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Abstract: Streptococcus spp. are an important genus of Gram-positive bacteria, many of which are
opportunistic pathogens that are capable of causing invasive disease in a wide range of populations.
Metals, especially transition metal ions, are an essential nutrient for all organisms. Therefore, to
survive across dynamic host environments, Streptococci have evolved complex systems to withstand
metal stress and maintain metal homeostasis, especially during colonization and infection. There are
many different types of transport systems that are used by bacteria to import or export metals that
can be highly specific or promiscuous. Focusing on the most well studied transition metals of zinc,
manganese, iron, nickel, and copper, this review aims to summarize the current knowledge of metal
homeostasis in pathogenic Streptococci, and their role in virulence.

Keywords: Streptococci; metal homeostasis; metal transport; virulence; zinc; manganese; iron;
nickel; copper

1. Introduction

Metalloproteins require metal ions to function properly, and it is suggested that almost
half of all known proteins require at least one metal ion cofactor [1]. For this reason, metals
are necessary for the survival of all organisms, as they play direct roles in growth, replica-
tion, and cellular metabolism [1,2]. The homeostasis of metal ions, especially of divalent
cations, is therefore a necessary and tightly regulated process that is essential for survival.
Conditions of metal ion imbalance can result in the mismetallation of metalloproteins or
the production of reactive oxygen species (ROS) through the Fenton reaction, both of which
can be toxic to cells [3]. Metal deplete and replete environments can have dramatic and
detrimental effects on organisms if they are unable to respond to metal stress or do not have
mechanisms to maintain optimal intracellular metal concentrations [4,5]. Bacterial metal
transport systems are key players in maintaining metal homeostasis, and the transport
systems in Streptococcus spp. have begun to be elucidated.

Metal transport systems are conserved throughout bacterial species [6], and one of
the largest superfamilies of proteins and most common transporter types are the ATP-
binding cassette transporters (ABC transporters) [7]. ABC transporters typically consist of
a substrate binding protein (SBP), one or two hydrophobic membrane-spanning permeases,
and one or two nucleotide-binding ATPases that supply the energy for active transport
of the metal ion. SBPs are lipoproteins that localize to the membrane via the secretory
(Sec) pathway in Gram-positive bacteria and are further organized into eight clusters,
named A–H, based on protein structure and the binding dynamics that are outlined in
Table 1 [8–10]. Typically, metal binds at the cleft between two conserved domains that are
connected by an α-helical linker, which closes in most SBPs to bury the metal ion. Clusters
A, C, D, and H contain SBPs that bind zinc, manganese, iron, and nickel specifically.
Metal binding sites within these SBPs also typically contain histidine, cysteine, aspartate,
and/or glutamate residues due to the attraction between their electron-pair donors (oxygen,
nitrogen, and sulfur) and metal ions [11]. Other metal transport mechanisms that have been
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characterized in one or more Streptococci include natural resistance-associated macrophage
proteins (NRAMP); ZIP-family proteins; P-type ATPases; and cation diffusion facilitator
(CDF) proteins [4,12,13]. The identification of all known systems in human-associated
Streptococcus spp. and their respective substrates are outlined in Table 2 and discussed in
the following sections.

Table 1. Summary of substrate binding protein clusters.

Cluster Types of Ligands Average Size (kDa) Binding Dynamics

A Zinc, manganese, iron,
heme, siderophores 29–37 Spring hammer

B
Carbohydrates, Leu, Lle, Val,

Autoinducer-2,
natriuretic peptide

31–50 One domain
movement

C Di- and oligopeptides, nickel,
arginine, cellobiose 59–70 One or two domain

movement

D Iron, carbohydrates, putrescine,
thiamine, tetrahedral oxyanions 26–47 One domain

movement

E Sialic acid, 2-keto acids, ectoine,
pyroglutamic acid 35–41 One sub-domain

movement

F
Trigonal planar anions,

methionine, compatible solutes,
amino acids

24–60 One domain
movement

G Alginate 60 One domain
movement

H Iron 80 One sub-domain
movement

Table 2. Characterized metal transport systems in pathogenic Streptococcus spp. organized by species
and metal.

Organism Substrate Transporter/Protein Function References

S. agalactiae

Zn

Sht, ShtII/Blr Histidine triad
proteins

[14–16]
AdcABC, AdcAII,

Lmb
ABC transporter

(import)

CzcD CDF pump
(export)

Mn, Fe

MtsABC ABC transporter
(import)

[17,18]
MntH

NRAMP
transporter

(import)

Heme PefAB, PefCD ABC transporter
(import) [19]

Siderophore FhuCDBG ABC transporter
(import) [20]

Cu
CopA P-type ATPase

(export) [21]
CopZ Chaperone
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Table 2. Cont.

Organism Substrate Transporter/Protein Function References

S. equi
Heme

SeShp Cell surface
protein

[22,23]SeShr Cell surface
receptor

SeHtsABC ABC transporter
(import)

Siderophore EqbHIJ ABC transporter
(import) [24]

S. gordonii

Mn

ScaABC ABC transporter
(import)

[25,26]
AdcABC ABC transporter

(import)

Cu
CopA P-type ATPase

(export) [27]
CopZ Chaperone

S. mutans

Zn
AdcABC ABC transporter

(import)
[28–30]

ZccE P-type ATPase
(export)

Mn MntE CDF pump
(export) [31]

Mn, Fe

SloABC ABC transporter
(import)

[32,33]
MntH

NRAMP
transporter

(import)

Fe

FimA ABC transporter
element (import)

[34–36]FeoABC Ferrous iron
transport (import)

Smu995–998 ABC transporter
(import)

Cu
CopA P-type ATPase

(export) [37]
CopZ Chaperone

S. oligofermentans Mn

MntABC ABC transporter
(import)

[38]
MntH

NRAMP
transporter

(import)

S. parasanguinis Mn, Fe FimABC ABC transporter
(import) [39]
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Table 2. Cont.

Organism Substrate Transporter/Protein Function References

S. pneumoniae

Zn

AdcABC
AdcAII/Lmb

ABC transporter
(import)

[40–42]PhtABDE Histidine triad
proteins

CzcD CDF pump
(export)

Mn, Cd, Zn PsaABC ABC transporter
(import) [43,44]

Mn
MgtA P-type ATPase

(export)
[45,46]

MntE CDF pump
(export)

Fe PitABCD ABC transporter
(import) [47]

Hemin SPD_1590 Hemin transporter
(import) [48–50]

Siderophore
Pia/FhuDBGC ABC transporter

(import)
[48,51,52]

PiuABCD ABC transporter
(import)

Cu
CopA P-type ATPase

(export) [53,54]
CupA Chaperone

S. pyogenes

Zn

AdcABC,
AdcAII/Lmb/Lsp

ABC transporter
(import)

[55–59]
PhtD/HtpA,

PhtY/Slr
Histidine triad

proteins

CzcD CDF pump
(export)

Mn, Fe, Zn MtsABC ABC transporter
(import) [60–62]

Mn MntE CDF pump
(export) [63]

Fe PmtA P-type ATPase
(export) [64]

Heme

SiuADBG/Spy383–
386

ABC transporter
(import)

[65–70]
SiaABC/HtsABC ABC transporter

(import)

Shp Cell surface
protein

Shr Cell surface
receptor

Siderophore FtsABCD ABC transporter
(import) [71]

Cu
CopA P-type ATPase

(export) [72]
CupA Chaperone

S. salivarius Ni UreMQO ABC transporter
(import) [73]
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Table 2. Cont.

Organism Substrate Transporter/Protein Function References

S. sanguinis

Zn SSA_0136–137,
260–261

ABC transporter
(import) [74]

Mn TmpA ZIP transporter
(import) [13]

Mn, Fe

SsaABC ABC transporter
(import)

[75,76]
MntH

NRAMP
transporter

(import)

S. suis

Zn
AdcABC, AdcAII ABC transporter

(import)
[77–80]

Pht309/HtpsABC Histidine triad
protein

Mn

TroABCD ABC transporter
(import)

[81–83]

MntE CDF pump
(export)

Fe FeoAB Ferrous iron
transport (import) [84]

Fe, Co PmtA CDF pump
(export) [85]

Cu
CopA P-type ATPase

(export) [86]
CopZ Chaperone

S. uberis Mn MtuABC ABC transporter
(import) [87]

2. Zinc

In bacteria, zinc (Zn) is the native metal cofactor for approximately 5% of all proteins
and is involved in essential processes such as cell growth and metabolism [88]. Zn is also
a highly competitive metal ion, as described by its high position on the Irving-Williams
series on the stability of metal complexes [89]. Due to these binding properties, Zn is
a frequent cause of mismetallation in proteins that require other metal ions to function
properly, and due to its importance in cellular physiology, it is an effective target for host
defenses such as nutritional immunity, where metals are sequestered to inhibit pathogen
growth [5,90]. Maintaining Zn homeostasis is, therefore, essential for Streptococcus spp. to
avoid Zn toxicity and starvation.

2.1. Transport

Zn transport into bacterial cells is mainly mediated by ABC-type transport systems,
while the efflux of Zn out of the cells is primarily performed by CDF pumps [88]. The high-
affinity Zn transport system in Streptococci is known as AdcBC, with one or more cognate
substrate binding proteins (SBPs) known as AdcA, AdcAII, and Lmb (laminin-binding
protein) or Lsp (lipoprotein of S. pyogenes). Of note, Streptococcus spp. encode different
combinations of Zn SBPs such as AdcA in S. mutans; AdcA and AdcAII in S. pneumoniae;
AdcA and Lsp in S. pyogenes; and all three proteins, AdcA, AdcAII, and Lmb, in S. agalac-
tiae [2,15,56]. Another unique attribute of the Streptococci is that most strains contain
poly-histidine triad proteins (Pht), which are known to bind Zn and facilitate Zn uptake by
interacting with SBPs [91]. The defining feature of the Pht proteins is the histidine triad
motifs, HxxHxH, which are also Zn binding sites. S. pneumoniae encodes four Pht genes
across two different operons (PhtAB and PhtDE), while other species encode fewer, such as
ShtI and ShtII in S. agalactiae [14]. S. mutans is the only species of interest that has not been
shown to express Pht proteins.
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The most well characterized Zn efflux system is CzcD, which has been described in
a few pathogenic species including S. agalactiae, S. pneumoniae, and S. pyogenes [16,58,88].
Recently, a unique P-type ATPase exporter named ZccE was also discovered in S. mutans,
which, notably, does not have a CzcD homolog [30]. ZccE is shown to contribute to Zn
tolerance and virulence, which is discussed in a later section.

2.2. Role in Virulence

Zn availability in the host during colonization and infection fluctuates based on
several different factors such as cell type, tissue, and stage of infection [90,92–94]. Zn is also
tightly regulated in the host by metal chelators such as neutrophil-derived calprotectin (CP,
S100A8 and S100A9) and calgranulin C (S100A12), and by more than 20 metal transport
systems belonging to the ZnT (export) and ZIP (import) family proteins [94,95]. Therefore,
Streptococci encounter not only Zn limitation but also Zn toxicity during colonization and
throughout the course of infection.

2.2.1. Zn Limitation

CP is one of the most well-studied metal chelators at the host–pathogen interface
as it is involved in a process called nutritional immunity where pathogens are starved
of available nutrients such as metal ions. CP is abundantly present at sites of infection
and is mainly produced by myeloid cells, especially neutrophils where it makes up about
50% of the cytoplasmic protein content. The mechanisms by which Streptococcus spp. re-
spond to and withstand CP-mediated Zn starvation in vitro and in vivo is beginning to
be understood in species such as S. pyogenes, S. agalactiae, and S. pneumoniae [2,58,96–99].
When Streptococci are in Zn limiting conditions, it has been repeatedly found that the Adc
operon, additional SBPs, and Pht proteins are necessary to maintain optimal intracellular
Zn levels. The role of Zn transport in virulence is clear as Adc mutants in a variety of
Streptococcal species have attenuated disease severity and/or colonization in experimental
animal models such as rat tooth colonization, nasopharynx infection, meningitis, and skin
infection [2,28,40,59,100,101]. The regulator AdcR has also been shown to play a role in
virulence as the negative regulator of the Zn import system, as well as regulating other fac-
tors such as capsule biosynthesis in S. pyogenes [57,78,88,90,102]. It was recently speculated
that Zn sequestration by CP may also have a beneficial effect on pathogenic bacteria by
preventing the irreversible binding of Zn2+ to the SBP of the manganese transport system,
which then inhibits manganese uptake in S. pneumoniae [103]. This observation remains to
be seen in other Streptococci but could impact colonization and disease.

Another strategy that Streptococci use to overcome Zn limitation is to store Zn ions [57].
The Pht surface proteins can not only pass Zn ions to the AdcA/Lmb SBPs for transport,
but they can also bind up to five Zn atoms per molecule. Streptococcal mutants lacking Pht
proteins have been shown to have decreased intracellular Zn levels, decreased resistance
to Zn limitation, and decreased virulence [14,41,104]. Lastly, it was found that S. pyogenes
replaced its abundant Zn-containing proteins with Zn-free paralogs such as the 30S riboso-
mal protein S14 during Zn limitation, as a mechanism to recycle the ions that were already
inside the cell [57]. This phenomenon contributes to virulence in Zn limiting conditions
but remains to be examined in other Streptococci.

Zn, Zn transport systems, and Pht proteins are also known to contribute to Strepto-
coccal adherence, invasion, and biofilm formation [26,30,88,100,105–107]. For example, S.
agalactiae and S. pyogenes AdcAII/Lmb/Lsp homologues can bind to the extracellular matrix
protein laminin, which is important for adhesion and invasion into epithelial cells [107–109].
It is important to note that this phenotype is not consistent, as later studies found that there
was no interaction with laminin in S. agalactiae and S. pneumoniae [15,100]. The Pht proteins
of S. pneumoniae can also contribute to the adhesion to respiratory epithelial cells, as an
anti-PhtD antibody was able to block bacterial attachment to cells [110].
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2.2.2. Zn Intoxication

During colonization and infection, Streptococci also experience Zn intoxication by
the host. Specifically, in neutrophils, Zn is sequestered in lysosomes and azurophilic
granules and released into phagosomes containing S. pyogenes [96]. Elevated Zn levels cause
decreased virulence by attenuating hyaluronic acid capsule biosynthesis and by inhibiting
important enzymes of glucose catabolism such as phosphofructokinase and GAPDH [58].
Furthermore, Zn at high concentrations inhibits biofilm formation in Streptococcus spp.
and, therefore, pathogenicity. This has been shown in S. pneumoniae, S. pyogenes, S. mutans,
and S. suis [28,106,111,112]. The Zn efflux systems in Streptococci are, therefore, necessary
to overcome Zn toxicity by ridding the cell of extra Zn and contributing to Streptococcal
infections [16,30,58,96,113–115].

Overall, Streptococci have multiple mechanisms to maintain Zn homeostasis in dif-
ferent environments, including import and export systems, Zn binding proteins, and
Zn-dependent regulatory factors. However, there are still ranges of tolerance for Zn star-
vation and intoxication depending on the species and strain variability, which has been
exemplified in recent publications [30,116]. Therefore, the role of Zn in Streptococcus spp.
pathogenicity remains to be fully understood.

3. Manganese and Iron

Manganese (Mn) and iron (Fe) are also well characterized as important transition
metals used by most organisms across all forms of life. Previous reviews have highlighted
the observation that there are both Fe-centric and Mn-centric metabolic pathways in bac-
teria that have different mechanisms to maintain metal homeostasis [117]. Streptococci
fall along the middle of this spectrum and have transport machinery, regulatory mech-
anisms, and pathogenic uses for both Mn and Fe, with some degree of overlap. The
intricacies of Mn and Fe transport and their role in virulence in Streptococcus spp. has been
previously described [4,12,117,118]. Therefore, this review aims to compare the role of
these metals in different Streptococcus spp. and provide an update on what has been most
recently discovered.

3.1. Transport

Mn import is facilitated by two major types of transporters that are present in Strepto-
cocci. The first system is an ABC-type transporter, commonly named MtsABC, but other
homologs in Streptococci include, but are not limited to, SloABC, MntABC, and PsaABC.
These transport systems have also been shown to transport Fe in some species such as S.
agalactiae, S. pyogenes, and S. sanguinis, and even to bind cadmium in S. pneumoniae. The
second type of Mn transporter is the NRAMP (natural resistance-associated macrophage
protein) secondary active transporter, which, surprisingly, is not present in S. pyogenes or
S. pneumoniae [18]. NRAMPs couple favorable energy of the passage of one molecule to
power the transport of another and is usually named MntH [119]. Fe has also been shown
to bind NRAMP transporters, but has relatively poor binding affinity compared to Mn, in
striking contrast of their positions on the Irving-Williams series of cation binding affinity.
MtsABC and NRAMP transporters are active at different stages of growth, with MtsABC
more effective at a slightly higher pH, while NRAMPs are important for survival in acidic
conditions [18,38]. A third, and less well-characterized, type of Mn importer is a ZIP-family
transporter, TmpA (transporter of metal protein A), that was recently discovered in S.
sanguinis [13]. The presence of this type of transporter and its role in metal homeostasis in
other Streptococci remains to be elucidated.

There are five different classes of Mn exporters known in bacteria, including MntP
type, CDF pumps, TerC type, P-type ATPases, and MneA type, but only two types have
been studied in Streptococci [117]. These exporters are the CDF pump and the P-type
ATPase named MntE and MgtA, respectively. MntE is commonly encoded across the
Streptococci but has not yet been described in most species. Interestingly, S. pneumoniae is
unique in that it has both types of Mn exporters; however, this could change as more Mn



Microorganisms 2022, 10, 1501 8 of 17

exporters are characterized in Streptococcus spp. [45,46]. For Fe, there is only one P-type
ATPase efflux system, PmtA, that has been characterized in S. pyogenes and S. suis [64,85].

Fe is also imported through ABC-type transport systems but, unlike Mn, Fe can be
taken up in multiple forms such as heme and siderophores. In addition, there is usually
more than one Fe-dependent ABC system encoded by each species. The cellular uptake of
Fe can also be in the form of ferrous Fe (Fe2+) or ferric Fe (Fe3+), with Fe3+ usually being
the most common in microbial habitats of host organisms due to enzymatic oxidation or
reactions with oxygen [12]. The most abundant source of Fe in host species is heme, and the
most pathogenic Streptococci contain heme-binding ABC transporters [12,118]. In addition,
chelated Fe can be acquired using hydroxamate and catecholate-type siderophores such
as FhuD in S. agalactiae, PiuA in S. pneumoniae, and the unique EqbA in S. equi [20,24,51].
However, not all Streptococci that have siderophore transporters can produce and secrete
their own, including S. pneumoniae and S. pyogenes. This suggests that they may have
uptake machinery to utilize siderophores produced by other bacteria, as was previously
shown in S. pyogenes [12]. Interestingly, many oral Streptococcus spp., such as S. mutans and
S. gordonii, have not been shown to contain siderophore-mediated Fe uptake machinery at
all [120].

3.2. Role in Virulence

Mn is a cofactor for many of the proteins that are involved in Streptococcal growth,
replication, virulence, and biofilm formation [117]. More specifically, it is most associated
with defense against reactive oxygen species (ROS), nucleotide synthesis, and normal cell
physiology and development [113,121,122]. A few Mn-dependent enzymes include superox-
ide dismutase (SOD), ribonucleotide reductase, and Mn-dependent phosphatases [122–124].
A specific Mn-dependent enzyme called phosphoglucomutase (Pgm) is involved in cap-
sular polysaccharide production and is influenced by not only Mn, but also Zn concentra-
tions [125]. An example of this was shown in S. pneumoniae, where a low Mn/high Zn ratio
resulted in inactive Pgm and a thinner capsule [126]. Fe is used by most organisms for a
wide range of metabolic and informational cellular pathways including electron transport,
peroxide reduction, and amino acid synthesis. In fact, it is estimated that bacteria require
at least 10−8 mol/L of Fe for growth and that there are over 100 metabolic enzymes alone
that require Fe [12]. The host also needs Mn and Fe and employs mechanisms to starve
pathogens. As was mentioned above, CP is a known neutrophil-derived metal chelator that
can sequester Mn and Fe in addition to Zn during infection. Neutrophils also release Fe
specific chelators such as Lipocalin-2, which binds bacterial siderophores, and Lactoferrin,
which binds Fe3+ directly [127,128]. To withstand host-mediated Mn and Fe starvation and
to survive in metal limiting environments, Streptococci utilize their import systems, as is
shown by the decreased bacterial burden and disease severity in animals that are infected
with bacterial mutants lacking Mn or Fe transporters [32,43,47,48,61,76,129,130]. At the
other extreme, Mn and Fe at high concentrations are also toxic to cells. Fortunately, some
pathogenic Streptococci contain Mn exporters such as MntE in S. pneumoniae, S. pyogenes,
and S. suis, and the Fe exporter PmtA in S. pyogenes that have been found to be critical for
virulence [46,63,82,131].

Pathogenic bacteria are exposed to ROS from environmental redox reactions, intracel-
lular enzyme autoxidation, or, most notably, from the host or competing bacteria during
colonization and infection [38,117,132–134]. ROS are toxic to cells due to the high reactivity
of Fe2+ with hydrogen peroxide (H2O2), resulting in hydroxyl radicals; however, Mn does
not cause Fenton reactions and is often the basis for oxidative stress response in bacteria,
either as a cofactor or as a nonenzymatic antioxidant [135]. Notably, the main defense
system in Streptococcus spp. to combat oxidative stress is the enzyme SOD, and it is mainly
known to use Mn2+ as a cofactor in Streptococci [4]. To protect the cell, SOD converts
superoxide into oxygen and H2O2, which is then further broken down into water and oxy-
gen [132]. The effect of Mn homeostasis on SOD activity and oxidative stress resistance is
exemplified by the fact that Mn and Fe transporter mutants have an increased susceptibility
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to H2O2 and paraquat and less tolerance for low pH [32,33,43,63,122,130,136]. In addition,
it was shown that cadmium ions could disrupt Mn uptake and efflux systems, which
lowered intracellular concentrations and, therefore, indirectly increased S. pneumoniae sus-
ceptibility to oxidative stress [137]. Another conserved mechanism in Gram-positives to
withstand oxidative stress is to sequester free Fe ions using Dps-like peroxide resistance
proteins (Dpr), which has been shown so far in S. pneumoniae, S. pyogenes, S. mutans, and
S. suis [138–142]. Additionally, S. pyogenes and S. suis can remove reactive Fe from the
cell using their PmtA efflux system [64,85,131]. Overall, metal starvation, toxicity, and
oxidative stress are common problems that pathogenic Streptococci encounter in different
environments, and they encode a myriad of Mn and Fe-dependent systems and enzymes
to help overcome these pressures.

4. Copper

Copper (Cu) is present in the human body but is only found in trace amounts compared
to other transition metals. Cu has a few known roles that influence the pathogenicity of
bacteria, though these are not well characterized across the Streptococci. Cu also sits atop
the Irving-Williams series, surpassing Zn for binding affinity, and therefore has a very high
potential to cause mismetallation, as is exemplified in S. pneumoniae [143]. Similarly to Fe,
Cu is also redox active and can generate ROS via a Fenton-like reaction, making it toxic in
high quantities [6,144]. Therefore, the control of intracellular Cu is imperative for both host
and pathogen.

4.1. Transport

The primary bacterial systems that are characterized in the transport of Cu are involved
in Cu export to prevent toxicity. In Streptococci, the only characterized Cu transport system
is CopYAZ, which consists of a P-type ATPase (CopA), a cytoplasmic metallochaperone
(CopZ), and the repressor (CopY). CopA couples Cu+ transport to ATP hydrolysis for active
transport across the plasma membrane, while CopZ is involved in cytoplasmic trafficking
and the shuttling of Cu ions to CopA and the regulator CopY [21,27,72,144–146]. A unique
Cu chaperone (CupA) was discovered in S. pneumoniae that is only present in a few other
Streptococcus spp., and it has been shown to reduce Cu ions from Cu2+ to Cu+, the exported
Cu state, using a cupredoxin fold [147]. Aside from CopYAZ, intracellular glutathione can
also bind Cu ions to aid in Cu tolerance when the exporter is overwhelmed, as was shown
in S. pyogenes [148].

4.2. Role in Virulence

Cuproenzymes, or proteins that permanently bind Cu, are primarily involved in
aerobic and anaerobic electron transfer reactions and superoxide dismutation, which are
important for bacterial survival [144]. However, Cu at high concentrations is very toxic
and the host exerts Cu stress on bacteria through pumping Cu and other metal ions into
the phagosomes of macrophages to induce mismetallation, oxidative stress, and death.
To deal with this pressure, several pathogenic Streptococcus spp. have evolved Cu efflux
systems such as S. agalactiae, S. pneumoniae, and S. pyogenes [21,27,37,54,72,86,147,149].
These transporters are negatively regulated by CopY, which are derepressed in the presence
of Cu ions. Knock-out strains lacking Cop proteins have been shown to be more sensitive
to Cu intoxication, as the bacteria are unable to regulate intracellular Cu levels. Further,
high Cu concentrations inhibit biofilm formation, and the detachment of S. pyogenes, S.
mutans, S. gordonii, and a copA knock-out in S. agalactiae decreased virulence in a mouse
model of systemic infection [21,27,37,72,150]. Bacteria also have mechanisms to survive
Cu stress that do not involve transport, such as sequestering Cu ions with Cu-binding
proteins or oxidizing Cu+ to the less toxic form of Cu2+ [146]. It was recently published that
S. agalactiae has several genes, in addition to the cop operon, to manage Cu homeostasis
during Cu stress, and these genes were predicted to be involved in cell wall biogenesis,
metabolism, and signal transduction, including oafA, hisMJP, and stp1, respectively [151].
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5. Nickel

Nickel (Ni) is another transition metal ion that is found in trace amounts within the
human host. In fact, Ni is found at less than 5 ppm in most human organs, and mammals
do not synthesize any known Ni-dependent enzymes. This suggests that Ni could be
available for use by bacterial commensals or pathogens [152]. However, to date, very little
is known on the role of Ni in bacterial pathogenesis.

5.1. Transport

Ni transport in Streptococci is largely uncharacterized, with the only known system
being the ABC-type transporter UreMQO in S. salivarius [73]. UreMQO is encoded within
the same operon as a Ni-dependent urease. However, homologs of other known ABC
transport systems such as NikABCDE in E. coli have been found in some Streptococcus spp.
such as S. agalactiae [2,130]. These streptococcal homologs have yet to be characterized but
consist of a substrate binding protein (NikA), two membrane-spanning permeases (NikBC),
and two ATPases (NikDE), and they were found to contribute to in vitro CP resistance in
S. agalactiae [2]. Other types of secondary Ni transporter that are present in prokaryotes
are the Ni/Cobalt transporters (NiCoT), frequently called NixA, which also have yet to be
characterized in Streptococci [152].

5.2. Role in Virulence

The bioavailability of Ni in the human host is limited, but since mammals do not syn-
thesize any known Ni-requiring proteins, it is possible that Ni is more available for bacteria
to use to cofactor their own enzymes [152]. There are nine known enzymes in bacteria that
have been shown to require Ni with varying roles in virulence: Ni-superoxide dismutase;
Ni-glyoxalase; Ni-hydroxyacid racemases; Ni-acireductone dioxygenase; [NiFe] hydroge-
nases; urease; methyl-coenzyme M reductase; acetyl-coenzyme A decarbonylase/synthase;
and carbon monoxide dehydrogenase [152,153]. Most notable of these enzymes to be
involved in pathogen virulence is urease, but most Streptococcus spp. have not been shown
to contain urease biosynthesis genes. One exception, as mentioned above, is the urease and
Ni transporter system that is encoded by S. salivarius [73]. Aside from this, there is only
one known homolog of LarA (Ni-lactate racemase) found in S. pneumoniae [125,154] but,
collectively, the role of Ni in the pathogenesis of Streptococci remains to be elucidated.

6. Conclusions and Future Directions

Pathogenic Streptococci notoriously contain an arsenal of virulence factors, of which
metal transport systems are critical components. This review highlights the current knowl-
edge on Zn, Mn, Fe, Cu, and Ni transport systems that are present in Streptococcus spp., and
their role in virulence (Figure 1). Research characterizing metal transport and regulation is
still ongoing, and as most metals are used as enzymatic cofactors, the effects of metals on
Streptococcal metabolism is a new and exciting research pursuit [49,114,122,125,136,155].
Metals and the mechanisms that are necessary to acquire them may also yield new drug
or vaccine targets, or yield new therapies to fight infection and disease. Some examples
that have been proposed or developed thus far include targeting the SBPs of transport
machinery and exploiting the toxicity of metals such as silver and copper in the form
of nanoparticles and metal coatings [156–159]. Though recent strides have been made
in characterizing Streptococcal metal homeostasis, several important questions remain,
including understanding (1) how metal availability differs across biological niches dur-
ing colonization and infection; (2) what and how host factors impact Streptococcal metal
homeostasis; (3) why some species rely on multiple SBPs or seemingly redundant transport
systems to maintain homeostasis, while others do not; (4) how downstream Streptococcal
physiology is impacted by metal starvation and/or toxicity. To this end, deciphering these
mechanisms is vital to understanding how Streptococci have evolved to thwart metal
stresses at the host–pathogen interface, as well as how they promote colonization and
disease pathogenesis.
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Figure 1. A summary diagram of all known types of transporters for Zn, Mn, Fe, Cu, and Ni in
Streptococci with arrows indicating metal import or export. Transparent shapes represent trans-
port systems that are only characterized in one species, including MgtA (S. pneumoniae); TmpA
(S. sanguinis); a third zinc SBP (S. agalactiae); ZccE (S. mutants); and Ni ABC (S. salivarius). Created
using BioRender.com.
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