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Abstract

Within vision research retinotopic mapping and the more general receptive field

estimation approach constitute not only an active field of research in itself but also

underlie a plethora of interesting applications. This necessitates not only good

estimation of population receptive fields (pRFs) but also that these receptive fields

are consistent across time rather than dynamically changing. It is therefore of

interest to maximize the accuracy with which population receptive fields can be

estimated in a functional magnetic resonance imaging (fMRI) setting. This, in turn,

requires an adequate estimation framework providing the data for population

receptive field mapping. More specifically, adequate decisions with regard to

stimulus choice and mode of presentation need to be made. Additionally, it needs to

be evaluated whether the stimulation protocol should entail mean luminance

periods and whether it is advantageous to average the blood oxygenation level

dependent (BOLD) signal across stimulus cycles or not. By systematically studying

the effects of these decisions on pRF estimates in an empirical as well as

simulation setting we come to the conclusion that a bar stimulus presented at

random positions and interspersed with mean luminance periods is generally most

favorable. Finally, using this optimal estimation framework we furthermore tested

the assumption of temporal consistency of population receptive fields. We show

that the estimation of pRFs from two temporally separated sessions leads to highly

similar pRF parameters.
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Introduction

An essential aspect of vision research using functional magnetic resonance

imaging (fMRI) is the investigation of retinotopic organization of visual cortex

[1, 2]. Phase encoded retinotopic mapping as pioneered by Sereno et al. [3]

already allowed for the systematic investigation of polar angle and eccentricity

properties of visual cortex. Recently, the advent of the population receptive field

(pRF) mapping approach, first described by Dumoulin and Wandell [1], has

supplemented knowledge of receptive field location with insight regarding their

size and shape. Beyond the immediate scientific interest in receptive field

properties, knowledge of receptive fields is crucial for a number of applications.

Receptive fields a) provide a source of information for the reconstruction of

stimuli from the blood oxygenation level dependent (BOLD) signal [4], b) can

serve as target for transcranial magnetic stimulation [5], c) assist function based

alignment, d) provide a spatial forward model for computational models [6], and

e) might give important insights with respect to theories of attention [7] as well as

into pathologies of visual cortex [8–10] and brain development.

For the utilization of receptive fields for any of the aforementioned

applications, it is necessary that they are measured, or rather estimated, with a

high degree of precision. For a number of applications it is necessary to estimate

pRF parameters from one set of stimuli and use their predictions on a distinct set

of stimuli. For other applications it is necessary to perform estimation in one

session to be able to use the obtained parameters in future sessions. For these

reasons, the precision of pRF estimation necessarily pertains to generalizability

across stimuli as well as across sessions (i.e. time).

Such precision relies first and foremost on three aspects of the estimation

procedure (see figure 1 for a visual representation of this organization). First of

all, an adequate model description of a receptive field is needed to capture its

position, shape, and local properties. Secondly, it is necessary to define an accurate

and fast optimization procedure by specifying both a suitable search space on the

parameters and an efficient way to traverse this space. Finally, it is necessary to

setup an adequate estimation framework providing the data from which receptive

fields are estimated. With regard to model description and optimization

procedure other groups have previously produced excellent work [1, 2, 11].

According to our knowledge, however, the estimation framework has so far not

undergone a thorough investigation and it is our aim to provide a first attempt by

studying how different choices affect pRF estimation performance.

In detail, the estimation framework encompasses stimulation and data

preparation. Stimulation, in turn, refers to the type of stimulus used (e.g. moving

bar), stimulus presentation (the stimulus changes location in an orderly or

random fashion), and continuance (stimulation is continuous or interspersed

with mean luminance periods). Importantly, the stimulus type does not

necessarily refer to a single stimulus but can also refer to an integration of at least

two stimuli. For instance, stimuli which can only reveal partial information with

respect to receptive field location (rotating wedge and contracting ring only
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convey information on polar angle and eccentricity, respectively) can be

integrated into a single stimulus (Wedge-Ring or WR). This integration of

information is performed independent of stimulus presentation. In the case of

wedge and ring stimuli each stimulus is presented individually and only after

acquisition of the BOLD signal for each is the information integrated. This,

however, can be done before or after estimation of pRF parameters. Specifically,

integrating the information before estimation is at the level of the signal. It

involves the concatenation of signals originating from runs presenting each of

these stimuli individually. Estimation is then performed on the concatenated

signal. Integrating the information after estimation is at the level of the

parameters. In this case, parameters are first estimated separately for each stimulus

and the relevant parameter estimates from each stimulus are retained and

combined to generate a full set. Here we considered three stimulus types: bar,

wedge-ring pre-estimation (WRpre), and wedge-ring post-estimation (WRpost)

and supplement the more commonly used orderly presentation of stimuli with

random presentation. We include a random presentation sequence since it had

previously been shown that a pseudo-random, multi-focal, stimulus improved

pRF estimation in the presence of foveal scotomas [9]. It is as of yet unclear,

however, whether this improvement was due to the multi-focal nature of the

stimulus or it being presented in a pseudo-random fashion and whether such

choices have any benefit in healthy vision. Regarding continuance, we system-

atically investigated the effects of including mean luminance periods since it has

Figure 1. Conceptual Division of the pRF Estimation Procedure. This figure gives a visual organization of the pRF Estimation Procedure with its
components: 1) pRF Mode, 2) Optimization Procedure, and 3) Estimation Framework. The frame around Estimation Framework indicates that choices
related to this component and its subcomponents constitute the focus of this paper.

doi:10.1371/journal.pone.0114054.g001
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previously been suggested that their inclusion provides a baseline that allows for

improved estimation of large receptive field sizes higher up in the visual hierarchy

[1]. Lastly, data preparation refers to averaging the BOLD signal across stimulus

cycles in order to average out random noise in the signal. While averaging should

increase the proportion of variance in the BOLD signal that is explained by

predictions generated from pRF parameters, it is not clear whether higher

proportions of explained variance reflect an improvement in pRF estimation or

are simply due to a reduction in the total amount of variance to be explained. We

aim to distinguish between these possibilities in our evaluation of the effects of

averaging.

While we hope to improve the estimation of pRFs and hence their utility to

other aspects of vision research, it is apparent that although good estimation of

pRFs is surely necessary, it is not always sufficient. That is, it is also necessary to

assume that pRFs are stable across time in the healthy adult brain a) for situations

in which functional localizers and experimental fMRI data are acquired in

separate sessions, b) for function based alignment, c) to provide a spatial forward

model for computational models, and d) for studying changes in the diseases

affecting retinotopic organization [8] and the developing brain. Therefore, the

second aim of our paper is to test this assumption of stability or temporal

consistency.

In order to achieve these aims we study how different choices affect pRF

estimation performance in both an empirical as well as in a simulation setting.

Simulations allow us to have knowledge of the ground truth regarding pRF size

and shape. This renders it possible to investigate in how far choices related to the

estimation framework produce correct estimates of each pRF parameter rather

than simply explaining variance within the measured BOLD signal.

In summary, we aim to 1) provide a first guideline with respect to choices

relating to the estimation framework, and 2) establish the temporal consistency of

receptive fields in the healthy adult brain in order to provide a good rationale for

vision research relying on knowledge of population receptive fields as well as to

further our understanding of them.

Our results with regard to the estimation framework show that a bar stimulus

presented in a random (non-continuous) fashion produces the most promising

estimates of pRFs, especially if stimulation is interspersed with mean luminance

periods. Furthermore, averaging of the BOLD signal reduces the amount of

variance left unexplained in the signal and might thus convey an advantage in

delineating visually responsive voxels. Additionally, for very noisy (high

resolution) data sets, our simulations suggest that heavy averaging leads to more

accurate pRF parameter estimates while it does not do so if the noise is moderate.

Our results with regard to temporal consistency show that pRF estimates

originating from two separate measurement sessions separated by a week appear

to be very consistent especially with regard to their location and size. The angle of

elongation of anisotropic receptive fields, however, is subject to moderate

variations as our simulation results revealed that it is generally more difficult to

estimate than the other parameters.
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Materials and Methods

Participants

Two fMRI measurements separated by 1 week were obtained from three male

volunteers. All volunteers were without prior history of psychiatric or neurological

illness. The ages in years of subjects one, two, and three were 34, 27, and 35,

respectively. All subjects were right handed and had normal or corrected-to-

normal visual acuity, were screened, and provided written informed consent prior

to scanning.

Ethics Statement

The Ethics Committee of the Faculty of Psychology and Neuroscience at

Maastricht University approved this study and the procedures employed therein.

Stimulus Description

In the present study we used the conventional wedge, ring, and bar stimuli

composed of a high-contrast, moving, checkerboard pattern [1–3, 12, 13]. In

contrast to common practice the stimuli did not move continuously across the

visual field but in 12 discrete steps and remained at each position for 2 seconds

(51 TR), covering the entire visual field within 24 seconds. The wedge therefore

subtended 30˚ (1/12th of the entire 360 )̊ and the width of the rings and bars was

1/12th of the maximum stimulus radius and diameter, respectively. We presented

all stimuli in two different modes. The first mode was consecutive with each

stimulus position bordering the previous position. For the wedge and ring stimuli

this coincides with the phase encoded design first described by Sereno et al. [3]. In

the first mode the wedge was presented counter clockwise while the ring was

contracting and the bar was presented in four different orientations (0,p4, p2, and 3
4 p

radians) moving in two different directions for each of the orientations

(orthogonal to orientation). In the second mode the stimuli were shown at

random positions with the exception that for the bar stimulus the positions were

only randomized within an orientation and never across orientations. Similar to

the original pRF estimation procedure described by Dumoulin and Wandell [1]

we inserted mean luminance periods during which the participants only saw a

zero contrast field. Within each cycle mean luminance fields replaced the stimuli

for four consecutive TRs. This amounts to a total of 8 seconds within each cycle

wherein subjects were shown zero contrast rather than a stimulus. The order at

which mean luminance fields were inserted was pseudorandom; that is, for each

cycle four different positions were replaced such that each position was presented

equally often. Figure 2 shows a schematic of mean luminance insertion into

stimulus cycles using the orderly presented wedge stimulus as an example. For

both wedge and ring 15 cycles were presented. For the bar each combination of

orientation and direction (4*2) consisted of one cycle. There were thus 8 cycles to

show each of these combinations and each combination was shown 3 times

resulting in a total of 24 cycles. Illustrative visualizations of all stimulus
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presentations for subject one are provided in the form of compressed video files in

File S1 (all videos are played at fourfold speed of actual stimulation and

checkerboards are static rather than flickering).

Stimulus Presentations

The open source stimulus presentation tool StimulGL, developed by authors SG

and RG (https://sites.google.com/site/stimulgl/) was used for presenting the

various visual stimuli to the subjects at a screen resolution of 168061050 pixels.

The stimuli had a resolution of 105061050 pixels. The experiments were

performed on a hardware configuration containing a Dell Optiplex 970 computer

with a NVIDIA NVS 300 graphics card with OpenGL .2.0 support connected to a

Panasonic PT EZ570E wuxga projector. The projected visual stimuli were reflected

first with a mirror behind the bore of the magnet and secondly by a mirror above

the head coil to the subject. The stimuli filled an area of 40 (width) x 23.5 (height)

cm2 when projected onto the scanner’s frosted screen, corresponding to 30618

Figure 2. Schematic of Stimulus Presentation Scheme. This figure shows a representative schematic of the stimulus presentation scheme including
mean luminance periods using the orderly presented wedge stimulus as an example. A) Shows a standard wedge aperture located at 0˚ revealing a
checkerboard pattern. The wedge turns counter-clockwise. B) Shows a color-code for each of the twelve wedge positions presented during stimulation.
C) Shows the timecourse of stimulus presentation for three exemplary cycles. The entire stimulation consists of 15 such cycles. The colors of the squares
correspond to the color of the wedge position shown at a certain moment in time lasting for two seconds (51TR). Grey squares indicate mean luminance
periods.

doi:10.1371/journal.pone.0114054.g002
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degrees visual angle. Given the limit of 18˚visual angle in the vertical direction, all

stimuli were also limited to 18˚ in their horizontal extent.

Magnetic resonance imaging

Imaging data were acquired using a 3T Tim Trio scanner equipped with a 32-

channel head coil (Siemens Medical Systems, Erlangen, Germany). Anatomical

data were collected with a T1-weighted MPRAGE imaging sequence (192 sagittal

slices; Repetition Time [TR]52250 ms; Echo Time [TE]52.17 ms; Flip Angle

[FA]59 ;̊ Field of View [FoV]52566256 mm2; 1 mm isotropic resolution;

GRAPPA52). Functional images were acquired using a gradient-echo echo-planar

imaging sequence (31 transversal slices; TR52000 ms; TE530 ms; FA577 ;̊

FoV52166216 mm2; 2 mm isotropic resolution; no slice gap; GRAPPA52).

Processing of (f)MRI data

All imaging data were analyzed using BrainVoyager QX (v2.6; Brain Innovation,

Maastricht, the Netherlands). Anatomical datasets underwent brain extraction,

followed by inhomogeneity correction and transformation to ACPC space.

Preprocessing of the functional datasets followed standard procedures including

slice scan time correction, (rigid body) motion correction, linear trend removal,

and temporal high-pass filtering (up to 2 cycles per run). Head motion was

minimal (,1.5 mm translation and ,1.5˚ rotation in any direction in all runs of

every subject) and corrected successfully during post-processing. Due to the use of

preparation scans, none of the initial volumes needed to be discarded related to

T1 equilibrium effects.

Model Based Analysis

We loosely followed the procedure described by Dumoulin and Wandell [1] for

estimating the pRF parameters from the time series data using a linear spatio-

temporal model of the fMRI response. Specifically, after the BOLD signal

measured for each voxel is z-normalized, it is modeled by

yn tð Þ~
p tð Þ{mp

� �
sp

ze 1Þ

where p(t) is the predicted BOLD signal, e represents additive Gaussian noise, and

mp and sp respectively represent the mean and standard deviation of the predicted

BOLD signal. In accordance with Dumoulin and Wandell [1] the prediction p(t)

was calculated from a parameterized model of the underlying modeled neuronal

population receptive field and the stimulus. We estimated the pRF model by

finding those model parameters that best fit the data. Here, we modeled the pRF

as an anisotropic two-dimensional Gaussian. We used an anisotropic model for

reasons of completeness as it allows us to investigate the aptitude of each stimulus

in identifying all pRF properties. Additionally, previous research had shown that
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an anisotropic model is beneficial for the estimation of pRF location at

eccentricities close to the outer boundaries of the stimulated visual field segment

[2]. We did, however, repeat the analyses with an isotropic pRF model and get the

same results with regard to stimulus choice. The anisotropic Gaussian is defined

by five parameters (x0,y0,sx,sy,h),

g x,yð Þ~exp { a x{x0ð Þ2z2b x{x0ð Þ y{y0ð Þzc y{y0ð Þ2
� �� �

2Þ

and

a~
cos2h

2s2
x

z
sin2h

2s2
y

3Þ

b~{
sin2h

4s2
x

z
sin2h

4s2
y

4Þ

c~
sin2h

2s2
x

z
cos2h

2s2
y

5Þ

where (x0,y0) is the center of the Gaussian, sx and sy is the spread in the X and Y

directions, respectively, and h is the rotation of the Gaussian. From this receptive

field model and an effective stimulus, s(x,y,t), which is a binary indicator function

that marks the position of the stimulus aperture at each time, we calculated the

BOLD signal in two steps. First, we calculated the overlap between the effective

stimulus and the model pRF at each point in time:

r tð Þ~
X
x,y

s x,y,tð Þg x,yð Þ 6Þ

Second, we convolved this overlap with a two-gamma hemodynamic response

function h:

p tð Þ~r tð Þ � h tð Þ 7Þ

In order to find the optimal pRF parameters we performed a grid search. The

grid consisted of a set of 36000 plausible parameter configurations. Specifically, we

used a 20 by 20 grid of central positions ranging from 29˚ to +9˚ (measured from

fixation), a set of 10 exponentially increasing spreads from 0.25 to 10 (we expected

most RFs to be comparatively small and only a few to be big), two ratios of spread

in the X and Y direction (sx/sy51:1 and 2:1), one angle of rotation if the ratio is

1:1, and eight angles of rotation if the ratio is 2:1. The search space was traversed

for all voxels simultaneously using a graphical processing unit (GPU) accelerated
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parallelization procedure. Each voxel was assigned the parameter set which

minimizes the normalized root-mean-square error (NRMSE) between its Z-

normalized predicted and Z-normalized measured BOLD signal:

NRMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t yn tð Þ{pn tð Þð Þ2

T

s
=2:35 8Þ

where T is the number of time points, 2.35 is the full width at half maximum of

the Z-distribution, and the subscript n indicates that the data is normalized to Z-

scores. Additionally, a fit value was retained for each voxel given by 1-NRMSE.

Information Integration

With respect to pRF location the wedge and ring stimuli can arguably only

provide adequate information on either polar angle or eccentricity, respectively.

We, therefore, only considered combinations of these stimuli in estimating pRF

parameters. Specifically, we considered two modes of combination. For the first

mode the stimuli were combined before pRF estimation by concatenation of the

BOLD signals obtained for each stimulus individually. The pRF parameters were

then estimated from this concatenated signal (we refer to this stimulus setting as

WRpre). For the second mode the pRF parameters were first estimated for each

stimulus individually. Afterwards, the Cartesian coordinates obtained for the

wedge were transformed to angular values while those of the ring were

transformed to radii. Next, the combined location was obtained by transforming

these angle and radius values back to the Cartesian coordinate system. Finally, the

remaining parameter values were averaged across the two stimuli (we refer to this

stimulus setting as WRpost). To obtain the average of the rotation angle we used

the formula for the mean of circular quantities. The bar stimulus (hereafter

referred to as bar) arguably provides adequate information on all pRF parameters.

Voxel Selection

In the present study voxels were treated as subjects in the statistical analyses. Since

it is only meaningful to include those voxels that encode visual information it was

necessary to separate visual from non-visual voxels for each subject and scan

session. This was done in two steps. First, voxels were sorted into two clusters by

performing k-means clustering on their fit values for each stimulus configuration

(i.e. experimental run) individually. This led to a cluster of visual voxels per

experimental run. In the second step only voxels which were consistently placed

into the visual cluster for all runs were retained in the analyses. In the first session

2655, 2669, and 1969 voxels were retained for the three subjects, respectively. In

the second session 2592, 2764, and 1673 voxels were retained for subjects one,

two, and three respectively. In order to check the validity of this data-driven voxel

selection procedure we changed the first step to labeling all voxels visual whose Fit

values are larger than the 95th, 97.5th, and 99th percentile. After the second step,
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the final voxel selection for all three percentiles was identical with that derived

using the original procedure.

Simulated Data

In addition to the empirical data set, we simulated fMRI data from known

receptive fields. Specifically, the simulated data was given by

ys tð Þ~p tð Þze 9Þ

where p(t) is the predicted BOLD signal, and e is an error term obtained from the

residuals of the pRF estimation of subject 1. The BOLD signal p(t) was given by

applying equations 2 through 7 using a pre-defined set of receptive field

parameters, the effective stimulus settings for the wedge, ring, and bar stimuli we

previously used in the experimental setup of subject 2, and a prototypical

hemodynamic response obtained from BOLD signal of subject 3. The set of pre-

defined pRF parameters consists of 36000 parameter configurations each of which

corresponds exactly to a point on the search grid. For this set of simulated data all

assumptions regarding the pRF model were met while at the same time we

searched the parameter space optimally. Therefore, all deviations of estimated

pRFs with respect to the true underlying pRFs reflect on the aptness of the

stimulus rather than on model choice and parameter estimation procedures.

Metrics

In order to evaluate the estimation framework as well as the extent to which

population receptive fields are consistent over time we calculated a set of metrics.

The first of these, exclusively used to evaluate the estimation framework for

empirical data, was explained variance. Specifically, we quantified the variance of

the measured BOLD signal ym that was explained by the predicted BOLD signal yp

as the squared Pearson correlation between ym and yp.

The second metric, used to evaluate the estimation framework for simulated

data as well as to measure temporal consistency of pRFs, was the similarity S

between model parameters of two receptive fields (of the same voxel but obtained

using different parameter sets) a and b given by

Sab~1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xa{Xb

Xmax{Xmin

� �2
z

Ya{Yb
Ymax{Ymin

� �2
z

sx,a{sxb
sx,max{sx,min

� �2

z
sy,a{sy,b

sy,max{sy,min

� �2

z
arg exp 2(ha{hb)ið Þð Þ

p

� �2

vuuuuut =
ffiffiffi
5
p

10Þ

The differences between pRFs were normalized for each parameter with respect

to its range in order to account for the different scales of the parameters and hence

to obtain a similarity metric for which every parameter carries equal weight.

Additionally, for angles of elongation we calculated an angular difference since an

Evaluating pRF Estimation Frameworks for Robustness & Reproducibility

PLOS ONE | DOI:10.1371/journal.pone.0114054 December 2, 2014 10 / 30



angle of 0 and an angle of p are identical with respect to pRF shape. The factor of

two in the angular difference accounts for the fact that the range from 0 to p needs

to be stretched around the entire circle for the formula to apply.

Finally, another metric of temporal consistency of pRFs was the correlation of

Polar Angle and Eccentricity maps across sessions. For Eccentricity maps this was

simply the Pearson correlation coefficient. Since Polar Angle values are circular

values, we used the circular correlation coefficient rcirc proposed by Fisher and Lee

[14] for Polar Angle maps:

rcirc~

Pn{1
i~1

Pn
j~iz1 sin ai{aj

� �
sin bi{bj

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn{1

i~1

Pn
j~iz1 sin2 ai{aj

� �Pn{1
i~1

Pn
j~iz1 sin2 bi{bj

� �r 11Þ

where n is the number of data points and a and b are angles.

Analyses and Information Aggregation

To establish which choices with regard to the estimation framework are most

optimal a ranking procedure based on the Tideman method was employed [15].

Specifically, in order to, for instance, establish which combination of stimulus and

mode of presentation should be used, all possible combinations of these choices

were pairwise compared to each other with respect to the relevant outcome

metric. This was done per subject per session such that each subject casted two

votes (one for each session) as to which member of a pair is preferable. The votes

were Hedges’ g [16] values which provide a standardized distance between means.

Specifically, Hedges’ g is given by

g~
�x1{�x2

s
12Þ

where �x1and �x2 are the sample means and the s the pooled standard deviation

given by

S~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1{1ð Þs2

1z n2{1ð Þs2
1

n1zn2{2

s
13Þ

with s1 and s2 being the standard deviations and n1 and n2 the sample sizes of the

two samples, respectively. We created 95% percent confidence intervals around

the Hedges’ g values and considered a member of a pair to be preferable to the

other only if zero did not fall within this confidence interval. Hence, a vote for one

member of a pair was cast if it produced a significantly higher value on the

outcome metric than its rival and the vote was weighted by the actual value of

Hedges’ g to ensure that strong differences between members carry more weight

than weak, albeit significant, differences. The pairwise Hedges’ g values of all

subjects and sessions were added up to obtain a matrix of pairwise voting results.

The Tideman method [15] was then applied to this matrix of voting results in
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three steps. 1) Tally: for each pair (A,B) in the matrix the sum of Hedges’ g values

for A winning over B was compared to the sum of Hedges’ g values for B winning

over A. The larger of the two sums represented a majority and hence determined

the pair’s winner while the smaller of the two sums represented a minority. 2)

Sort: the pairs were ordered based on their majorities with larger majorities

preceding smaller ones. In case the winners of two pairs had equal majorities, the

pair with the smaller minority was ranked first. 3) Lock: a directed graph in the

form of an adjacency matrix was constructed from these pairs. In an adjacency

matrix each present connection (edge) between a pair of candidates (vertices) is

represented by 1 while an absent connection is represented by 0. Here, edges were

drawn from a pair’s winner to a pair’s loser with circular connections omitted.

The indegree (number of incoming connections) of each vertex determines its

rank with a lower indegree corresponding to a higher rank. Consequently the

source of the graph (the vertex with an indegree of zero) is the overall winner.

This procedure was employed for both empirical as well as simulation results.

Hedges’ g measures of effect sizes rather than pairwise t-tests were used for two

reasons. Firstly, all statistical tests have tremendous power since voxels constitute

our sample and the associated sample size renders even negligible effects highly

significant. This is especially true for analyses performed on empirical data.

Secondly, effect sizes are more informative with respect to best practice in an

experimental setup as they provide a straightforward mode of comparison [17].

Results

Optimization of the Estimation Framework

Stimulus Type and Stimulus Presentation

The first ranking was performed to identify which combination of stimulus type

and mode of presentation yields a set of pRF parameters which can predict BOLD

signals obtained from different experimental setups measured during the same

scanning session. This is to ensure that an estimation framework does not yield

stimulus-specific population receptive field estimates. From each set of pRF

parameters obtained from a specific combination of stimulus and mode of

presentation we predicted BOLD signals for those experimental runs during which

another stimulus was presented. Subsequently, we calculated the proportion of

variance observed in the measured BOLD signals that was explained by those

predictions. The explained variance values obtained for every predicted run were

averaged to obtain a single value per voxel. For instance, if parameters were

obtained using the bar stimulus, BOLD signals for both the wedge and ring (using

both presentation modes) were predicted from the parameter set of each voxel

and the explained variance values obtained for the resulting predictions pertaining

to wedge and ring were averaged. From these explained variances we derived votes

in the form of Hedges’ g measures of effect size (see methods for details). Table 1

shows the voting results for all pairwise comparisons of stimulus-presentation
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combinations with every voting result indicating the sum of Hedges’ g values for

the one-sided comparisons of row larger than column.

Applying the Tideman method [15] to these voting results, we considered each

pairwise comparison in turn and determined its winner (tally). Subsequently, we

ordered the pairs from largest to smallest majority (sort). Table 2 shows a

summary of these steps. Finally, the results were locked in a directed graph (lock).

The adjacency matrix of this graph as well as each pair’s indegree is represented in

table 3. The randomly presented bar was the source of the graph and thus

constituted the top of the hierarchy. The orderly presented bar was ranked second

Table 1. Voting Results for Within Session Explanatory Power.

WRpre WRpost Bar

orderly random orderly random random random

WRpre orderly 0.5 0.4 0.3 0.2 0.2

random 0.6 1.1 0.8 0.4 0.4

WRpost orderly 0.0 0.5 0.0 0.2 0.2

random 0.3 0.7 0.5 0.2 0.2

Bar orderly 1.1 1.2 1.6 1.2 0.0

random 1.6 1.6 2.0 1.5 0.3

Each cell represents the sum of hedges’ g values for the pairwise comparison of row over column obtained for each combination of subject and session.
Since three subjects were tested in two sessions (each subject casted two votes), there were six votes in total. Only significant results were summed, i.e.
those hedges’ g values whose confidence intervals did not include zero. If zero lay within the confidence interval the vote was counted as indifferent between
the two options.

doi:10.1371/journal.pone.0114054.t001

Table 2. Pairwise Comparisons for Within Session Explanatory Power.

Pair Winner Order

WRpre, orderly (g50.5) vs. WRpre, random (g50.6) WRpre, random 11

WRpre, orderly (g50.4) vs. WRpost, orderly (g50) WRpre, orderly 13

WRpre, orderly (g50.3) vs. WRpost, random (g50.3) tie 15

WRpre, orderly (g50.2) vs. Bar, orderly (g51.1) Bar, orderly 8

WRpre, orderly (g50.2) vs. Bar, random (g51.6) Bar, random 2

WRpre, random (g51.1) vs. WRpost, orderly (g50.5) WRpre, random 9

WRpre, random (g50.8) vs. WRpost, random (g50.7) WRpre, random 10

WRpre, random (g50.4) vs. Bar, orderly (g51.2) Bar, orderly 7

WRpre, random (g50.4) vs. Bar, random (g51.6) Bar, random 4

WRpost, orderly (g50) vs. WRpost, random (g50.5) WRpost, random 12

WRpost, orderly (g50.2) vs. Bar, orderly (g51.6) Bar, orderly 3

WRpost, orderly (g50.2) vs. Bar, random (g52) Bar, random 1

WRpost, random (g50.2) vs. Bar, orderly (g51.2) Bar, orderly 6

WRpost, random (g50.2) vs. Bar, random (g51.5) Bar, random 5

Bar, orderly (g50) vs. Bar, random (g50.3) Bar, random 14

The first column shows the comparison of each pair (A,B) including the hedges’ g values of A winning over B (left) as well as B winning over A (right). The
second column shows the winner of each pair. Finally, the third column shows the order in which pairs were locked based on the majority starting with the
largest.

doi:10.1371/journal.pone.0114054.t002
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with an indegree of 1, followed by randomly presented WRpre with an indegree of

2. The fourth rank was shared by orderly presented WRpre and randomly

presented WRpost which both had an indegree of 3. Finally, orderly presented

WRpost was ranked lowest with an indegree of 5.

Based on the rankings of the combinations of stimulus type and mode of

presentation we derived separate matrices of voting results for stimulus type and

mode of presentation. To determine the votes of A winning over B, where A and B

are different stimulus types, we examined how often the orderly variant of A was

ranked above both variants of B and how often the random variant of A was

ranked above both variants of B. For instance, the orderly variant of WRpre was

ranked only above the orderly variant of WRpost while the random variant of

WRpre was ranked above both variants of WRpost. This yields a total of three

instances where WRpre was ranked above WRpost. Table 4 shows the voting results

obtained accordingly for all stimulus pairs.

Similarly, to determine the votes of A winning over B, where A and B are

different modes of presentation, we examined how often each stimulus presented

in variant A was ranked above all stimuli presented in variant B. Table 5 shows

the voting results for the comparison of orderly and random presentations and

allows inference of the Condorcet winner. A candidate in an election is considered

the Condorcet winner if that candidate wins by majority rule against each other

candidate. This condition to determine a winner was developed by the Marquis de

Condorcet in 1785 [21]. Since the bar was ranked consistently above the other

stimuli, it constituted the Condorcet winner in the context of predicting BOLD

Table 3. Directed Graph for Within Session Explanatory Power.

WRpre WRpost Bar

orderly random orderly random orderly random

WRpre orderly 0 0 1 0 0 0

random 1 0 1 1 0 0

WRpost orderly 0 0 0 0 0 0

random 0 0 1 0 0 0

Bar orderly 1 1 1 1 0 0

random 1 1 1 1 1 0

Indegree 3 2 5 3 1 0

The graph depicts binary edges leading from row to column as well as the sum total of incoming edges for each vertex (stimulus-presentation combination).

doi:10.1371/journal.pone.0114054.t003

Table 4. Stimulus Voting Results for Within Session Explanatory Power.

WRpre WRpost Bar

WRpre 3 0

WRpost 0 0

Bar 4 4

Each cell represents the sum of rankings where the row stimulus was ranked above the column stimulus.

doi:10.1371/journal.pone.0114054.t004
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activity obtained from other retinotopic mapping stimuli. Since in the majority of

rankings the random presentation variant was preferable to the orderly

presentation variant, it constituted the Condorcet winner in the context of

predicting BOLD activity of other stimuli.

The second ranking was performed in order to identify which combination of

stimulus and mode of presentation yields a set of pRF parameters from which a

BOLD signal measured at a different point in time can be predicted most

accurately. To this end we again calculated the proportion of variance observed in

the measured BOLD signal that a model BOLD signal based on pRF parameters

from a specific combination can explain. In contrast to the previous analysis,

however, the pRF parameters were obtained in one session while the measured

BOLD signal was taken from a second session.

Table 6 shows the voting results for the variance explained across sessions

(tally). By applying the Tideman method [15] we obtained the winners of each

pairwise comparison as well as their orderings (sort). The comparisons, winners,

and orderings are given in table 7. Subsequently, we obtained the ranking of the

combinations by locking the results in a directed graph (lock; see table 8). The

randomly presented bar was the source of the graph and thus constituted the top

of the hierarchy. The orderly presented bar was ranked second with an indegree of

1, followed by randomly presented WRpre with an indegree of 2. WRpost presented

randomly was ranked fourth with an indegree of 3. The fifth rank was occupied by

orderly presented WRpre with an indegree of 4. Finally, orderly presented WRpost

was ranked lowest with an indegree of 5.

Based on the rankings of the combinations of stimulus type and stimulus

presentation we derived matrices of voting results for type and presentation,

respectively. Table 9 shows the voting results with regard to stimulus. Since the

bar was ranked consistently above the other stimuli, it constituted the Condorcet

winner in the context of predicting BOLD activity across sessions.

With regard to stimulus presentation, table 10 shows the voting results for the

comparison of orderly and random presentations. Since for the majority of

rankings the random presentation variant was preferable to the orderly

presentation variant, it constituted the Condorcet winner in the context of

predicting BOLD activity across sessions.

Stimulus Type and Continuance

The third ranking was performed for simulated data with the aim to investigate

which stimulus type either interspersed by mean luminance (ML) periods or not

Table 5. Mode of Presentation Voting Results for Within Session Explanatory Power.

Orderly Random

Orderly 2

Random 6

Each cell represents the sum of rankings where the mode of presentation given by the row was ranked above the mode of presentation given by the column.

doi:10.1371/journal.pone.0114054.t005
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(:ML) most faithfully recovers known population receptive field parameters. To

this end we obtained the similarity between original and recovered pRF

parameters. Since neither attention nor lateral connectivity was modeled in our

simulations all stimuli were presented in an orderly fashion only. However, each

stimulus was presented both with and without mean luminance periods in two

separate runs. The presence of mean luminance periods has been argued to

improve the estimation of receptive field parameters, especially if receptive fields

are large [1]. As with the empirical results rankings are performed on the Hedges’

Table 6. Voting Results for Across Session Explanatory Power.

WRpre WRpost Bar

orderly random orderly random orderly random

WRpre orderly 0.4 0.3 0.2 0.3 0.1

random 0.5 0.9 0.7 0.5 0.3

WRpost orderly 0.0 0.4 0.0 0.2 0.1

random 0.3 0.5 0.4 0.4 0.2

Bar orderly 0.9 1.0 1.3 1.0 0.0

random 1.2 1.2 1.5 1.3 0.3

Each cell represents the sum of hedges’ g values for the pairwise comparison of row over column obtained for each combination of subject and session.
Since three subjects were tested in two sessions (each subject casted two votes), there were six votes in total. Only significant results, that is, those hedges’
g values whose confidence intervals did not include zero, were summed. If zero lay within the confidence interval the vote was counted as indifference
between the two options.

doi:10.1371/journal.pone.0114054.t006

Table 7. Pairwise Comparisons for Across Session Explanatory Power.

Pair Winner Order

WRpre, orderly (g50.4) vs. WRpre, random (g50.5) WRpre, random 11

WRpre, orderly (g50.3) vs. WRpost, orderly (g50) WRpre, orderly 13

WRpre, orderly (g50.2) vs. WRpost, random (g50.3) WRpost, random 15

WRpre, orderly (g50.3) vs. Bar, orderly (g50.9) Bar, orderly 8

WRpre, orderly (g50.1) vs. Bar, random (g51.2) Bar, random 4

WRpre, random (g50.9) vs. WRpost, orderly (g50.4) WRpre, random 9

WRpre, random (g50.7) vs. WRpost, random (g50.5) WRpre, random 10

WRpre, random (g50.5) vs. Bar, orderly (g51) Bar, orderly 7

WRpre, random (g50.3) vs. Bar, random (g51.2) Bar, random 5

WRpost, orderly (g50) vs. WRpost, random (g50.4) WRpost, random 12

WRpost, orderly (g50.2) vs. Bar, orderly (g51.3) Bar, orderly 2

WRpost, orderly (g50.1) vs. Bar, random (g51.5) Bar, random 1

WRpost, random (g50.4) vs. Bar, orderly (g51) Bar, orderly 6

WRpost, random (g50.2) vs. Bar, random (g51.3) Bar, random 3

Bar, orderly (g50) vs. Bar, random (g50.3) Bar, random 14

The first column shows the comparison of each pair (A,B) including the hedges’ g values of A winning over B (left) as well as B winning over A (right). The
second column shows the winner of each pair. Finally, the third column shows the order in which pairs were locked based on the majority starting with the
largest.

doi:10.1371/journal.pone.0114054.t007
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g values obtained for the pairwise comparison of all combinations of stimulus and

mean luminance. Table 11 shows the resulting votes.

Applying the Tideman method [15] we obtained the winners of each pairwise

comparison as well as their orderings (tally). The comparisons, winners, and

orderings are given in table 12. Subsequently, we obtained the ranking of the

combinations by locking the results in a directed graph (lock; see table 13). The

resulting graph had two sources since both versions of the bar, that is presented

interspersed and not interspersed by periods of mean luminance, had only

outgoing but no incoming connections. With an indegree of 1 WRpre presented

interspersed with mean luminance periods was ranked second. Finally, all

remaining combinations of stimulus and presence or absence of mean luminance

periods had an indegree of 3 and thus constitute equally undesirable choices.

Based on the rankings of the combinations of stimulus type and continuance

we derived matrices of voting results for type and continuance, respectively.

Table 14 shows the voting results with regard to stimulus. Since the bar was

ranked consistently above the other stimuli, it constituted the Condorcet winner

for the simulations.

With regard to continuance, table 15 shows the voting results for the

comparison of presentations with and without interspersed mean luminance

periods. Since for the majority of rankings the presence of mean luminance

periods was preferable to their absence, the inclusion of mean luminance periods

constituted the Condorcet winner for the simulations.

Table 8. Directed Graph for Across Session Explanatory Power.

WRpre WRpost Bar

orderly random orderly random orderly random

WRpre orderly 0 0 1 0 0 0

random 1 0 1 1 0 0

WRpost orderly 0 0 0 0 0 0

random 1 0 1 0 0 0

Bar orderly 1 1 1 1 0 0

random 1 1 1 1 1 0

Indegree 4 2 5 3 1 0

The graph depicts binary edges leading from row to column as well as the sum total of incoming edges for each vertex (stimulus-presentation combination).

doi:10.1371/journal.pone.0114054.t008

Table 9. Stimulus Voting Results for Across Session Explanatory Power.

WRpre WRpost Bar

WRpre 3 0

WRpost 1 0

Bar 4 4

Each cell represents the sum of rankings where the row stimulus was ranked above the column stimulus.

doi:10.1371/journal.pone.0114054.t009
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The beneficial effect of mean luminance periods is supposed to manifest itself

mainly for late visual areas. For this reason, we repeated the current ranking for

V1 and V4 type receptive fields separately. To create V1 and V4 type receptive

fields we used two different sets of receptive field sizes while keeping the

remaining parameters constant. The sizes were a linear function of the eccentricity

with biologically realistic slopes. Specifically, the slope for V4 (.84) was much

steeper than the slope for V1 (.21) [18]. We concentrate here only on the main

findings of these additional rankings and provide detailed analysis in appendices

S1 and S2. As expected for V1 type receptive fields, neither stimulus choice nor the

inclusion of mean luminance periods had strong effects on pRF estimation

performance. Nonetheless, the effect of mean luminance is opposite to what has

been proposed for late visual areas. Namely, omission of mean luminance periods

leads to slightly better pRF estimates than their inclusion. With regard to stimulus

choice, WRpost and bar both ranked above WRpre but were indistinguishable

among themselves (for a detailed analysis see appendix S1). For V4 the general

findings of our third ranking reappear. With regard to stimuli, the bar was

superior to both WRpre and WRpost with WRpre, in turn, being superior to WRpost.

With regard to the mean luminance periods, it was clearly beneficial to include

such periods in pRF estimation (for a detailed analysis see appendix S2). These

findings support the notion that mean luminance periods aid the estimation of

visual areas with large receptive field sizes.

Table 10. Mode of Presentation Voting Results for Across Session Explanatory Power.

Orderly Random

Orderly 2

Random 7

Each cell represents the sum of rankings where the mode of presentation given by the row was ranked above the mode of presentation given by the column.

doi:10.1371/journal.pone.0114054.t010

Table 11. Voting Results for pRF Estimate Similarity.

WRpre WRpost Bar

ML ML ML ML ML ML

WRpre ML 2.1 1.6 1.9 0.0 0.0

ML 0.0 0.0 0.0 0.0 0.0

WRpost ML 0.0 0.0 0.0 0.0 0.0

ML 0.0 0.0 0.0 0.0 0.0

Bar ML 1.0 3.1 2.4 2.8 0.0

ML 0.0 2.6 2.0 2.3 0.0

Each cell represents the sum of hedges’ g values for the pairwise comparison of row over column obtained for simulation results of each condition. Only
significant results, that is, those hedges’ g values whose confidence intervals did not include zero, were summed. If zero lay within the confidence interval
the vote was counted as indifference between the two options.

doi:10.1371/journal.pone.0114054.t011
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Data Preparation

A final consideration pertains to the advantages of performing pRF estimation on

BOLD signal averaged across several stimulus cycles. To this end we compared the

explained variance as well as Similarity among pRF parameters for estimated and

known underlying population receptive fields for averaged and non-averaged

simulated BOLD signals. The simulated data came from a procedure using a bar

stimulus presented in an orderly fashion without mean luminance gaps. This

estimation framework was chosen since it represents straightforward matches of

stimulus positions from one cycle to the next. Three different conditions were

Table 12. Pairwise Comparisons for pRF Estimate Similarity.

Pair Winner Order

WRpre, ML (g52.1) vs. WRpre, ML (g50) WRpre, ML 6

WRpre, ML (g51.6) vs. WRpost, ML (g50) WRpre, ML 8

WRpre, ML (g51.9) vs. WRpost, ML (g50) WRpre, ML 7

WRpre, ML (g50) vs. Bar, ML (g51) Bar, ML 9

WRpre, ML (g50) vs. Bar, ML (g50) Tie 10

WRpre, ML (g50) vs. WRpost, ML (g50) Tie 11

WRpre, ML (g50) vs. WRpost, ML (g50) Tie 12

WRpre, ML (g50) vs. Bar, ML (g53.1) Bar, ML 1

WRpre, ML (g50) vs. Bar, ML (g52.6) Bar, ML 3

WRpost, ML (g50) vs. WRpost, ML (g50) Tie 13

WRpost, ML (g50) vs. Bar, ML (g52.4) Bar, ML 4

WRpost, ML (g50) vs. Bar, ML (g52) Bar, ML 14

WRpost, ML (g50) vs. Bar, ML (g52.8) Bar, ML 2

WRpost, ML (g50) vs. Bar, ML (g52.3) Bar, ML 5

Bar, ML (g50) vs. Bar, ML (g50) Tie 15

The first column shows the comparison of each pair (A,B) including the hedges’ g values of A winning over B (left) as well as B winning over A (right). The
second column shows the winner of each pair. Finally, the third column shows the order in which pairs were locked based on the majority starting with the
largest.

doi:10.1371/journal.pone.0114054.t012

Table 13. Directed Graph for pRF Estimate Similarity.

WRpre WRpost Bar

ML ML ML ML ML ML

WRpre ML 0 1 1 1 0 0

ML 0 0 0 0 0 0

WRpost ML 0 0 0 0 0 0

ML 0 0 0 0 0 0

Bar ML 1 1 1 1 0 0

ML 0 1 1 1 0 0

Indegree 1 2 2 2 0 0

The graph depicts binary edges leading from row to column as well as the sum total of incoming edges for each vertex (stimulus - mean luminance
combination).

doi:10.1371/journal.pone.0114054.t013
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considered. In the first, three repetitions of the 8 orientation (4) and direction (2)

combinations were used to generate a non-averaged simulated BOLD signal. In

the second, the BOLD signal resulting from these three repetitions was averaged.

Finally, in the third condition, BOLD signal was generated from 18 stimulus

repetitions and subsequently averaged. Additionally, we parametrically varied the

amount of additive noise so as to investigate the advantage that averaging conveys

for hardly noisy to very noisy data sets. Figure 3 shows both averaged and non-

averaged BOLD signals for different noise levels. The red lines indicate the signal

including noise while the black lines indicate the pure signal resulting from

stimulation contained within the noisy signal. Especially for noisy signals, i.e.

where signal resulting from stimulation constitutes merely 2 percent of the

resulting BOLD signal (Figure 3A), averaging lead to profound increases in

stimulation related variance contained in the overall noisy signal. Population

receptive field parameters were estimated from averaged as well as non-averaged

signals for each level of noise.

Figure 4 shows the variance explained by a predicted BOLD signal where the

prediction is based on pRF parameters estimated from non-averaged signals

(upper row), signals averaged over 3 cycles (middle row), and signals averaged

over 18 cycles (lower row), respectively. As expected from the higher stimulation-

related signal content for averaged signals, averaging had a tremendous benefit on

the explained variance. Additionally, more averaging resulted in larger propor-

tions of explained variance.

Figure 5 shows the Similarity between the true underlying pRF parameters and

those estimated from the simulated BOLD signals. For very noisy data, i.e. where

signal resulting from stimulation constitutes merely 2 percent of the resulting

BOLD signal (Figure 3A), estimation from signal averaged over 18 cycles showed

significantly larger Similarity values than estimation from both non-averaged

signal and signal averaged over 3 cycles. For larger percentages of signal due to

Table 14. Stimulus Voting Results for pRF Estimate Similarity.

WRpre WRpost Bar

WRpre 2 0

WRpost 0 0

Bar 4 4

Each cell represents the sum of rankings where the row stimulus was ranked above the column stimulus.

doi:10.1371/journal.pone.0114054.t014

Table 15. Mean Luminance Voting Results for pRF Estimate Similarity.

ML ML

ML 4

ML 2

Each cell represents the sum of rankings where the continuance (absence or presence of mean luminance periods) given by the row was ranked above the
continuance given by the column.

doi:10.1371/journal.pone.0114054.t015
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stimulation, however, the beneficial effect of extensive averaging disappeared.

Following up on this result we investigated the effect of averaging in more detail

for BOLD signals of which only 2 percent are due to averaging. To this end we

varied the number of cycles over which averaging occurs in the range from 3 to 18

(in steps of 3). This analysis revealed that performance improved as averaging was

performed for 3 to 9 cycles with mean Similarity values of m5.69 [.68.70], m5.72

[.71.73], and m5.75 [.74.76] for 3, 6 and 9 cycles, respectively. Beyond 9 cycles

averaging had no further beneficial effect with a mean Similarity value of m5.75

[.74.76] for signals averaged over 18 cycles.

Figure 3. Averaged and non-averaged BOLD signals for different noise levels. This figure shows both averaged and non-averaged versions of BOLD
signals for three levels of noise for one simulated voxel. The red line indicates the overall BOLD signal resulting from stimulation as well as additive noise.
Note that the baseline period (8 TRs) before and after the stimulation period are set to zero. The black line indicates the signal purely as a function of
stimulation contained within the larger BOLD signal. Column A) shows non-averaged signal (upper row), signal averaged over 3 cycles (middle row), and
signal averaged over 20 cycles (lower row) for raw (i.e. not averaged) BOLD of which 2 percent is stimulus-related signal. More extensive averaging reduces
noise to a greater extent and hence increases the stimulus-related variation in the overall signal. Specifically, only for signal averaged over 20 cycles does
the overall signal resemble the purely stimulation related signal. Column B) shows non-averaged signal (upper row), signal averaged over 3 cycles (middle
row), and signal averaged over 20 cycles (lower row) for raw BOLD of which 50 percent is stimulus-related signal. More extensive averaging reduces noise
to a greater extent and hence increases the stimulus-related variation in the overall signal. Nonetheless, even for non-averaged data, the overall signal
bears resemblance to the purely stimulus-related signal. Column C) shows non-averaged signal (upper row), signal averaged over 3 cycles (middle row),
and signal averaged over 20 cycles (lower row) for raw BOLD of which 100 percent is stimulus-related signal. Since there is no noise in the data, averaging
has no effect.

doi:10.1371/journal.pone.0114054.g003
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Consistency

In addition to stimulation procedure optimization we investigated the consistency

of receptive fields across scanning sessions. To this end we correlated Polar Angle

and Eccentricity maps obtained from different sessions and calculated the

Similarity between pRF parameter estimates of the two sessions. For Polar Angle

maps we obtained circular correlations. We restricted our analysis to data

obtained from presenting a bar stimulus in a random fashion interspersed with

mean luminance periods. Additionally, we only considered voxels which had

previously been selected for at least one of the two sessions. The means of all

metrics were obtained by bootstrapping. To gain a clear picture which pRF

parameters were more or less consistently estimated, we additionally used

bootstrapping to obtain means of Similarity values resulting from successively

leaving each parameter out. Figure 6 shows exemplary polar angle and

eccentricity maps of subject 3 for the two sessions on an inflated cortex mesh

while figure 7 shows surface maps detailing the Similarity values between pRF

Figure 4. Explained variance within averaged and non-averaged BOLD signals for different noise levels. This figure shows the amount of variance
explained for averaged and non-averaged BOLD signals based on pRF parameters estimated from these signals as a function of the percent stimulus-
related signal in the raw data. The explained variance for non-averaged signals (black line) scales linearly with the percentage of stimulus-related signal in
the raw data. That is, the estimated pRF parameters explain as much variance of the overall signal as is actually due to stimulation. For averaged signals,
the amount of variance explained both starts off higher and reaches a plateau faster than for the non-averaged signal. This effect is stronger for signal
averaged across 20 cycles (blue line) than for signal averaged across 3 cycles (red line).

doi:10.1371/journal.pone.0114054.g004
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estimates of sessions 1 and 2. Results of the Similarity analyses are finally shown in

Figure 8.

All metrics indicated high consistency of pRF parameters across sessions.

Specifically, polar angle maps showed a circular correlation of r5.41 [.34.49] for

subject one, r5.6 [.53.66] for subject two, and r5.66 [.6.73] for subject three.

Eccentricity maps showed a correlation of r5.55 [.46.64] for subject one, r5.7

[.63.77] for subject two, and r5.74 [.68.8] for subject three. Finally, mean

Similarity was m5.73 [.71.74], m5.76 [.75.78], and m5.75 [.74.77] for subjects

one, two, and three, respectively. As can be seen from the third column of

Figure 8 removing any of the position or size pRF parameters in the calculation of

the Similarity did not significantly affect the result. Leaving out the angle of

elongation, however, caused the Similarity values to rise significantly. The mean

Similarity of pRF location and size alone, i.e. leaving out angle of elongation, was

m5.86 [.85.88], m5.89 [.88.9], and m5.89 [.88.9] for the three subjects,

respectively. This implies that while location and size parameter estimates were

highly consistent across sessions, the angle of elongation estimate changed

somewhat across sessions. To establish whether this was due to dynamic changes

Figure 5. Similarity between known and estimated pRF parameters for averaged and non-averaged BOLD signals at different noise levels. The
figure shows the Similarity between known and estimated pRF parameters for averaged and non-averaged BOLD signals as a function of the percent
stimulus-related signal in the raw data. For extreme noise, where stimulus-related signal constitutes only 2 percent of the overall signal, averaging over 20
cycles (blue line) produces higher Similarity values than either non-averaged signal (black line) or signal averaged over 3 cycles (red line). For larger
percentages of stimulus-related signal within the overall signal, averaging shows no effect.

doi:10.1371/journal.pone.0114054.g005
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in the true underlying receptive fields or simply due to a general difficulty in

estimating this parameter we performed bootstrapping on the Similarity values

between true pRF parameters and those estimated from simulated data using the

same stimulus. The results are shown in Figure 9. These results showed the same

overall pattern with highly accurate estimations of location and size parameters

but not of the angle of elongation. This implies that the inconsistencies across

sessions with regard to that parameter were likely caused by a general difficulty in

estimating it rather than undergoing dynamic changes. This result is in line with

previous findings of Lee et al. [2] who showed that directly fitting an anisotropic

pRF model to fMRI data cannot identify the angle of elongation with an equal

degree of precision as for the other parameters.

Figure 6. Retinotopy Surface Maps. This figure shows exemplary polar angle as well as eccentricity maps of
subject 3. The maps were obtained from a randomly presented bar stimulus within two separate sessions.
The upper row shows maps of the first session while the lower row shows maps of session two. In accordance
with the correlation results between maps (see Figure 8 for details), the two polar angle and eccentricity maps
are highly visually similar.

doi:10.1371/journal.pone.0114054.g006
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Discussion

The present study pursued two goals. One of these goals concerns the

identification of best practices with regard to the estimation framework in the

context of population receptive field mapping. The other concerns the validity of

the assumption that receptive fields are static or temporally consistent. With

regard to the former goal our results show that a bar stimulus yields a set of pRF

parameters from which BOLD activity resulting from different visual stimulation

protocols can be reliably predicted. Additionally, simulation results, for which all

Figure 7. Similarity Surface Maps. This figure shows Similarity between pRF estimates obtained in sessions 1 and 2 for all three participants. The maps
were obtained from a randomly presented bar stimulus within the two separate sessions. The upper row shows maps for the left hemisphere while the lower
row shows maps for the right hemisphere. Border delineating visual areas V1, V2, V3, and V4 obtained from the retinopy resulting from this stimulus are
superimposed on the maps. The Similarity values show no systematic variation across subjects or along the visual hierarchy.

doi:10.1371/journal.pone.0114054.g007
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assumptions regarding the underlying pRF structure are met by design, show that

pRF estimates obtained from stimulation using a bar are more accurate than the

estimates obtained from stimulation using a wedge-ring. For these reasons we

recommend a bar stimulus. Additionally, the merit of pRF estimates increases for

any stimulus, if it is presented in a random fashion. Furthermore, pRF estimation

in areas with large receptive fields strongly benefits if stimulation is interspersed

with mean luminance periods while estimation of early visual cortex is hardly

affected. We, therefore, recommend the use of a bar stimulus presented randomly

and interspersed with mean luminance periods for pRF mapping procedures.

With regard to data preparation the benefit of averaging the BOLD signal across

stimulus cycles depends on the level of noise in the data. If noise is low, averaging

conveys no advantage in terms of the precision with which pRF parameters are

estimated even though a larger proportion of variance in the BOLD signal is

explained. Only for extremely noisy data; i.e. for very small voxels, can averaging

provide more accurate pRF parameter estimates. In order for averaging to take

effect, however, a sufficiently large number (,9) of stimulus cycles is needed.

Nonetheless, averaging is accompanied by benefits other than precision in

estimation. First of all, the increasing amount of variance that can be explained for

Figure 8. Temporal Consistency. This figure shows the correlation between polar angle and eccentricity maps obtained from two temporally separated
sessions as well as the Similarity between pRF parameters estimated from those sessions. The results are shown individually for each subject (rows). For all
subjects the distributions of correlations for both polar angle and eccentricity maps obtained using bootstrapping indicate a good fit between the maps. The
final column shows Similarity values for all three subjects. The black horizontal line indicates the mean Similarity between the complete set of pRF
parameters estimated from the two sessions. The red lines indicate confidence intervals around this mean as obtained via bootstrapping. The boxplots show
the Similarity between a series of two sets of pRF parameters each time excluding one parameter in the Similarity calculation. While excluding any location
or size parameter has no significant effect on Similarity, removing the angle of elongation significantly increases the Similarity between the two sets. This
implies that location and size parameters are estimated very consistently. Angle of elongation, however, is subject to variability.

doi:10.1371/journal.pone.0114054.g008
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averaged as compared to non-averaged signals provides a straightforward

demarcation of those voxels processing visual information from those that do not.

Another benefit is that averaging the signal reduces the amount of data points and

hence reduces the time needed for the estimation process. For these reasons we

generally recommend signal averaging and regard it essential for high resolution

fMRI data. This requires that the randomization is identical for all stimulus cycles

thus limiting the number of possible cycles before the order becomes predictable.

An alternative approach might be to concatenate stimulus cycles rather than to

average across them. This would allow full randomization and maintain an

unpredictable order of stimulus presentations. How such an approach compares

to straightforward averaging is an interesting question which remains to be

elucidated.

In order to further improve the estimation framework, it is possible to extent

stimulation to incorporate different types of aperture content. Usually, stimulus

aperture reveals a flickering checkerboard with vertical and horizontal borders. It

might be interesting to vary the orientation of these borders in order to

accommodate for the radial bias hypothesis [19] and to examine how this affects

pRF parameter estimates. Additionally, for the study of pRFs of late visual areas

which react primarily to complex visual stimuli it might prove fruitful for the

Figure 9. Similarity between known and estimated pRF parameters. This figure shows the Similarity between the entire sets of known and estimated
pRF parameters (horizontal lines, black5mean, red5confidence interval obtained via bootstrapping) and the Similarity between a series of sets while each
time excluding one parameter (boxplots). While excluding any location or size parameter has no significant effect on Similarity, removing the angle of
elongation significantly increases the Similarity between the two sets. This implies that location and size parameters can be estimated very accurately. The
angle of elongation parameter, however, diverges somewhat from ground truth.

doi:10.1371/journal.pone.0114054.g009
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stimulus aperture to reveal complex shapes, motion, or contours [20].

Furthermore, in order to tailor the pRF the estimation framework to more specific

research questions such as disease, it might be necessary to further adapt the

stimuli. It had previously been shown, for instance, that randomly presented

multifocal stimuli improve pRF estimation in the presence of foveal scotomas [9].

Our results with regard to the second goal show that estimated pRF parameters

appear to be generally very consistent over time. This is especially true for pRF

location and size for which fluctuations in parameter values across sessions are

within a very narrow range. With regard to the angle of elongation of anisotropic

receptive fields fluctuations in parameter values appear to fluctuate within a

somewhat broader range. The consistency of angle of elongation is thus lower

than that of other parameters. A possible remedy for this is to employ a pRF

mapping approach without a priori assumptions with regard to the pRF shape, as

proposed by Lee et al. [2]. This might narrow the range of acceptable values for

angle of elongation and consequently boost this parameter’s temporal consistency.

Another important methodological consideration is that Similarity values

observed empirically are lower than those observed for simulations. This is

attributable to the fact that the parameter space was exhaustive for simulations by

design while it can hardly be considered to cover the entire range of possible

parameter values among voxels. It is thus conceivable that where voxels have an

actual receptive field somewhere between two or more points in the examined

parameter space it might be attributed to one of them stochastically and thus

differ from session to session.

Overall our results suggest that a randomly presented bar stimulus interspersed

with mean luminance periods should be used for the estimation of population

receptive fields. Ideally but not necessarily, the resulting data should be averaged.

Receptive field parameters thus obtained are temporarily stable and can be utilized

for numerous applications without hesitation.
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Appendix S2. Evaluation of pRF estimation procedures from simulations of V4
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