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Abstract
Background: RNA editing in chloroplasts of angiosperms proceeds by C-to-U conversions at
specific sites. Nuclear-encoded factors are required for the recognition of cis-elements located
immediately upstream of editing sites. The ensemble of editing sites in a chloroplast genome differs
widely between species, and editing sites are thought to evolve rapidly. However, large-scale
analyses of the evolution of individual editing sites have not yet been undertaken.

Results: Here, we analyzed the evolution of two chloroplast editing sites, matK-2 and matK-3, for
which DNA sequences from thousands of angiosperm species are available. Both sites are found in
most major taxa, including deep-branching families such as the nymphaeaceae. However, 36
isolated taxa scattered across the entire tree lack a C at one of the two matK editing sites. Tests
of several exemplary species from this in silico analysis of matK processing unexpectedly revealed
that one of the two sites remain unedited in almost half of all species examined. A comparison of
sequences between editors and non-editors showed that specific nucleotides co-evolve with the C
at the matK editing sites, suggesting that these nucleotides are critical for editing-site recognition.

Conclusion: (i) Both matK editing sites were present in the common ancestor of all angiosperms
and have been independently lost multiple times during angiosperm evolution.

(ii) The editing activities corresponding to matK-2 and matK-3 are unstable.

(iii) A small number of third-codon positions in the vicinity of editing sites are selectively 
constrained independent of the presence of the editing site, most likely because of interacting 
RNA-binding proteins.

Background
Chloroplast RNA metabolism is characterized by exten-
sive RNA processing, including RNA editing. In chloro-
plasts of angiosperms, RNA editing proceeds by C-to-U

base conversions at specific sites, while in chloroplasts of
hornworts, many bryophytes and ferns, U-to-C conver-
sions take place as well [1-3]. RNA editing events almost
exclusively change codon identities, and usually restore
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codons conserved during land plant evolution. Muta-
tional analyses of edited codons have demonstrated that
editing is essential for protein function in vivo [4,5]. The
corresponding machinery is nuclear encoded, and recog-
nizes short stretches of sequence immediately upstream of
the C to be converted [6].

RNA editing has been found in chloroplasts of all major
land plants. To date, there is no evidence for RNA editing
in cyanobacteria, the closest prokaryotic relatives of chlo-
roplasts, or in chlorophyte algae, the closest aquatic rela-
tives of land plants. This phylogenetic distribution
suggests that chloroplast RNA editing was "invented"
close to the root of land plant radiation [3]. Within land
plants, the number of chloroplast RNA editing sites per
genome differs among species. Bryophytes and ferns may
possess several hundred C-to-U as well as U-to-C RNA
editing sites [1-3]. The chloroplast genomes of seed plants
harbor far fewer (~30) editing sites, and their location var-
ies even between closely related taxa [6]. At least one land
plant, the liverwort Marchantia polymorpha, apparently
contains no RNA editing sites [7], suggesting that, in prin-
ciple, RNA editing can become lost from a chloroplast
genome. An important question is how the species-spe-
cific patterns of editing sites – the editotypes – of seed
plant chloroplasts evolved. Differences in editotypes
between even closely related species, such as Nicotiana syl-
vestris, Nicotiana tomentosiformis and other Solanacean rel-
atives, point to a rapid evolution of editing sites [8,9]. A
comparison of editing sites between dicot and monocot
organelles supports this notion, demonstrating that the
speed of editing site evolution equals or exceeds that of
third-codon positions [10]. Analyses of selected tran-
scripts from exemplary species over a wide range of land
plants have led to similar conclusions [3,11,12].

While these analyses were meant to illuminate the evolu-
tion of editing sites, they do not necessarily shed any light
on the evolution of the corresponding editing machinery.
To date, the only genetically identified essential editing
factors are required for editing specific sites and belong to
a family of nuclear-encoded RNA binding proteins, the
pentatricopeptide repeat proteins (PPR) [13-19]. Most
PPR genes are conserved throughout angiosperm evolu-
tion [20] and, unlike editing sites, do not rapidly evolve.
In fact, in at least five specific cases, specific nuclear activ-
ity is retained in a species despite the loss of the corre-
sponding editing site [5,21,22]. If a site-recognition factor
is conserved throughout evolution, this should be
reflected in the conservation of the corresponding editing-
site cis-element, an assumption that was supported by a
recent analysis of the psbL start codon editing site in 28
species, and the ndhD start codon editing site in 21 species
[12]. In an attempt to understand editing-site evolution at
a higher resolution, we took advantage of the thousands

of sequences from previous phylogenetic studies that are
available for the chloroplast reading frame of the matK
protein. We analyzed (i) the evolutionary pattern of matK
editing sites in angiosperm evolution; (ii) the conserva-
tion of editing activity in angiosperms; and (iii) the con-
servation of editing cis-elements throughout angiosperm
phylogeny.

Results
Intrageneric loss of matK editing sites in angiosperms
matK is a chloroplast gene located within the trnK intron
that is believed to play a role in RNA splicing of tRNA-K
[UUU, [23,24]]. matK is an expressed gene [25], and in
many monocots, matK transcripts are edited at a single
site, termed matK-1 [26]. We recently identified an addi-
tional editing site in Arabidopsis, referred to as matK-2, at
nucleotide position 706 (codon 236) relative to the start
codon [27]. The corresponding editing event leads to a
codon change from histidine (CAU) to tyrosine (UAU).
Here, we found a third site, matK-3, located 70 nucle-
otides downstream of site 2 that leads to a serine (UCU)
to phenylalanine (UUU) codon transition (codon 259,
see below).

The rapidly evolving matK gene has been a favorite for
determining phylogenetic relationships in angiosperms.
As a consequence, several thousand matK entries covering
the entire angiosperm phylogenetic tree have accumu-
lated in Genbank. We obtained and aligned 1255 matK
sequences from all major angiosperm groups as well as
several gymnosperm species, focusing our analysis on
determining whether a C or a T was present at these two
newly identified editing sites. For phylogenetic analysis,
we mapped our findings onto two phylogenetic trees, one
for each editing site [[28], see Additional files 1 and 2].
The leaves of the tree represent genera, which can include
several species. Because both trees consist predominately
of C-containing genera, the most parsimonious assump-
tion is that the common ancestors of all angiosperms had
a C at the editing site. In contrast, the gymnosperm taxa
analyzed have a T at matK-2 and an A at matK-3. Whether
the site was lost in gymosperms or gained in angiosperms
cannot be determined based on our data. We were unable
to extend our alignment to more basal embryophyte
groups, such as mosses and ferns, due to extreme
sequence divergence. Taken together, these data suggest
that the matK-2 and matK-3 editing sites were already
present in the ancestor of all angiosperms.

Given that the editing sites are ancestral, we next asked
how many times the sites have been lost during
angiosperm evolution. We first sought situations in the
tree that are indicative of C-to-T transitions within genera.
In most cases, all species within a genus share the same
editing site. For example, 24 species in the genus Cean-
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othus carry a C at matK-2 (see Additional file 3). However,
in six of the 298 genera analyzed, there are species that
possessed either a C or a T at matK-2, suggestive of a recent
base transition. Similarly, seven of the genera analyzed
include species with either a C or a T at matK-3. We call
such taxa "mixed genera" (see Additional File 4 – Table
S1). Rarely, we also found mixed genera with A- or G-con-
taining species in addition to T- or C-containing species
(see Additional File 5 – Table S2). All mixed genera are
nested in branches heavily dominated by pure C-contain-
ing genera (e.g., see Additional file 3), suggesting that C-
losses occurred independently within these genera.

Frequent and widespread loss of editing sites within larger 
angiosperm taxa
If intrageneric loss of editing does occur, it should be also
evident on a larger scale. We therefore assessed the distri-
bution of pre-edited (T at the DNA-level) branches of the
angiosperm phylogenetic tree that are particularly rich in
available matK sequences (i.e., Rosids, Saxifragales,
Asterids, Caryophyllids, Magnoliids and basal eudicots).
Coherent sections of genera without an editing site, for
example the Solanaceae/Convolvulaceae, were treated as
a unit. We asked whether such pre-edited units are sepa-
rated from other such units, which would suggest that
they had lost editing independently. Only pre-edited units
for which sister groups at the next three nodes in the tree
contained equal or more than 80% of genera with a C at
the editing site were regarded as having independently
lost the editing site (see Additional file 3). A- and G-con-
taining genera were not considered. By these criteria, we
found evidence for 12 independent losses of edited Cs for
matK-2 and another 12 for matK-3; these were widely dis-
tributed throughout the angiosperm tree (see Figure 1 and
see Additional file 4 – Table S1). If the intrageneric losses
noted above are included here, the number of independ-
ent losses for matK-2 and matK-3 rise to 17 and 19, respec-
tively (Figure 1). Only the asterid genera Gilia and
Plantago have lost both matK sites, underscoring that edit-
ing-site loss – even that of physically linked sites – is
totally independent (Figure 1).

We found no evidence for reversion (i.e. T-to-C back-
mutations) for matK-2, even within the purely T-contain-
ing, large monocot branch. This might indicate the exist-
ence of a selective bias towards losing the editing site. It is
clear, however, that there are multiple independent losses
of the matK editing sites throughout angiosperm phylog-
eny.

Loss of C-to-U processing in independent branches of the 
angiosperm tree at matK-2 and matK-3
The presence of a C at a known editing site is considered
good evidence for the presence of a corresponding editing
activity. For example, editing events have been success-

fully predicted by extrapolation from known sites for
Atropa belladonna and Pisum sativum [29,30]. Here, we
sequenced amplified cDNA from leaf tissue to investigate
RNA editing of matK-2 and matK-3 in 17 and 14 different
angiosperm species, respectively, from disparate sections
of the angiosperm phylogenetic tree (see Additional file
6). All species chosen had a C at the matK-2 editing sites
in the plastid genome. Unexpectedly, we found that matK-
2 was processed in only seven species (41.2%). In six of
these, a C-peak was evident side-by-side with the T-peak
in electropherograms. Thus, only a fraction of all tran-
scripts is processed. No editing was detected in RNA sam-
ples from the remaining ten species. The loss of editing
activity for matK-3 was not quite as dramatic; but again,
no evidence for editing could be found for two species,
and most of the remaining species exhibited only partial
editing (see Additional file 6). We call species with a C at
the editing site but no detectable editing activity "non-edi-
tors", while species that process the C to a U are called
"editors". We conclude that editing activities for the matK
sites have most likely been lost in these species, although
the possibility that editing does occur in different tissues
under different conditions cannot be ruled out at the
moment.

To understand the phylogenetic distribution of the under-
lying RNA editing activities, we mapped our results on a
phylogenetic tree (Figure 2B). Editing activities are found
at widely separated positions of this tree. For example,
editors and non-editors for matK-2 are found both in the
eurosids I and the eurosids II. Similarly, matK-2 editors
and non-editors are also present side-by-side in lamiids
and campanulids within the asterid clade. This situation is
repeated for matK-3, where the two species that have lost
editing activity are from separate larger taxa: Reseda from
the rosids and Buddleja from the asterids. Taken together
with the ancestral nature of the matK editing sites, noted
above, these findings argue for multiple independent
losses of the editing activities.

To investigate whether these losses are reflected in the cor-
responding cis-elements, we generated a consensus
sequence for all plants capable of editing and compared it
with sequences from the non-editing plants (Figure 2A).
We found that almost all non-editors contain one or mul-
tiple deviations from the consensus sequence deduced
from the set of editors, suggesting a correlation between
the loss of the editing activity and the evolutionary degen-
eration of the cis-element.

Conservation of putative recognition elements for a 
matK-2 trans-acting factor
Editing sites are recognized by RNA binding proteins that
bind sequence elements immediately upstream of the C-
residue to be edited. As long as binding and editing proc-
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esses continue to occur, selection is expected to act to pre-
serve these cis-elements. By contrast, it is expected that the
loss of editing would be accompanied by the loss of con-
servation of trans-acting factor binding-site sequences. To
identify such sequence elements, we prepared separate
alignments of sequences containing a C and those con-
taining a T at the matK editing sites (henceforth called C-
elements and T-elements, respectively). To avoid a bias
toward species-rich genera, we randomly selected one
sequence from each genus. The sequences were aligned
and analysed using the WebLogo software [31] in order to

visualize sequence conservation, and alignments were
scored from position -30 to +10, where the editing site is
+1. Figure 2C shows a comparison of the conservation of
this sequence window between C- and T-containing matK-
2 and matK-3 sites. The following three conservational
classes for individual nucleotides can be distinguished:

(i) Nucleotide positions that are conserved in both C- and
T-elements; for example, at positions -27 to -25, -6 to -4
and +8 to +10 relative to matK-2, and -17 to -15 upstream
of matK-3. These include third-codon positions (e.g.,

Multiple losses of matK editing sites in angiospermsFigure 1
Multiple losses of matK editing sites in angiosperms. A) Nucleotides found at the matK-2 editing site were mapped on a 
phylogenetic tree encompassing all major angiosperm groups (Soltis et al. 2000). Of the 298 genera investigated, only those 
that represent independent C-to-T mutations at the editing site are shown (criteria for an independent C-to-T loss are pre-
sented in Additional file 3). Additional C-to-T mutations for which independence could not be ascertained are not shown. 
Branches of the tree without independent C-to-T losses are reduced. The full tree is shown in Additional file 1. Light gray = 
genera in which all species have a T at the editing site; dark gray = genera containing T-species and C-species. B) Same analysis 
for matK-3; full data is shown in Additional file 2.
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Analysis of the evolution of cis-elements upstream of matK-2 and matK-3Figure 2
Analysis of the evolution of cis-elements upstream of matK-2 and matK-3. A) Schematic representation of the 
genomic region encompassing the matK-2 and matK-3 editing sites. Edited Cs and corresponding codon transitions are shown 
in blue; other bases and corresponding codons at the editing site are shown in red. Numbers above refer to the nucleotide 
position relative to the first base of the matK reading frame in Arabidopsis. This sequence interval was used to generate matK 
alignments. B) Alignment of the sequence interval from -30 to +10 around both matK editing sites. Green = species that shows 
editing at respective matK site = "editors" (see Additional file 6); red = species with no detectable editing = "non editors" or 
with no C at editing site. A consensus sequence was generated based on all edited sequences for each site. Deviations from 
this consensus are marked in white. Sequences are ordered according to phylogenetic position (Soltis et al, 2000). (Eur = 
eurosids; V = vitaceae; Sax = saxifragales; Car = cayophyllids; Ast = asterids; M = magnolids.) Third-codon positions are 
marked with asterisks. C) Analysis of sequence conservation in sequences containing a C at the editing site (C-element; blue 
border) and in sequences without a C (T-element; red border). Sequences from n different genera were aligned and analyzed 
using the WebLogo software. Note that n includes one species from each genus in the matK trees shown in Additional files 1 
and 2, and not just those analyzed in B. Residues exhibiting differential conservation are marked with blue arrows. The two 
most variable residues are marked with bold arrows. Third-codon positions are marked with asterisks.
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matK-2 positions -25 and -4; matK-3 positions -14 and -
20), for which other evolutionary constraints apart from
coding must be responsible.

(ii) Nucleotide positions that are variable in both T- and
C-elements, mostly third-codon positions (e.g., matK-2
positions -22, -19 and -16).

(iii) Nucleotide positions that are conserved only in edi-
tors. For matK-2, we found five highly conserved positions
at -7, -17, -18, -24 and -30 of C-elements, whereas the cor-
responding positions in T-elements are much more varia-
ble. Conservation of the dominant base at these positions
is 100% (-7, -17), 96% (-18), 93% (-24) and 88% (-30) in
C-elements, but only 83% (-7), 55% (-17), 62% (-18, -24)
and 45% (-30) in T-elements (see also arrows in Figure
2C). Notably, the highly conserved T at base -7 in C-ele-
ments is at a third-codon position. An analysis of a longer
stretch of sequence upstream of the matK-2 editing site
revealed that differential conservation terminates at posi-
tion -30, and thus coincides with the location of the
expected cis-element for editing (data not shown). For
matK-3, such differential conservation between C-ele-
ments and T-elements is less pronounced, although differ-
ences exist at positions -4, -7, -8, -12, -24, -27 and -28.

These comparisons demonstrate that selected upstream
bases and the C at the editing site have co-evolved. Fur-
thermore, high conservation of several third-codon posi-
tions in both C- and T-elements suggests a selective force
that is independent of both amino-acid coding and the
editing site at these positions. Finally, a stronger conserva-
tion of bases in T-sites relative to C-sites was not observed
for matK-2 or matK-3, supporting the conclusion that the
observed conservation bias is functionally linked to the
editing site.

Discussion
Loss of matK editing sites in angiosperm evolution
It is impossible to clearly infer the loss or gain of an edit-
ing site by examining a limited set of sequences because
any conclusion drawn ultimately relies on only one
informative site: the editing site itself. Thus, an under-
standing of the evolutionary history of RNA editing sites
requires an analysis of a large set of related sequences. We
have therefore investigated the evolutionary behavior of
two editing sites and their presumptive cis-elements in the
matK gene, an approach that allows us to track the editing
site throughout a continuum of related angiosperm
sequences. Our results show that C dominates the phylo-
genetic trees for both matK-2 and matK-3 sites; thus, the
most parsimonious explanation is that both editing sites
were already present in the ancestor of all angiosperms. A
closer analysis of the distribution of species and genera
lacking a C at the editing sites suggests that the C at both

matK sites was lost independently on multiple occasions.
These data support earlier work suggesting that ancient
angiosperms contained high numbers of editing sites that
were lost independently in separate taxonomic branches
during angiosperm evolution [32]. Our results are also
consistent with a study on the evolution of mitochondrial
editing that described multiple independent losses of edit-
ing sites in selected monocot taxa [33]. Importantly, these
studies collectively explain the variability of editotypes
among angiosperms species solely by invoking loss of
editing sites, and do not require a presumption of bal-
anced loss and gain of sites. Although preliminary, our
results show no evidence for re-acquisition of matK edit-
ing sites, as exemplified for matK-2 in the purely T-carry-
ing monocots. This suggests that at least these two sites,
and by extrapolation, possibly all plastid-editing sites, are
"on the way out".

Loss of matK editing activity in angiosperm evolution
An unexpected finding of this study is the loss or reduc-
tion in RNA editing in many species despite the presence
of a C at the editing site. Reduced editing can either be
caused by the degeneration of nuclear-encoded editing
factors or plastidial cis-elements that direct the editing
machinery. Based on the assumption that the matK edit-
ing activities are ancient (like the sites themselves; see
above), we argue for multiple independent losses of edit-
ing at both sites during angiosperm evolution. Editing of
matK-3 leads to a change in the codons that results in
incorporation of very different amino acids: serine and
phenylalanine. Given the nature of this difference, it is
remarkable that Buddleja and Reseda tolerate the loss of
this editing event. By contrast, the rather minor physico-
chemical change provided by an H-to-Y amino acid tran-
sition mediated by matK-2 editing might be less critical for
protein function. Among the codon transitions caused by
chloroplast RNA editing, this codon transition is one of
the rarest and therefore might not be as important for pro-
tein function as the much more frequent S-to-L or P-to-L
transitions. The MatK protein may tolerate both amino
acids, in which case the loss of RNA editing would have
only limited consequences for protein function. If it is
indeed selectively neutral, the frequent loss of C observed
here might be specific for matK editing and thus not gen-
eralizable to truly essential RNA-editing sites. However,
the fact that several independent C-to-T mutations, but no
T-to-C back-mutations, are observed at both sites suggests
that the edited amino acid is under positive selection. A
reduction or a loss of editing could generate such a selec-
tive pressure for a C-to-T mutation and lead to the elimi-
nation of an editing site. Therefore, our results suggest that
a decay in editing efficiency precedes the loss of editing
sites, as proposed by Schields and Wolfe [10]. Whether a
degeneration of editing factors or their corresponding cis-
elements is responsible for the reductions in editing effi-
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ciency observed here cannot be determined by our analy-
ses because the reductions co-occur with mutations in cis-
elements. Notably, chloroplast genomes display an
enhanced genetic drift and accumulate mildly deleterious
point mutations [34]. MatK is one of the most rapidly
diverging plastidial genes and exhibits a relatively high
rate of degeneration [25]. Therefore, we speculate that it is
rather the degeneration of cis-elements that leads to the
observed reduction in editing efficiencies, which in turn
generates the selective pressure responsible for the fre-
quent losses of editing sites by C-to-T mutations.

Cis-elements of matK editing sites are under multiple 
selective constraints
We have carried out a phylogenetic analysis of predicted
matK-2 and matK-3 cis-elements in order to identify a
putative conserved binding site for the corresponding
(unknown) trans-acting factor(s). Many bases in these cis-
elements are conserved in both C- and T-elements, mostly
due to coding constraints, but several third-codon posi-
tions are also conserved. This could mean that selection is
acting on all analyzed sequences, no matter which base is
present at the editing site. If this selection is sufficiently
stringent and acts on all bases, there should be no conser-
vation bias towards C-elements. Irrespective of RNA edit-
ing function, a factor binding to this sequence, either on
DNA or RNA, could provide such a selective force.

Our analysis uncovered five bases that are highly con-
served in sequences containing the matK-2 editing site,
but not in those lacking the site. A co-evolution of these
bases with the editing site most likely reflects a function
for these bases in editing-site processing or recognition.
Such co-evolving nucleotides have recently been identi-
fied for two chloroplast editing sites, albeit in a much
smaller taxon sampling [12]. Intriguingly, in vitro studies
have demonstrated that bases within such cis-elements
have strikingly unequal impacts on RNA editing [35,36].
For example, mutations of the -2 and -3 nucleotides of the
psbE editing site led to a pronounced reduction in editing
efficiency in vitro, while mutations at the adjacent -4/-5
and +2/+3 sites had only minor effects [35]. Similar major
effects of single bases on editing have also been observed
in vivo [37]. The position-specific inhibition of activity is
not reflected in a similar inhibition of binding: all
mutated versions of cis-elements appear to be equally
good binding sites for (unknown) trans-acting factors
[35]. Thus, the bases co-conserved with the matK-2 editing
site might be important for RNA editing activity, while
their role in binding of trans-acting factors could be
minor. In other words, the same RNA-binding protein
that attaches to C-elements might also bind to T-elements.
Such a factor could perform an additional function (or
functions) unrelated to editing, and conserved bases
could be important for such secondary function(s) of the
editing factor. This would explain why bases are con-

served at several third-codon positions in both C- and T-
elements. Recently, PPR proteins have been identified as
editing factors [13,14]. Although these proteins are highly
conserved between rice and Arabidopsis [20], their target
Cs are not: only nine editing positions are conserved
between rice [38] and Arabidopsis [39]. For instance, the
ndhD editing site, served by CRR21 in Arabidopsis, is lack-
ing in rice; however, despite absence of the corresponding
site, an orthologous protein can be readily identified (data
not shown). The simplest explanation is that these factors
may be involved in editing, but also serve additional, evo-
lutionarily more stable functions. Our finding that many
species carrying a C at the editing site lack editing activity
might indicate that the corresponding factors have been
lost. Such a loss-of-factor scenario would be consistent
with several studies that demonstrated that transfer of
editing sites from one species to another often leads to a
failure to process the heterologous site, i.e. are indicative
of a loss of the corresponding editing factor [4,21,40].
Three observations, however, speak against this simple
loss-of-factor scenario: (i) several transferred sites are het-
erologously edited [21,22]; (ii) PPRs, the bona fide editing
factors, are conserved in angiosperms and are thus not
reflective of editotype variability; (iii) our phylogenetic
analysis uncovered sequence conservation in cis-elements
at third-codon positions, not only in editors but also in
non-editors and T-carriers. These considerations lead us to
hypothesize that the factors are conserved and still bind
cis-elements, but their editing activity is compromised
because of mutations that disrupt protein structure/func-
tion or subtly alter RNA binding properties Determining
whether known editing factors have additional functions
and whether these functions are conserved in species that
are devoid of the cognate editing site would be of great
value in testing this hypothesis.

Conclusion
In this paper, we focused on the evolution of chloroplast
editing sites in angiosperms. We demonstrate for the
entire angiosperm radiation that editing sites have been
lost multiple independent times. Our data also uncover a
surprisingly frequent reduction or loss of the correspond-
ing activity in selected taxa. Finally, this large-scale analy-
sis helped to detect nucleotides with close co-evolutionary
ties to the edited C. The additional finding that evolution-
ary conservation of third-codon positions can be detected
even in the absence of an edited C supports the idea that
interactions of trans-acting factors with sequence elements
surrounding editing sites take also place for reasons other
than RNA editing.

Methods
Plant material
All leaf material was collected in the Botanical Garden of
Marburg, Germany.
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RNA preparation/RT-PCR analysis
RNA extraction was performed using the TRIzol Reagent
according to the supplier's instructions, or by a cetyltri-
methylammonium bromide (CTAB)-based method as
described by Zeng and Yang [41]. Five to eight micro-
grams RNA were treated with DNaseI (Roche, 40 u, 1 h,
37°C) to remove any DNA contamination. The RNA was
then purified by two phenol/chloroform extractions, one
chloroform extraction and an ethanol/salt precipitation
step. cDNA sequences were amplified by PCR (Qiagen)
after reverse transcription using the Omniscript RT-Kit
(Qiagen) employing random hexamers, or the One-Step-
RT-PCR Kit (Qiagen). An aliquot of RNA that was not
reverse transcribed served as a control PCR template for
DNA contamination. Total cellular DNA was extracted
using a standard CTAB-based method.

Oligonucleotides
The following oligonucleotides (5'>3') were used to
amplify matK-2 and matK-3 sequences from DNA or
cDNA: rctccttctttgcatttattgcg (matk.for.a), gctccttctttgcatt-
tattgag (matk.for.b), gcctcttctttgcatttattgcg (matk.for.c),
gcctcttctttgcatttattacg (matk.for.d), ccttcttctttacattttttacg,
(matk.for.e), acctcttctttgcatttattaag (matk.for.f), catgaaag-
gatccttgaacaacc (matk.rev.z), catgaagagatcctcgaggaacc
(matk.rev.y), agagaarggktctttgaaaagcc (matk.rev.x),
awgaaaagkatctttgaaaaacc (matk.rev.w), catgaaaggatc-
cttsaacaaca (matk.rev.v), tatgaaaggattcttgaacaaac
(matk.rev.u) and cgcaaaaggatccttaagtaacc (matk.rev.t).

Sequence analysis
PCR products were purified using the NucleoSpin Extract
II-Kit (Macherey and Nagel) and sequenced using
DYEnamic ET chemistry (GE Healthcare) according to the
supplier's instructions. The products of the sequencing
reactions were analyzed on an ABI 377 automated
sequencer (Applied Biosystems) according to the manu-
facturer's instructions.

Phylogenetic analysis
A total of 1255 matK sequences covering 298 major
angiosperm genera were obtained from GenBank. All gen-
era represent leaves of phylogenetic trees constructed by
Soltis et al. [[28], see Additional files 1 and 2]. Sequences
were aligned by ClustalW using default parameters [42]
resulting in an alignment of 3455 nt. A 201-bp sequence
window comprising the editing sites matK-2 and matK-3
was extracted from this alignment for analysis.
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