiple ways,
including release of TGF-b and IL-10.
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to better understand the exact mechanisms linking dysbiosis and
probiotics with the onset and development of this disease. The
studies comparing the fecal samples and duodenal biopsies,
obtained from patients with CeD versus healthy individuals,
have shown a severe alteration of gut microbiota (270, 326, 327).
When patients with CeD were treated with GFD, the increased
concentration of bacteria was reduced to that in the healthy
population, which suggests the influence of diet on intestinal
microbiota. However, in most studies only partial modulation of
the microbiota was observed on the GFD (328, 329). In vitro
studies to assess the use of probiotics in the treatment of CeD,
have demonstrated that selected Lactobacilli strains, when added
to sourdough fermentation, lyse the proline/glutamine-rich
gluten peptides, reduce the gluten concentration to <10 ppm
(gluten-free), and decrease their immunotoxicity (330). Four
strains of Lactobacilli (L. ruminis, L. Johndoni, L. amylovorus,
L. salivaris), capable of degrading and reducing the
immunotoxicity of gliadin peptides, were identified from
the proximal gastrointestinal tract of pigs (331). In a study
including 20 patients with CeD, receiving hydrolyzed wheat
gluten bread (containing Lactobacillus alimentaris, L. brevis,
L. sanfranciscenis, L. Hilgardi) for six days, no significant increase
in IFN-g responses, compared to healthy controls, was found (332).
In another study, that challenged CeD patients in remission for
2 months with Lactobacilli predigested gluten, no worsening
of symptoms, histological structure of the small intestine or
serological marker was found (333). This outcome suggests
that Lactobacilli-derived peptidase was capable of completely
degrading gluten and reducing its immunotoxicity in CeD (334).
These studies indicate that the addition of probiotics, rich
in Lactobacilli spp., may alleviate the consequences of accidental
or contaminant gluten exposure (333). Dysbiosis in CeD is
associated with abnormal tight junctions and increased intestinal
permeability. Lindfors et al. studied the effects of probiotics on
human colon cells and demonstrated that B. lactis decreased
intestinal permeability, and the effect was dependent on the
probiotic’s dose (272). Moreover, Bifidobacteria downregulated in
vitro proinflammatory cytokines production induced by gliadins
(271) or by fecal samples from patients with CeD. This suggests
that Bifodobacterial strains can reverse the effects of CeD-associated
microbiota (335). Lactobacillus rhamnosus GG strain decreased
gliadin peptide-induced changes in intercellular junction proteins
and gliadin-induced enteropathy in rats. Similar beneficial effects of
probiotic B.longum CECT 7347 were observed in the small bowel
of weaning animals fed gliadin. These observations may suggest
that early administration of probiotics can have a protective effect
on the intestinal mucosa (336). All the above-mentioned studies
indicate a beneficial effect of probiotics on digestion of gliadin
peptides, intestinal barrier, and immune system, as well as on
intestinal mucosa (337–339).
INFLAMMATORY BOWEL DISEASE

IBD is a group of chronic, relapsing, and remitting inflammatory
conditions that primarily affect the gastrointestinal tract (340–
342). Traditionally, it has been divided into Crohn’s disease
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(CD), ulcerative colitis (UC), and IBD unclassified (IBDU). It
begins most commonly during adolescence and young
adulthood, as up to 25% of IBD patients are below 18 years of
age (343–346).

The cause of IBD remains poorly understood; however,
research shows the involvement of genetics, microbiome,
environment, and immune system (347). The disease has a
complex multifactorial etiology with genetic defects in pathways
associated with the immune system, epithelial barrier, and
infections (57, 347, 348). Interestingly, among numerous
genetic loci associated with IBD risk, there is also the PTPN22
gene (349), one of the previously mentioned risk factors for
T1DM. In contrast to diabetes, the autoimmunity-associated
polymorphic variant of the PTPN22 protein seems to be
protective against IBD risk, an effect associated with alterations
in the gut microbiota composition in humans (350) and mouse
models of colitis (351). There is an overlap in the genetic
susceptibility to CD and UC, with patients frequently having
subtypes of both diseases in their family history (347, 352, 353).

CD and UC have typical features that can aid diagnosis. CD
can occur from the mouth to the anus, and it is patchy,
transmural, granulomatous, and may have stricturing or
penetrating (fistulating) features (354, 355). In addition, 20%
of children with CD have perianal involvement, such as skin tags,
fissures, fistulas, and abscesses (356). Conversely, UC is a disease
of the colonic and rectal mucosa that usually does not lead to
fibrotic strictures or perianal disease (357). IBDU, which does
not fit into the other groups, is more common in children (358).
Extraintestinal manifestations of IBD include dermatologic
conditions, such as erythema nodosum and pyoderma
gangrenosum, arthritis, growth failure, osteoporosis, and
anemia. Approximately 20% of children present with
extraintestinal manifestations of IBD, such as growth failure,
anemia, and perianal disease, as the only initial features (359).

For IBD diagnosis, intestinal endoscopy with biopsy remains
the standard (355). Examination of the stool is done for
inconspicuous blood and pathogens. Fecal calprotectin, a
neutrophil-derived protein with elevated concentrations during
intestinal inflammation, is a useful biomarker (360, 361).

Breastfeeding is known to protect against the development of
IBD, with greater benefits accruing from a longer duration of
breastfeeding. In addition, high fiber and fruit intake is
associated with a decreased risk for CD, and a high intake of
vegetables is associated with a decreased risk for UC. Diets high
in fats and meat are associated with an increased risk of IBD (95,
362, 363).

Role of Gut Microbiota in IBD
Multiple lines of evidence support the important role of the
microbiota in the initiation and progression of IBD (364),
highlighting reduced microbial diversity in the guts of both
pediatric and adult patients (365–367).

Previous methods for pathobiont discovery in IBD patients
focused on identifying intestinal bacteria bound to IgA (368,
369). Currently, nucleic acids sequencing analysis of IgG-bound
microbes is considered a more clinically relevant method (370),
since in IBD patients, the level of IgGs in the gut lumen is
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elevated (371), and IgGs seem to be more specific toward
pathogens than IgAs (372). Analysis of the microbiome in
pediatric IBD patients revealed increased IgG binding by
invasive strains, such as Burkholderia cepacia, Flavonifractor
plautii and Rumminococcus sp., while IgG binding of non-
invasive Pseudomonas protogens was reduced (370). Other
studies reported alterations in certain genera of the phylum
Firmicutes and increased abundance of Enterobacteriaceae
species in adults affected by IBD (373, 374). Some studies have
also shown changes in Bacteroides spp (375). These changes are
generally more pronounced in patients with CD than in patients
with UC (376). Numerous other disease-specific changes in the
microbiome have been recently reported in IBD patients (377,
378). Several pathogens, including S. enterica, Shigella flexneri,
Yersinia enterocolitica, and V. cholerae may participate in IBD
pathogenesis because they produce mucin-degrading enzymes
(379–382), and they may break down the intestinal mucosal
barrier that reduces the contact between microorganisms and the
epithelial cell surface. In this manner, pathogens may increase
the susceptibility of IBD development (383, 384). In addition,
decreased numbers of SCFA-producing microorganisms, such as
Clostridium spp. and Faecalibacterium prausnitzii, have been
observed in patients with IBD (373, 385–387). The decreased
abundance of Faecalibacterium prausnitzii in the ileum is
associated with an increased risk of postoperative recurrence of
ileal CD and endoscopic recurrence at six months (385).
Roseburia spp. and F. prausnitzii, members of the Firmicutes
phylum, are among the most beneficial microbes (385, 388).
Besides producing SCFAs by fiber fermentation, these microbes
also secrete several anti-inflammatory metabolites (389). SCFAs,
particularly butyrate, promote the development of Treg cells and
mucus production to downregulate inflammatory signaling
pathways (390, 391).

Another feature of IBD is the reduction of the tryptophan
metabolite, indoleacrylic acid, produced by several
Peptostreptococcus spp., which also promotes the function of
the mucosal barrier and reduces inflammatory responses (392,
393). Some great reviews addressing the complex interplay
between important dietary factors and microbiota profiles in
health and IBD have been recently published (394–396).

Although the differences in microbiota composition may
indeed reflect IBD-specific changes, one must keep in mind
that the microbiota composition exhibits significant
heterogeneity between presumptively healthy individuals, even
within the same person, when it is assessed at different time
points (366, 397). This conclusion underlines the need for large
cohort studies, that may differentiate between disease-dependent
and –independent, as well as disease activity-dependent changes
in microbiota composition. A recent large cohort longitudinal
study ranking the main factors affecting microbiota variance in
IBD patients listed geographic location, CD diagnosis, history of
surgical resection, consumption of alcohol, presence of UC,
medications taken, and dietary habits as the most significant
(366). A recent machine-learning analysis uncovered an
additional level of complexity in the relationship between the
gut microbiome and disease activity, reporting microbiome
influence on gene regulation (transcriptomic profile) of the
Frontiers in Immunology | www.frontiersin.org 13
host in large groups of patients with colorectal cancer, IBD
and related Irritable Bowel Syndrome. Moreover, the regulation
of different host signaling pathways by the gut microbiota seems
to be disease-specific [https://doi.org/10.1101/2021.03.29.437589
and (398)].

Treatment of IBD
Current therapeutic strategies focus on treating IBD relapses and
prolonging remission (340–342). For the induction of remission,
exclusive enteral nutrition, corticosteroids, or anti-TNF-a
antibodies (infliximab and adalimumab) are used (399, 400).
Exclusive enteral nutrition, which is a nutritionally complete
elemental and polymeric formula diet that contains no solid
food, is the first-line option for induction of remission in
pediatric CD (341), because it is as effective as corticosteroids
in inducing remission, but without the side effects associated
with corticosteroid therapy (401–403). Once remission has
been established, it is maintained with the following agents:
5-aminosalicylate, thiopurines or anti-TNF-a antibodies.
New-generation monoclonal therapies include vedolizumab
and ustekinumab. Surgical intervention is often required in
both UC and CD, as seen in 10% and 25% of children prior to
the age of 18 years, respectively (404, 405). Unfortunately, there
is no permanent cure for the disease. Medications currently
available are extremely effective, but have significant potential
toxicity, including increased infection risk, steroid toxicity, and
increased risk of malignancy.

Since the loss of immune homeostasis due to defects in the
number and suppressive function of Treg cells has been
documented in IBD (406), alternative therapies employing
adoptive Treg cell transfer have been explored in numerous
studies using mouse models of colitis (407–410). In particular,
Treg cells secreting anti-inflammatory cytokine IL-10 have been
shown to partially prevent the development of the disease (411,
412), while the disruption of IL-10 expression in Treg cells,
residing in the intestinal mucosa, led to the development of
spontaneous colitis in mice (413). Therefore, numerous
approaches for the expansion of human Treg cells in vitro,
under GMP conditions, have been explored, including
application of rapamycin and an agonist of retinoic acid
receptor (414–416). These agents are also being used in
ongoing phase I/IIa clinical trials (TRIBUTE; NCT03185000),
initiated for the evaluation of therapeutic adoptive transfer of
Treg cells in patients with CD. Another successful strategy
included the injection of expanded Treg cells (treated with
retinoic acid receptor agonist) together with recombinant IL-2.
In this study, an immunodeficient mouse model of CD with
subcutaneously implanted human intestine tissue was used
(417). Patients-derived Treg cells were expanded in vitro and
adoptively transferred to the mice, where they efficiently homed
to the human small bowel. In vitro-expanded Treg cells were also
effective in suppressing the function of Teff cells isolated from
inflamed Crohn’s mucosa (417). The proper tissue-specific
migration and gut homing of Treg cells are critical factors
influencing the success of Treg cell-based therapies. Integrin
a4/b7 and CCR9 protein have been identified as gut-homing
receptors that can be simply induced during Treg cells expansion
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by addition of retinoic acid (RA) to the cell culture (418). In
another interesting approach, researchers engineered dendritic
cells (DCs) to produce high concentrations of both RA and 1,25-
dihydroxyvitamin D (1,25(OH)2D). Since 1,25(OH)2D induces
expression of FOXP3 and IL-10, while RA stimulates expression
of gut-homing receptors in T cells, the approach led to the
induction of Treg cells in vivo, in peripheral lymphoid tissues, and
subsequent homing of Treg cells in the intestine followed by
stable suppression of intestinal inflammation in a mouse model
of colitis (419) (Figure 5).

An important consideration in therapeutic strategies
employing Treg cells is the antigen specificity of their TCRs.
The polyclonal population of Treg cells, residing in the intestine,
relies on the broad reactivity of its TCRs, which recognize a
broad spectrum of microbiota-derived antigens, increasing the
likelihood of TCR activation and proper maintenance of immune
tolerance and intestinal homeostasis. Not surprisingly, the
limited TCR repertoire in mice results in the development of
spontaneous colitis (420). On the other hand, for the therapy of
experimental colitis in mice, the antigen-specific Treg cells are
more potent than polyclonal Treg cells (421, 422). An interesting
approach with such antigen-specific Treg cells has been reported
in phase I/IIa clinical trials for adults (CATS1 study) using Treg

cells that specifically recognize a common food antigen of
ovalbumin (423). The ovalbumin-enriched diet, in the form of
a meringue cake, was used by the patients with refractory CD to
Frontiers in Immunology | www.frontiersin.org 14
facilitate the local activation of therapeutic Treg cells. This
approach led to partial remission with mild adverse effects.

Microbiota in IBD Therapy
Administration of probiotics, including Lactobacillus or
Bifidobacterium spp., has been successful in some bowel
disorders (424). Oral treatment with the probiotic E. coli Nissle
1917 has been shown to maintain disease remission in patients
with UC (425). Probiotic E. coliNissle 1917 can secrete microcins
with antimicrobial activity, and suppress competing
Enterobacteriaceae that may exacerbate gut inflammation
(426). A mixture containing eight probiotic organisms has
been proven to be beneficial as an addition to standard therapy
for patients with UC (427). However, at present, probiotics are
not recommended in the guidelines on the management of UC
because of insufficient high quality evidence (428). It has also
been shown that fecal stream diversion decreases inflammation
in ileal CD (429). Despite some encouraging data, FMT
(described in more details in the next paragraph) remains an
investigational treatment that is used only in clinical trials (430).
Moreover, antibiotics can induce remission and prevent relapse
in patients with IBD (431, 432). However, despite the benefits of
antibiotics for the treatment of CD and UC, their use in
modifying the microbiota is limited by their inability to
selectively eliminate pathogenic bacteria without affecting
beneficial microorganisms, particularly with prolonged or
FIGURE 5 | Schema of new therapeutic approach tested in mouse models of colitis. Dendritic cells (DCs) obtained from the bone marrow of donor mice were
genetically modified to express enzymes responsible for production of 1,25-dihydroxyvitamin D (1,25(OH)2D; active vitamin D metabolite) and retinoic acid (RA; active
vitamin A metabolite). Modified DCs were transferred to the recipient mice with experimentally-induced colitis. In peripheral lymphoid tissues, 1,25(OH)2D and RA
(produced by the modified DCs), induced naïve T cells transformation into gut-homing regulatory T cells (Treg), by induction of FOXP3 and CCR9 (gut-homing
receptor). Treg cells efficiently homed to the intestine, where they inhibited inflammation and colitis.
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repeated courses (433, 434). Currently, antibiotics are
recommended to treat diseases complicated by infection
(abscesses, bacterial overgrowth, Clostridium difficile) or
perianal fistulising disease (428). Exclusive enteral nutrition,
which is the dietary intervention used in CD, quickly alters the
microbiota composition and effectively reduces intestinal
inflammation in pediatric patients (435). The mechanism by
which this diet induces remission in CD remains unclear, but it
may promote the growth of beneficial microorganisms or the
depletion of pathobionts. Unfortunately, there is still a lack of
knowledge about the identity of IBD-causing pathogens that
trigger inflammation in genetically susceptible individuals.

The outcome of new therapeutic strategies, such as adoptive
therapy with Treg cells, is likely to be modulated by the intestinal
microbiota, which represents a substantial antigen load in the
gastrointestinal tract. In healthy individuals, Treg cells residing in
the intestinal lamina propria provide tolerance towards the gut
microbiota and their suppressive capacity is enhanced during
intestinal inflammation (436, 437).
CONTROVERSIES AND CURRENT
RESEARCH GAPS IN MODULATION OF
MICROBIOTA COMPOSITION AND
POTENTIAL FUTURE DEVELOPMENTS IN
THIS FIELD

Recent advances in microbial genomic sequencing and other
biology techniques allow for novel insights into the potential
contribution of the gut microbiota to health and diseases (438).
Consequently, changes in the composition and functionality of
the gut microbiota have been found in an increasing number of
diseases (439–442). However, it remains unclear whether
dysbiosis is a cause, a consequence, or incidental to the disease.
FMT is currently gaining increasing clinical and research
importance. At present, FMT is recommended to treat
recurrent Clostridioides difficile infection (CDI), but there is a
growing number of ongoing trials exploring its other potential
therapeutic indications (443). One of them is IBD. An altered
microbiome has been described as one of the factors contributing
to the pathogenesis of IBD, but it is still unclear whether this is a
cause or effect of the gut inflammation in Crohn’s disease (CD)
and ulcerative colitis (UC) (433, 444). The safety and efficacy of
FMT in patients with both IBD and CDI have been assessed
prospectively in the NCT03106844 study. Currently, the research
continues to advance toward exploring this treatment for IBD.
Four randomized controlled trials, which assessed the use of FMT
in UC, have been published, and in three of them a significantly
increased rate of both clinical and endoscopic remission in UC
patients, receiving FMT compared to those receiving placebo,
were reported (445–448). In a recent Cochrane systematic review,
an overall remission rate at week 8, across these four studies was
37% (n=52/140) in patients receiving FMT, compared to 18%
(n=24/137) in those receiving placebo (relative risk 2.03; 95%
confidence interval: 1.07–3.86) (449). The highest rates of steroid-
free response and remission were reported in the single study that
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used anaerobic conditions for FMT preparation, suggesting that
this can be a relevant factor. One study demonstrated better
outcomes with one donor of the stool than with other donors.
This observation may indicate that donor selection may be much
more important in UC than in CDI. However, microbial
characteristics for an optimal donor in IBD have not been well
defined, and the hypotheses mentioned above require further
studies. Since the role of the gut microbiota in the pathogenesis of
UC is under intense investigation, a future study will focus on
exploring whether successful donors have a gut microbiota
particularly enriched in specific microbial strains that are absent
in the gut in UC. Overall, the existing evidence suggests that FMT
may be potentially useful for treating mild to moderate UC.When
it comes to CD, only studies on relatively small adult and pediatric
cohorts have been published. A recent meta-analysis of eleven
studies, including four case reports and seven cohort studies,
reported an overall 50.5% (n=42/83) rate of clinical remission in
CD patients receiving FMT (450). However, the heterogeneity of
disease activity and FMT administration protocols of the included
studies limited the drawing of conclusions. A double-blind
randomized controlled trial, evaluating the efficacy of FMT in
adults with CD is ongoing (NCT03078803).

The FMT can also be considered a potential therapeutic
approach in T1DM. The composition of the gut microbiota in
T1DM-affected children or individuals at high risk of developing
T1DM is different from that in healthy individuals (138, 146,
451–453). Additionally, in many cases, changes in microbiota
composition have been detected before the first symptoms of
T1DM (146, 452), suggesting a functional association between
changes in microbiota and the disease onset. In a recent trial
(NTR3697), the positive health effects of FMT in ten young
patients (18-30 years old) with new-onset T1DM were detected
(454), providing a basis for future clinical trials. On the other
hand, standardization of transferred microorganisms used in the
FMT approach may be necessary, and further profiling of
microbiota composition in “effective” donors is urgently
needed. The data published so far indicate that adverse events
of FMT occur in about 20% of patients, however, most of them
are mild (455). Only one case of serious adverse events,
myasthenia gravis, has been reported (456). According to
current ECCO/ESPGHAN guidelines for the medical
management of pediatric CD, both probiotics and FMT are
neither recommended for induction nor remission
maintenance (457). It seems that in contrast to CDI, frequent
transplantation is necessary for FMT to be effective for any
chronic disorder. It has been reported that improved microbial
diversity can persist for several weeks, but does not persist after 1
year (448, 458). The pathophysiology of chronic illness is very
complex and will likely require more long-term FMT or
controlling inflammation in the recipient intestine to facilitate
the engraftment [broadly reviewed in Ref (459)].
DISCUSSION

Chronic inflammatory disorders are often managed with
symptomatic therapy, and eventually lead to multiple downstream
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sequelae (460–462). Despite many similarities between this group of
diseases in children and adults, pediatric onset often presents with
atypical features (460, 463, 464). Pediatric patients are particularly
vulnerable to adverse effects of drugs because the number of clinical
trials in this group of patients is limited, and drug absorption and
metabolism are more variable and less predictable (465, 466). An
additional challenge in pediatric care is achieving normal growth,
puberty, and access to education. The impact of drugs on child
growth and development is still not fully understood. Further
studies are needed to better understand the etiology and
pathogenesis of these inflammatory disorders, and to identify
preventive strategies, alternative or complementary therapies, and
prevent complications. The interaction between genetic and
environmental factors is crucial in the development of chronic
inflammatory disorders (467). Continued research on the specific
role played by the gut microbiota and the complex interactions
between microorganisms and the host will help to address these
issues better (468). Data on the importance of the interactions
between microbiota and the human immune system, the crosstalk
between various species of microbes, and details on the
communications between various organs and their microbiota is
still lacking (469, 470).

Some novel technologies employing genetic engineering
of immune cells, as well as adoptive transfer of modified
patient immune cells to treat the disease, are being extensively
tested in laboratories and clinical trials (471–473). The therapies
involving engineered Treg cells that are expected to specifically
suppress the proliferation and production of inflammatory
cytokines by cytotoxic Teff cells in the pancreas and stop the
destruction of pancreatic islet cells, or at least slow the
progression of T1DM (201), are particularly promising.
However, several considerations should be kept in mind when
using these therapies, including the antigen specificity of the
transferred engineered immune cells, and their interactions with
the gut microbiota that may affect the therapy outcome in
multiple ways (474, 475). Advances in scientific research must
always be seen in the context of clinical care, outcomes, and
prognosis for children with diseases, such as T1DM, CeD,
and IBD.

The gut microbiota should be certainly considered as one of
the potential factors that can modulate the responses to
immunotherapies. The outcome of new therapeutic strategies,
such as adoptive therapy with Treg cells, is likely to be modulated
by the intestinal microbiota, which represents a substantial
antigen load in the gastrointestinal tract. In healthy
individuals, Treg cells residing in the intestinal lamina propria
provide tolerance towards the gut microbiota and their
suppressive capacity is enhanced during intest inal
inflammation (436, 437). However, since adoptive cell transfer
is a relatively novel therapy for autoimmune diseases, currently,
little is known about the influence of gut microbiota on the
outcome of adoptive therapy with Treg cells. On the other hand,
progress has recently been made in understanding the role of gut
microbiota in modulating CAR-T cell outcome in cancer therapy
and demonstrated that gut microbiota can influence the balance
between activity of effector CAR-T cells and suppressive activity
Frontiers in Immunology | www.frontiersin.org 16
of Treg cells [reviewed in Ref (476)]. By analogy, since the
predominant function of adoptively-transferred Treg cells in
therapy of autoimmune diseases is to control activity of
autoreactive effector T cells, one can expect that the gut
microbiota may also influence this process.
CONCLUDING REMARKS

Undoubtedly, the microbiota significantly influences health
status. Although the origin of diseases described in this review
differ, an improper balance in microbiota content seems to be
common to the progression of all of them. The inflammation
behind untolerated or an altered composition of the microbiome
is currently attributed to the syndromes closely associated with
the alimentary tract but also with many other diseases. The
discovery of the interaction between saprophytic bacteria and
our tissues has increased our understanding of the pathogenesis
of many diseases. It was once overwhelming to think that the gut
bacteria might contribute so heavily to our daily well-being.
Fortunately, this knowledge allows us to modulate the
microbiome, which has become a novel way to treat many
diseases. The awareness that the microbiome influences us
continuously is also acknowledged with many novel therapies,
and notably in those that are disease-modifying. The
microbiome as a factor affecting the efficacy of biologics or cell
therapies is now considered a good and cheap way to improve
such responses. Bacteria have been our commensals for a long
time, and the reciprocal benefits of this symbiotic relationship
should not be a surprise. Further exploration of the role of the
microbiome in our life will definitely give us many novel tools for
disease treatment.
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