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Abstract: The Rcs phosphorelay is a bacterial stress response system that responds to envelope
stresses and in turn controls several virulence-associated pathways, including capsule, flagella, and
toxin biosynthesis, of numerous bacterial species. The Rcs system also affects antibiotic tolerance,
biofilm formation, and horizontal gene transfer. The Rcs system of the ocular bacterial pathogen
Serratia marcescens was recently demonstrated to influence ocular pathogenesis in a rabbit model of
keratitis, with Rcs-defective mutants causing greater pathology and Rcs-activated strains demonstrat-
ing reduced inflammation. The Rcs system is activated by a variety of insults, including β-lactam
antibiotics and polymyxin B. In this study, we developed three luminescence-based transcriptional
reporters for Rcs system activity and used them to test whether antibiotics used for empiric treat-
ment of ocular infections influence Rcs system activity in a keratitis isolate of S. marcescens. These
included antibiotics to which the bacteria were susceptible and resistant. Results indicate that ce-
fazolin, ceftazidime, polymyxin B, and vancomycin activate the Rcs system to varying degrees in
an RcsB-dependent manner, whereas ciprofloxacin and tobramycin activated the promoter fusions,
but in an Rcs-independent manner. Although minimum inhibitory concentration (MIC) analysis
demonstrated resistance of the test bacteria to polymyxin B and vancomycin, the Rcs system was
activated by sub-inhibitory concentrations of these antibiotics. Together, these data indicate that
a bacterial stress system that influences numerous pathogenic phenotypes and drug-tolerance is
influenced by different classes of antibiotics despite the susceptibility status of the bacterium.

Keywords: Enterobacterales; keratitis; infection; cornea; bacteria; stress response system; antibiotic

1. Introduction

Serratia marcescens is a Gram-negative pathogen from the order Enterobacterales that
causes contact lens-associated keratitis in healthy patients [1–3] and a wide variety of noso-
comial infections in the immune compromised, such as ventilator-associated pneumonia
and sepsis in adults and neonates [4,5]. S. marcescens isolates are typically resistant to
antibiotics of the macrolide, tetracycline, β-lactam, and narrow spectrum cephalosporin
classes due to expression of efflux pumps and β-lactamases [6]. However, they are gener-
ally susceptible to aminoglycoside, third generation cephalosporin, and fluoroquinolone
antibiotics [6,7].

The Rcs stress response system has been found in bacteria from the Enterobacterales
including, but not limited to, numerous pathogens, such as Escherichia coli, Klebsiella species,
Proteus mirabilis, Salmonella enterica, and Yersinia pestis [8]. The core Rcs system (Figure 1) is
a complex signal transduction cascade composed of a variety of components that include
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outer membrane protein RcsF, inner membrane protein IgaA, two histidine kinase-related
proteins, RcsC and RcsD, and the response regulator transcription factor RcsB [8]. Rcs
signaling occurs in response to cell envelope stresses, such as defects in peptidoglycan and
lipopolysaccharide (LPS) structure, perturbations of the outer membrane β-barrel protein
assembly complex, and lipoprotein trafficking [8,9]. Antimicrobials known to activate the
Rcs system, mostly from studies with E. coli and S. enterica, include polymyxin B [10] and
other antimicrobial peptides [11], and cell wall-targeting β-lactam and cephalosporin an-
tibiotics [9,12]. However, this has not been tested in ocular pathogens such as S. marcescens.
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Figure 1. Model for antibiotic activation of the Rcs system. This simplified depiction of the core
Rcs system shows the major components required for Rcs function. The Rcs system is a complex
phosphorelay signal transduction system that regulates the transcription of many genes through
control of the RcsB transcription factor. The IgaA/GumB inner membrane protein blocks Rcs
activity under non-stressful conditions. Envelope stress by antibiotics, transmitted by RcsF, prevents
IgaA/GumB inhibition of RcsC-D and allows RcsB-mediated transcription. Mutation of igaA/gumB
constitutively derepresses the Rcs transcriptional cascade, and mutation of rcsB prevents Rcs system
function. This model predicts that Rcs activation by antibiotics can stimulate pathogenesis and
antibiotic tolerance phenotypes. OM: outer membrane; PG: peptidoglycan; IM: inner membrane.

Importantly, the Rcs system has been shown to contribute to antibiotic tolerance
by a number of bacteria, with Rcs system-defective mutants being more susceptible to
penicillin and cephalosporin antibiotics for E. coli [12] and polymyxin B for E. coli [13] and
S. enterica [10]. Similarly, induced expression of rcsB or expression of alleles that increase
Rcs activity conferred increased tolerance to β-lactam and cephalosporin antibiotics for
E. coli [12,14]. A major mechanism used by bacteria to increase antibiotic tolerance is biofilm
formation [15]. The Rcs system plays a positive role in S. marcescens biofilm formation
under high sheer conditions by promoting capsular polysaccharide synthesis [16]. A similar
role for the Rcs system in E. coli and S. enterica biofilm formation has been described [17].
Beyond antibiotic tolerance, a recent study by Smith et al. suggests that Rcs plays a role in
the acquisition of genetic elements by Serratia sp. 39006 that may contribute to horizontal
gene transfer and antibiotic resistance [18].

The S. marcescens Rcs system has been shown to regulate synthesis of the ShlA cy-
tolysin [19,20], where it is also a key regulator of capsular polysaccharide and flagella
synthesis, as well as the production of a hemolytic biosurfactant [16,21]. Importantly, the
Rcs system was shown to be a major regulator of S. marcescens ocular pathogenesis [22].

The goal of this study was to evaluate whether antibiotics commonly used topically
for empiric treatment of ocular infections activate the bacterial Rcs pathway. In this study,
we used antibiotics recommended for the empiric treatment of bacterial keratitis by the
American Academy of Ophthalmology [23]. Given the role of the Rcs system in promoting
antibiotic tolerance and the regulation of virulence factors, it is possible that activation of
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this system could influence clinical outcomes for patients infected by the Enterobacterales.
To that end, we developed luminescent reporter plasmids for Rcs activity and used them in
a keratitis isolate of S. marcescens with antibiotics from several classes that are recommended
for the treatment of ocular infections.

2. Results
2.1. Generation of Luminescent Reporter Plasmids for Rcs System Activity

In order to conveniently measure Rcs activation, luminescent reporter plasmids were
made using Rcs-responsive promoters. GumB, an IgaA ortholog, is a negative regulator of
Rcs activity, such that a gumB deletion mutant has a highly activated Rcs system [16,19].
Transcriptomic analysis of a ∆gumB mutant was used to identify genes that were more
highly expressed than in the wild type (to be described elsewhere). Three promoters
were cloned upstream of the luxCDABE operon on a broad-host range low-copy vector
(Figure 2A and Figure S1). The promoters were for the SMDB11_1637, SMDB11_2817, and
SMDB11_1194 open reading frames. All of these previously uncharacterized open reading
frames bear high similarity to Rcs-regulated genes in other bacteria. SMDB11_1637 is simi-
lar to osmotically inducible lipoprotein B (osmB), which is positively regulated by the Rcs
system in Erwinia amylovora [24], E. coli [25,26], P. mirabilis [27], S. enterica [28], and Yersinia
pseudotuberculosis [29]. SMDB11_1194 is highly similar to umoD, which is Rcs-regulated
in P. mirabilis [27], as is its ortholog YPO1624 in Y. pseudotuberculosis. SMDB11_2817 has
similarity to yaaX from E. coli with the DUF2502 domain of unknown function and was
identified as an RcsB-regulated gene in E. coli [25].

In addition, the nptII promoter from the Tn5 transposon was used as a constitutive
control promoter to test for theoretical physiological conditions that could interfere with
luminescence.

To validate the Rcs system activation of these promoters, they were moved into a
contact lens-associated keratitis wild-type (WT) isolate of S. marcescens, strain K904, and
isogenic mutants with manipulated Rcs systems that confer high (∆gumB) or no (∆rcsB
and ∆gumB ∆rcsB) Rcs activity. Strains and plasmids are listed in Table S1 (Supplementary
Materials). Bacteria were grown overnight, and the luminescence was determined as a
function of culture optical density (Figure 2). The test strains were previously shown to
achieve similar growth levels over the tested time frame [30].

The results (Figure 2) suggested that the promoter activity for each of the genes, except
the control nptII promoter, was highly increased (>6000-fold) in the Rcs-activated mutant
background (∆gumB). Furthermore, a clear reduction in luminescence was observed in the
∆gumB ∆rcsB double mutant, confirming that the increase observed in the ∆gumB mutant
was Rcs dependent. There was some expression in the absence of Rcs activity (see ∆rcsB
mutant), indicating that there is some Rcs-independent expression from these promoters
(i.e., other transcription factors may regulate some of these promoters; see discussion).
Importantly, the nptII promoter showed only a minor but significant change (~2-fold)
among the various mutant backgrounds, suggesting that the Rcs system status has little to
no impact on the ability of the luminescent reporter system to function. Together, these
results indicate that we have identified and cloned three Rcs system-responsive promoters
and created reporter constructs to analyze compounds that may influence Rcs-activity.
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Figure 2. Validation of Rcs-responsive transcriptional reporter plasmids. (A). Schematic diagram
of a promoter transcriptional fusion to the luminescence-producing luxCDABE operon that was
cloned into a broad-host range medium-copy plasmid. Four different promoters were evaluated by
moving them into S. marcescens with normal (WT), hyper-activated (∆gumB), or defective (∆rcsB,
∆gumB ∆rcsB) Rcs-systems. (B–E). Transcription from the four promoters was measured using a
luminometer after the bacteria were grown for 20 h in LB medium (n = 4–6). The luminescence values
were normalized by optical density, which was similar for each genotype. The nptII promoter is an
E. coli promoter that was used as a constitutive control. The PSMDB11_1637, PSMDB11_2817, and
PSMDB11_1194 promoters were Rcs responsive. The asterisks (*) indicate that the ∆gumB group is
statistically different than the other groups, p < 0.01. WT: wild type.

2.2. Antibiotics Targeting the Cell Envelope Activate the S. marcescens Rcs System Regardless of
the Antibiotic Susceptibility Status of the Bacterium

The antibiotic susceptibility of four antibiotics used in treatment of ocular infections
was analyzed: polymyxin B, cefazolin, ceftazidime, and vancomycin (Tables 1 and 2).
These target either the peptidoglycan cell wall or the bacterial membrane. Minimum
inhibitory concentrations (MICs) for the antibiotics to inhibit S. marcescens strain K904 were
determined (Table 2). The isolate was susceptible to ceftazidime, but was able to grow at
the highest tested concentrations of polymyxin B, cefazolin, and vancomycin. This was a
typical pattern for keratitis isolates of S. marcescens [7]. Nevertheless, prior to identification
of the infecting microbe, any of the antibiotics other than polymyxin B are candidates for
empiric therapy for keratitis.
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Table 1. Characteristics of antibiotics used in this study.

Antibiotic Typical Topical Drug
Concentration [23]

Corneal Tissue
Concentration Typical Systemic Dose

Peak Serum
Concentration

(µg/mL)

Antibiotic
Concentration Used

in This Study
(µg/mL)

Cefazolin 50 mg/mL
Fortified [23] NA 1 g (IV) q8h [31] 200 µg/mL [31] 39–1250

Ceftazidime 50 mg/mL
Fortified [23] NA 2 g (IV) q8h [31] 120 µg/mL [31] 39–1250

Ciprofloxacin 3 mg/mL
Commercial [23]

9.92 ± 10.99 µg/g
[32]

400 mg (IV) q12h [31]
500–750 mg (PO) q12h [31]

4.6 µg/mL [31] (IV)
2.8 µg/mL [31] (PO) 2.5–75

Polymyxin B
0.75–1 mg/mL

(7500–10,000 units/mL)
Commercial [33]

NA 1.25 mg/kg (IV) q12h
(1 mg = 10,000 units) [31] 8 µg/mL [31] 30–10,000

Tobramycin

3 mg/mL Commercial
[34]

9–14 mg/mL
Fortified [23]

NA

5 mg/kg (IV) q24h [31]
or

240 mg (IV) q24h [31]
(preferred over q8h dosing)

16–24 µg/mL
q24h dosing [31] 8–250

Vancomycin 10–50 mg/mL
[23,35] 46.7 µg/g [36] 1 g (IV) q12h [31] 40 µg/mL [31] 39–1250

NA: information not available; IV: intravenous; PO: per os; q8h: every 8 h; q12h: every 12 h, q24h: every 24 h.

Table 2. Antibiotic susceptibility analysis of S. marcescens strain K904.

Antibiotic Class Target MIC a—WT
(µg/mL)

MIC—∆rcsB
(µg/mL) Susceptibility b Rcs-Specific

Induction c

Cefazolin Cephalosporin Cell wall >256, >256 >256, >256 No Yes
Ceftazidime Cephalosporin Cell wall 0.25, 0.19 0.19, 0.19 Yes Yes

Ciprofloxacin Fluoroquinolone DNA gyrase and
topoisomerase IV 0.064, 0.064 0.094, 0.470 Yes No

Polymyxin B Polymyxin Cell membrane >1024, >1024 >1024, >1024 No Yes
Tobramycin Aminoglycoside Ribosome 2, 2 1.5, 1.5 Yes No
Vancomycin Glycopeptide Cell wall >256, >256 >256, >256 No Yes

a Minimum inhibitory concentrations (MICs) were determined by E-test; values for two independent tests are shown. b Susceptibility
status was based on Clinical and Laboratory Standards Institute breakpoints [37]. c At least one promoter was activated in the wild type,
but none in the ∆rcsB mutant.

Polymyxin B was previously shown to activate the Rcs system of E. coli and
S. enterica [11,13]. Unlike these bacteria, the vast majority of S. marcescens isolates are
resistant to polymyxin B due to a 4-aminoarabinose modification of the lipid A portion of
the lipopolysaccharide molecules that populate the outer leaflet of the outer membrane [38].
The K904 strain was evaluated for polymyxin B susceptibility and found to be resistant
(MIC > 1024, Table 2). The induction of the Rcs system by polymyxin B in a resistant
bacterial species has not been evaluated.

Polymyxin B did not activate the nptII promoter in the WT bacteria, as expected
(Figure 3A); however, the Rcs-dependent promoters were activated in an antibiotic dose-
dependent manner, up to 5–10 fold above the absence of antibiotic (Figure 3B–D). To ensure
that the effect was Rcs-dependent, the reporters were tested in an isogenic ∆rcsB mutant
strain. While there was a less than 2-fold increase in luminescence correlating with the
presence of antibiotics, it was not dose dependent in the ∆rcsB mutant (Figure 3B–D). These
suggest that polymyxin B activates the Rcs system even in a resistant bacterium.

The identical approach was used for three different classes of cell wall-targeting
antibiotics. A β-lactam antibiotic, cefazolin, is used to treat Gram-positive bacteria (Table 1).
S. marcescens strain K904 was resistant to cefazolin (Table 2). Experiments indicated very
little induction except in the SMDB11_1194 promoter (Figure 4). Similarly, S. marcescens
K904 was resistant to the glycopeptide vancomycin (Tables 1 and 2) and was activated
by the three Rcs-dependent promoters in the WT but not the ∆rcsB mutant (Figure 5). By
contrast, S. marcescens was susceptible to the cephalosporin ceftazidime (Tables 1 and 2).



Antibiotics 2021, 10, 1033 6 of 14

Two of the Rcs-dependent promoters were activated by ceftazidime in the WT but not the
∆rcsB mutants (Figure 6).
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Figure 6. Effect of the cell wall activating antibiotic ceftazidime on Rcs-activated promoters (A–D).
Relative luminescence values were determined by dividing luminescence by optical density after 4 h
of antibiotic challenge. The nptII promoter (A) was unaffected by ceftazidime. The Rcs-dependent
promoters (B–D) were activated to a greater extent in the WT than the Rcs-defective ∆rcsB mutant.
Mean and standard deviation are shown (n = 6–9 are shown). Asterisks (*) indicate statistical
differences between groups at the indicated concentrations, p < 0.05.
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2.3. Non-Cell Envelope-Targeting Antibiotics Activated the Test Promoters in an Rcs
-Independent Manner

The same approach used for envelope-targeting antibiotics was used for two non-
envelope-targeting antibiotics. Ciprofloxacin is a fluoroquinolone that targets DNA meta-
bolism and is highly effective against Gram-negative ocular pathogens such as Pseudomonas
aeruginosa and S. marcescens (Tables 1 and 2). Figure 7 demonstrates that the three test
promoters were highly activated by low concentrations of ciprofloxacin in the WT. However,
similar, or even higher levels of expression, were observed in the Rcs-defective mutant,
indicating that the activation of the test promoters was Rcs-independent and suggesting
that ciprofloxacin does not activate the Rcs system.
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Figure 7. Effect of DNA metabolism-targeting ciprofloxacin on Rcs-activated promoters (A–D).
Relative luminescence values were determined by dividing luminescence by optical density after
4 h of antibiotic challenge. The nptII promoter (A) was largely unaffected by ciprofloxacin. The
experimental promoters (B–D) were activated to an equal or greater extent in the ∆rcsB mutant than
the WT. Mean and standard deviation are shown (n = 6–9 are shown). Asterisks (*) indicate statistical
differences between groups at the indicated concentrations, p < 0.05.

The ribosome-targeting aminoglycoside antibiotic tobramycin is used to treat ocular
bacterial pathogens (Tables 1 and 2). Data in Figure 8 indicate very little induction of
promoter activity by tobramycin except by low induction of the SMDB11_1194 promoter.
Slightly higher expression of the promoters was observed in the ∆rcsB mutant, suggesting
that the promoter transcriptional activation was Rcs-independent.
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Figure 8. Effect of protein synthesis-targeting antibiotic tobramycin on Rcs-activated promoters
(A–D). Relative luminescence values were determined by dividing luminescence by optical density
after 4 h of antibiotic challenge. The nptII promoter (A) was unaffected by tobramycin. The experi-
mental promoters were expressed to equal or greater extent in the ∆rcsB mutant than the WT. Mean
and standard deviation are shown (n = 6–9 are shown). Asterisks (*) indicate statistical differences
between groups at the indicated concentrations, p < 0.05.

3. Discussion

The major impetus behind this study was to test whether the Rcs system was activated
by antibiotics used in topical treatment of keratitis. The results show that several of the
antibiotics that are widely used for this purpose indeed do activate the Rcs system. A limi-
tation of the study is that the ocular surface antibiotic pharmacokinetics differ from those
in the microplate. While topical antibiotics use very high concentrations, the combined
action of blinking and the tears wash away most topical antibiotics in a short time frame.
Similarly, antibiotic concentrations reduce over time after application, which could lead to
levels that activate the Rcs or other stress response systems. Nevertheless, patients with
keratitis are given multiple doses of topical antibiotics each day, and although there are
limited studies, data demonstrate measurable quantities of the antibiotics accumulate in
the corneal tissue [32,36]. Furthermore, experimental studies with rabbits have shown that
concentrations of topically applied antibiotics that mimic clinical treatment regimens are
able to kill bacteria in the cornea and even to achieve concentrations sufficient to eliminate
bacteria that are considered resistant by systemic standards [39–41]. Therefore, the combi-
nation of the highly sensitive promoters and large antibiotic concentration gradients used
in this study likely reflects the antibiotic concentrations that bacteria experience during
antibiotic therapy for ocular infections.

Additional differences between this in vitro study and the ocular environment include
a lack of the innate immune system components that could influence the activity of the
antibiotics through synergistic effects or produce envelope stress through other means,
such as envelope-targeting defensins and enzymes such as lysozyme and phospholipase
A [42,43]. These potential effects will be analyzed in future studies.

Data from this study indicate that the promoters for SMDB11 ORF 1194, 1637, and
2817 are Rcs responsive, given the several log10-fold increase in the ∆gumB mutant that
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required a functional rcsB gene. However, it is clear that the selected promoters could
also be strongly activated by ciprofloxacin in an Rcs-independent manner. This is not
unexpected, as several envelope stress response systems, beyond Rcs, are conserved among
the Enterobacterales. For example, in Salmonella, the promoter of the osmB gene (similar
to SMDB11_1687) is activated by both the Rcs and the RpoS stress response systems [28],
suggesting that individual stress response genes are controlled by multiple regulatory
systems. The use of the ∆rcsB strain in addition to the WT enabled clear identification of
Rcs-dependent activation of the reporters by ocular antibiotics.

Remarkably, even antibiotics that S. marcescens strain K904 was highly resistant to,
such as polymyxin B and vancomycin, elicited strong activation of the Rcs system. These
results suggest that the antibiotics are still capable of perturbing the envelope, even if
they are not able to prevent growth. In general, the three different promoters reacted
similarly to each antibiotic, with the notable exception of cefazolin, which only activated
the SMDB11_1194 promoter. This may be due to differential promoter elements that make
this promoter more sensitive than the others to Rcs function. Polymyxin B has been shown
to activate the Rcs system in polymyxin B susceptible S. enterica at subinhibitory levels,
and this was postulated to be driven by polymyxin B’s selective permeabilization of the
outer membrane to hydrophobic compounds at low concentrations [11,44]. Several other
antibiotics that directly or indirectly affect membrane permeability, including β-lactam,
fluoroquinolone, and macrolide antibiotics, are likely capable of the same effect [45].

Of interest, ciprofloxacin appeared to activate some of these promoters to a greater
extent in the ∆rcsB mutant. This suggests that Rcs may actively inhibit other stress response
systems under normal situations. Consistent with this observation, previous studies have
demonstrated a complex interplay between the Rcs system and other envelope stress
response systems [46–48]. Beyond Rcs, there are other envelope sensing stress response
systems in the Enterobacterales, including RpoS, the Cpx system, the phage response pro-
teins, EnvZ/OmpR, and others (reviewed by [46–48]). Very few studies have evaluated the
roles of these proteins in Serratia species; however, studies have demonstrated pleiotropic
roles for Cpx, OmpR, and RpoS in the control of pathogenesis-relevant phenotypes, such as
biofilm formation, and secreted enzymes and cytotoxic secondary metabolite production in
Serratia species [49–52]. The activation of the Rcs system, as noted above, is correlated with
changes that drive virulence-associated phenotypes, such as biofilm formation [16,17]. The
ability of antibiotics to promote these phenotypes through the Rcs system during ocular
infections will be evaluated in subsequent studies.

During the course of this study, another group reported on the production of a Rcs-
dependent fluorescent reporter system for E. coli [9]. This was subsequently and cleverly
used to screen small molecule libraries for activators of the Rcs system, with the concept
that the identified molecules may be evaluated and developed as envelope-targeting
antimicrobials [53]. Therefore, Rcs-reporter systems can be used for both basic biomedical
research and applied studies, and the reporters generated in this study could be useful to a
variety of researchers.

4. Materials and Methods
4.1. Bacterial Growth and Media

Bacteria (Table S1) were maintained in glycerol stocks at −80 ◦C and streaked out
on lysogeny broth (LB) agar [54] before use. Single colonies were grown in LB broth
with aeration on a tissue culture rotor (New Brunswick Tc-7, New Brunswick, NJ, USA).
Gentamicin (10 µg/mL) was used to maintain plasmids. Plasmids were moved into
S. marcescens by conjugation, and tetracycline (10 µg/mL) was used for selection against
donor E. coli [55], as previously described. Antibiotics were obtained from Sigma-Aldrich
(St. Louis, MO, USA) unless otherwise noted.
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4.2. Generation of Luminescence Reporters

The pigA promoter on plasmid pMQ713 [56] was replaced with the SMDB11_1194,
SMDB11_1637, and SMDB11_2817 using yeast homologous recombination, as previously
described [57,58]. Plasmids are listed in Table S1. The pMQ713 plasmid was linearized by
restriction enzyme digestion with EcoR1 and Sal1 (New England Biolabs, Ipswich, MA,
USA). DNA for the three promoter regions were synthesized as linear double-stranded
DNA fragments (Integrated DNA Technologies, Coralville, IA, USA) that include DNA
for the promoter region and for site-directed recombination with pMQ713 that places
the luxCDABE reporter under transcriptional control of the respective promoter (listed
in Table S2). The lengths of the cloned promoters were 338 bp for SMDB11_1194, 354 bp
for SMDB11_1637, and 337 bp for SMDB11_2817. To generate the nptII-driven luxCDABE
plasmid, the tdtomato gene from pMQ414 was digested with BamH1 and EcoR1 enzymes,
and the luxCDABE operon was amplified by PCR from pMQ670 [59] using primers 3805
and 3806 via PrimeSTAR DNA polymerase (Takara Bio, San Jose, CA, USA). The linearized
plasmid and luxCDABE amplicon were combined as above. The plasmids were isolated,
and the cloned promoter region was sequenced to validate the constructs.

4.3. Luminescent Reporter Assays

Strains of S. marcescens bearing luminescent reporter plasmids were taken from a
−80 ◦C freezer and grown on LB agar with tetracycline (10 µg/mL) and gentamicin
(10 µg/mL) for 18 h at 30 ◦C. Single colonies were grown in LB broth with gentamicin in
test tubes, which were aerated on a tissue culture rotor for 18–20 h at 30 ◦C. For reporter
verification experiments, the cultures were measured for growth by evaluating optical
density at λ = 600 nm (OD600) and luminescence at the 527 nm setting from 200 µL samples
in black-sided, clear-bottomed 96-well plates (ThermoFisher, Waltham, MA, USA, prod-
uct 165305) using plate readers (Molecular Devices SpectraMax M3 and L, San Jose, CA,
USA). Relative luminescence units (RLU) values were determined by dividing the raw
luminescence values by optical density values.

For antibiotic effect on promoter activity experiments, cultures were normalized
by measuring optical density at OD600 across a 1-cm path length cuvette with a spec-
trophotometer (Molecular Devices SpectraMax M3). The assay was conducted in 96-well
black-sided, optical bottom plates as above. Two-fold serial dilutions of the antibiotics
were performed with a multichannel pipette, and the bacteria were then added to a final
concentration of OD600 = 0.05 (~9 × 107 CFU/mL). The plate was incubated for 4 h at
37 ◦C in a plastic bag with a dampened paper towel. At 0 and 4 h, luminescence and OD600
values were obtained as above. To obtain RLU values, luminescence values were divided
by optical density and normalized to RLU values from the no antibiotic challenge control
wells.

The antibiotics and maximum concentrations used in this study were polymyxin B at
10 mg/mL (Sigma, St. Louis, MO, USA, product 5291), vancomycin at 5 mg/mL (Fresenius-
Kabi, Bad Homburg, Germany, product C22110), cefazolin at 5 mg/mL (WG Critical Care,
Paramus, NJ, USA, product 44567-707-25), ceftazidime at 5 mg/mL (Sigma, product C-
3809), tobramycin at 1 mg/mL (XGen Pharmaceuticals, Horseheads, NY, USA, product
39882-0412-1), and ciprofloxacin at 0.3 mg/mL (LKT Labs, St. Paul, MN, USA, product
C3262). Stock solutions of antibiotic were prepared in a sterile 15-mL polypropylene
centrifuge (Corning, Corning, NY, USA) tube by dissolving the solid antibiotics in lysogeny
broth (LB). To ensure sterility, the antibiotic solution was filtered using a PVDF 0.22-µm filter
(Millipore SLGVR33RB, Cork, Ireland) into a new sterile polypropylene centrifuge tube.
All samples were stored at 4 ◦C when not in use. The antibiotic gentamicin (10 µg/mL)
was added into the assay samples for all trials to maintain the plasmids.

4.4. Minimum Inhibitory Concentration Analysis

MIC values were determined by Epsilometer (E-test) testing (bioMérieux Inc., Durham,
NC, USA) for cefazolin, ceftazidime, vancomycin, tobramycin, gentamicin, polymyxin B,
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and ciprofloxacin. In brief, an overnight growth of bacteria was adjusted to a turbidity
standard of 0.5 McFarland (~1.2 × 108 CFU/mL) and overlayed with swab streaking on
Mueller Hinton agar. E-test strips were placed onto the agar and allowed to incubate for
24 h at 37 ◦C. The MIC gradients were visually determined and recorded after incubation
following the manufacturer’s guidelines.

4.5. Statistical Analysis

Tests were performed using Prism software (GraphPad, San Diego, CA, USA). One-
way ANOVA with Tukey’s post-test was used to compare multiple groups and Student’s
t-test was used to compare between pairs. For this study, p-values of less than 0.05 were
considered significant.

5. Conclusions

In this study, luminescence reporters for Rcs-stress system activation were generated
for use in bacteria of the Enterobacterales order. This stress system induces major transcrip-
tional changes in response envelope stresses that result in increased capsule production
and biofilm formation. Using these reporters, the Rcs response of the ocular pathogen
S. marcescens to antibiotics used for the treatment of keratitis was evaluated. Several classes
of antibiotics used to treat keratitis induced the Rcs system even when the test bacterium
was highly resistant to the respective antibiotic. These data suggest that topical treatment
of ocular infections with antibiotics may lead to Rcs-dependent phenotypic changes that
aid in bacterial antibiotic tolerance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antibiotics10091033/s1: Table S1: S. marcescens strains and plasmids used in this study;
Table S2: Nucleic acids used in this study; Figure S1: Diagram of pMQ747 used in this study.
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