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Abstract: Dye-decolorizing peroxidases (DyPs) have gained interest for their ability to oxidize
anthraquinone-derived dyes and lignin model compounds. Spectroscopic techniques, such as
electron paramagnetic resonance and optical absorption spectroscopy, provide main tools to study
how the enzymatic function is linked to the heme-pocket architecture, provided the experimental
conditions are carefully chosen. Here, these techniques are used to investigate the effect of active
site perturbations on the structure of ferric P-class DyP from Klebsiella pneumoniae (KpDyP) and
three variants of the main distal residues (D143A, R232A and D143A/R232A). Arg-232 is found
to be important for maintaining the heme distal architecture and essential to facilitate an alkaline
transition. The latter is promoted in absence of Asp-143. Furthermore, the non-innocent effect of the
buffer choice and addition of the cryoprotectant glycerol is shown. However, while unavoidable
or indiscriminate experimental conditions are pitfalls, careful comparison of the effects of different
exogenous molecules on the electronic structure and spin state of the heme iron contains information
about the inherent flexibility of the heme pocket. The interplay between structural flexibility, key
amino acids, pH, temperature, buffer and glycerol during in vitro spectroscopic studies is discussed
with respect to the poor peroxidase activity of bacterial P-class DyPs.

Keywords: heme peroxidases; electron paramagnetic resonance; active site structure; UV-vis spec-
troscopy; alkaline transition; ligand binding; glassing agents

1. Introduction

Heme-containing proteins are widespread among all kingdoms of life. Their function
is largely determined by the folding architecture of the peptide chain, modulating the
possible redox properties of the heme pocket as well as its solvent and substrate accessibil-
ity [1,2]. Perhaps not surprisingly, this results in an intriguingly high level of functional
versatility. It has become a major goal in heme-protein research to unravel how the enzy-
matic functions are governed by the local environment [2]. To achieve this, a wide variety
of complementary techniques has been developed for structural and electronic characteriza-
tion [3]. While X-ray crystallography or NMR spectroscopy provide insight into the protein
structure, electron paramagnetic resonance (EPR) allows probing (transient) paramagnetic
intermediates of the active site, thus exploring key mechanistic steps in the enzymatic
cycle or protein function [4,5]. When performing EPR spectroscopy on heme proteins, one
should, however, keep in mind that external factors possibly influence the observations
of the active site and thus induce illegitimate conclusions. In this context, awareness was
raised by Svistunenko et al. in a low-temperature continuous-wave (CW) EPR study on the
ferric heme forms of Mycobacterium tuberculosis catalase-peroxidase (MtKatG) [6]. It was
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shown that not only pH, but also buffer type could alter the electronic architecture of the
heme cavity. Earlier studies report on freezing-induced distortions of the heme cavity and
stabilizing effects of commonly used glassing agents, such as glycerol [7–10]. Here, we use
multi-frequency EPR to understand pH-dependent changes in the heme pocket of KpDyP,
a dye-decolorizing peroxidase from the human pathogen Klebsiella pneumoniae.

Dye-decolorizing peroxidases or DyPs are hydrogen-peroxide dependent oxidoreduc-
tases of predominantly bacterial origin, which are further classified in three distinct classes
(P, I and V with KpDyP belonging to the P-class DyPs (formerly B-class)) [11]. Bacterial
P-class DyPs are very poor peroxidases with unknown biological function. Hydrogen per-
oxide efficiently mediates the rapid formation of Compound I, which is remarkably stable
and shows only modest reactivity towards organic and inorganic electron donors [12,13].
KpDyP has been biochemically [12] and structurally [13,14] well characterized and serves
as a good model for this protein family, which has gained significant interest in recent years
in regard to their biotechnological potential [15]. The conserved core fold of DyPs (four
beta sheets connected by alpha helices) classifies them within the dimeric α + β-structural
superfamily together with the phylogenetically related enzymes chlorite dismutases (Clds)
and coproheme decarboxylases (ChdCs) [16–18]. All three protein families have a charac-
teristic loop, which forms the outer wall of the active site and dictates accessibility and
shape of the cavity [12,13,19–21]. In DyPs this loop furthermore contains one of the main
catalytic residues of the distal side, Asp-143 in KpDyP, which was shown to be required
for heterolytic cleavage of hydrogen peroxide [12]. The equally conserved distal arginine,
Arg-232 in KpDyP, is highly important to maintain the integrity of the active site. The
crystal structure of wild-type (WT) KpDyP in Figure 1 shows the extensive hydrogen
bonding network connecting Arg-232 and Asp-143 with propionate p6 and active site
waters. Limited access to the heme iron through the main channel (Figure 1, green) whose
bottleneck is formed by the catalytic Asp-Arg pair together with Phe-248 and Leu-246 was
proposed to be the main reason for the observed low catalytic activity of this enzyme [12].
This channel is proposed to be the main entry route for hydrogen peroxide required for
Compound I formation. Previous studies showed that the overall structure of the active
site is maintained in a D143A variant but that this mutation increases the bottleneck ra-
dius [12,13]. Exchange of Arg-232 for alanine (R232A); however, has severe structural
consequences, leading to a rearrangement of the loop and collapse of the active site. This
effectively removes the main heme iron access route as seen in the crystal structure and
molecular dynamics simulations. Taking the crystal structure of the D143A/R232A double
variant into account, where the WT-like loop conformation is solely due to a coordinating
glycerol molecule, it is reasonable to expect an increased structural susceptibility of these
mutants to external factors, such as temperature and buffer components [12].
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Figure 1. Overall crystal structure of the P-class dye-decolorizing peroxidase of wild-type Klebsiella 
pneumoniae (KpDyP) and active site structures of WT KpDyP (PDB entry 6FKS) and three variants: 
D143A (6FL2), R232A (6FKT) and D143A/R232A (6FIY). (A) Cartoon representation of the crystal 
structure of dimeric WT KpDyP. (B) Active site structure of WT KpDyP displaying key amino acids 
(H215, D143, R232, L246 and F248) of the heme cavity, as well as a glycerol molecule (designated G) 
and possible hydrogen bonds between water molecules (green). (C) Active site structures of WT 
KpDyP and three variants, displaying the heme access channels, as determined by CAVER 3.0 [22]. 

In order to further investigate the role of the conserved Asp-143/Arg-232 pair in the 
restriction of the substrate accessibility and ligand binding to the heme iron, we used con-
tinuous-wave (CW) and pulsed EPR to explore the active site of WT KpDyP and D143A, 
R232A and D143A/R232A variants in different buffers at neutral and high alkaline pH, as 
ligand binding is often enhanced in the alkaline region due to deprotonation. The buffers 
were chosen based on their widespread use and potential to influence the heme active 
site. We purposefully omitted the acidic pH range as no specific structural changes are 
expected other than pH induced unfolding starting from pH 5 [12]. We show the im-
portance of the conserved distal arginine for accommodating a hydroxo ligand at alkaline 
pH. Furthermore, our results challenge the non-innocent role of glycerol and buffer mol-
ecules on heme proteins with an accessible active site. While the glassing agent glycerol is 
commonly added to prevent freezing artefacts at the low temperatures required for the 
EPR experiment [23], it inhibits certain ligation states in the KpDyP variants under study 

Figure 1. Overall crystal structure of the P-class dye-decolorizing peroxidase of wild-type Klebsiella pneumoniae (KpDyP) and
active site structures of WT KpDyP (PDB entry 6FKS) and three variants: D143A (6FL2), R232A (6FKT) and D143A/R232A
(6FIY). (A) Cartoon representation of the crystal structure of dimeric WT KpDyP. (B) Active site structure of WT KpDyP
displaying key amino acids (H215, D143, R232, L246 and F248) of the heme cavity, as well as a glycerol molecule (designated
G) and possible hydrogen bonds between water molecules (green). (C) Active site structures of WT KpDyP and three
variants, displaying the heme access channels, as determined by CAVER 3.0 [22].

In order to further investigate the role of the conserved Asp-143/Arg-232 pair in the
restriction of the substrate accessibility and ligand binding to the heme iron, we used
continuous-wave (CW) and pulsed EPR to explore the active site of WT KpDyP and
D143A, R232A and D143A/R232A variants in different buffers at neutral and high alkaline
pH, as ligand binding is often enhanced in the alkaline region due to deprotonation.
The buffers were chosen based on their widespread use and potential to influence the
heme active site. We purposefully omitted the acidic pH range as no specific structural
changes are expected other than pH induced unfolding starting from pH 5 [12]. We show
the importance of the conserved distal arginine for accommodating a hydroxo ligand at
alkaline pH. Furthermore, our results challenge the non-innocent role of glycerol and buffer
molecules on heme proteins with an accessible active site. While the glassing agent glycerol
is commonly added to prevent freezing artefacts at the low temperatures required for the
EPR experiment [23], it inhibits certain ligation states in the KpDyP variants under study
and with related spectral changes in the EPR and optical absorption spectra. Moreover, we
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highlight a strong effect of the type of buffer on the KpDyP variants. An alkaline transition
is not consistently maintained for different buffers and use of a glycine-containing buffer at
high pH induced ligation of the ferric heme iron with glycine. Although slight effects of
buffer molecules on the EPR spectra of heme proteins have been reported before [6,24], this
is the first time that glycine binding to heme iron is clearly identified at low temperatures
(EPR) and room temperature (optical absorption). We discuss how the differing ligand
accessibility in WT KpDyP and its variants links to the proposed reaction mechanism of
the wild-type protein.

2. Results
2.1. Optical Absorption Spectroscopy

Figure 2 (solid lines) depicts the optical absorption spectra of WT KpDyP and the
D143A, R232A and D143A/R232A variants in phosphate buffer (pH 7.0), borate buffer
(pH 10.0) and glycine-KOH buffer (pH 10.0) taken at room temperature. The phosphate
buffer was chosen in accordance with previous studies on WT KpDyP [12]. As reported
earlier [12], at pH 7 WT KpDyP exhibits a Soret peak at 406 nm with a broad shoulder at
the lower wavelength side, Q-bands at 508 and 540 nm and a charge transfer (CT) band
at 641 nm, in accordance with a high-spin (HS) Fe(III) state of the heme iron. The same
spectrum is found for the D143A variant, with a narrower Soret peak at 406 nm and slightly
blue-shifted CT band (630 nm) for the R232A and D143A/R232A variants. While the latter
spectral features agree with an S = 5/2 Fe(III) state, the absorption spectra of WT KpDyP
and D143A may indicate some degree of quantum mixing of the S = 5/2 state with an
intermediate S = 3/2 state [25]. Addition of 25% glycerol (Figure 2, dashed lines) induces a
narrowing of the Soret peak with concomitant shift of the CT peak for the D143A variant,
while it does not affect the absorption spectra of the other variants (Figure 2).

In borate buffer (pH 10) without glycerol, WT, R232A and D143A/R232A KpDyP
exhibit the same optical absorption spectra as at pH 7, but a marked change is observed for
the D143A variant indicating the presence of HS and low-spin (LS, S = 1/2) ferric heme
states. LS ferric states occur when a strong base, such as a hydroxo-anion or imidazole, is
ligating the heme iron. Previous work has shown that an alkaline transition to a hydroxo-
ligated heme species takes place for this variant, with the absorption spectrum of this
species exhibiting a Soret peak at 410 nm and additional bands at 540, 576 and 610 nm [12].
The presence of this LS species is inhibited by the addition of glycerol.

The non-innocent effect of the buffer is noticed when a glycine-KOH buffer is used
(Figure 2). While WT and R232A KpDyP maintain the HS-state, a significant change in the
optical absorption spectrum is noticed for the variants where Asp-143 is exchanged for an
alanine. Here, a new LS state is observed with D143A showing a red-shifted Soret peak
at 412 nm and Q-bands at 532 and 561 nm (double variant: 413, 532 and 562 nm). The CT
peak is no longer visible demonstrating the absence of a HS state. Addition of glycerol
does not alter the UV-visible spectral signatures in this case.
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2.2. Influence of Buffer and Glycerol on CW EPR Spectra

The optical absorption analysis reveals a worrying non-innocent effect of glycerol
and the type of buffer molecules on the heme ligation in the KpDyP variants under study.
To understand this further and to relate this to the protein’s heme-pocket architecture
and behavior, we performed X-band continuous-wave (CW) EPR. Moreover, glycerol is
commonly used in EPR as a cryoprotectant and is in some cases essential to avoid strong
dipolar interactions between the paramagnetic centers [23].

Figure 3A shows the X-band CW EPR spectra of WT KpDyP and variants in phosphate
buffer (pH 7.0) without glycerol. Figure 3B shows the comparative results with glycerol in
accordance with our earlier reported data [12]. It is clear that the site-directed mutations as
well as the cryoprotectant cause changes to the electronic structure of the active site that
go beyond the minor modifications that are expected because of the change in dielectric
constant. As can be derived from the EPR parameters given in Table S1 (Supplementary
Material), differences include a variation in abundancy of specific species, a change in
rhombicity of the zero-field tensor (E/D) and the appearance of extra HS species. The
double variant exhibits an even more striking change, since it reveals formation of an LS
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species (~24%) that disappears with the addition of glycerol (see inset Figure 3A, LS1 in
Table S1). The origin of this contribution is unknown so far and cannot be deduced solely
from the g-values. However, this LS species was not observed in the optical absorption
spectra (Figure 2) and is thus due to a ligation induced by the low temperatures. The
appearance of HS species with E/D values ≥ 0.017 seems to agree with the observation of
a broader Soret band and higher wavelength and broadening of the CT band in the optical
absorption spectra (Figure 2). This correlation is not unexpected, since the increase of the
E/D parameter and the concomitant decrease of g12 =

(
ge f f

x + ge f f
y

)
/2 has been linked

to an increased admixture of the S = 5/2 and S = 3/2 states. According to the concepts
outlined by Maltempo [26], the g12 values associated with the largest E/D values found
here (g12 = 5.83 to 5.685) can be related to 10–15% of the S = 3/2 state.
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to allow a facile comparison. An inset in (A) highlights the presence of a LS1 species in the double 
variant (5× amplified). 

Figure 3. Experimental (black) and simulated (red) X-band CW EPR spectra of frozen solutions of
WT KpDyP and variants (c ≈ 500 µM) in phosphate buffer (pH 7.0) without (A) and with (B) glycerol.
EPR simulation parameters can be found in Table S1 and the different contributions are displayed in
Figure S1 (Supplementary material). An asterisk (*) indicates the position of a stable organic radical
identified earlier in the resting-state of the protein [12]. The spectra are shown normalized to allow
a facile comparison. An inset in (A) highlights the presence of a LS1 species in the double variant
(5× amplified).

Furthermore, without addition of glycerol, the spectral shape of the EPR signal of
the HS components in WT KpDyP is found to be strongly batch-dependent (Figure 4A).
Only after addition of the glassing agent, all batches exhibit the same spectral signature
(Figure 4B).

Note that the stable organic radical, observed earlier in the resting state of WT KpDyP
(Figure 3, asterisk [12]), is not affected by the addition of glycerol.

At alkaline pH, several heme proteins are known to display a distal coordination of a
hydroxo ligand [27–29]. For KpDyP variants, it appears this is only the case under specific
conditions as was illustrated by the optical absorption spectroscopy (Figure 2). The CW
EPR spectra of KpDyP and variants in borate buffer at pH 10.0 (Figure 5) mostly agree
with the optical absorption data. In general, the HS Fe(III) state is maintained in all frozen
solutions both with and without glycerol, although the specific type and weight of the
HS contributions again depends on whether glycerol is added or not (Figure 5, Table S2,
Figure S2, Supplementary Material). Moreover, the change of buffer and pH influences the
electronic structure of the paramagnetic center. A careful inspection of the EPR parameters
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obtained from the spectra in Figure 5 (Table S2) and Figure 3 (Table S1) reveals that a
more alkaline pH provokes a decrease in abundancy of the HS components with higher
rhombicity (E/D≥ 0.017). This is in line with optical absorption spectra, where a broadened
Soret band is only found for WT KpDyP (Figure 2).
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Figure 5. Experimental (black) and simulated (red) X-band CW EPR spectra of frozen solutions of
WT KpDyP and variants in borate buffer (pH 10.0) without (A) and with (B) glycerol. EPR simulation
parameters can be found in Table S2 and the different contributions are displayed in Figure S2
(Supplementary Material). An asterisk (*) indicates the position of a stable organic radical identified
earlier in the resting-state of the protein [12]. The spectra are shown normalized to allow facile
comparison. The position of the gz-component of the OH1′ (dashed-dotted), OH2/OH2′ (dashed)
and the OH3′ (dotted) species is indicated, Figure S3 (supplementary material) shows an enlargement
of the spectra in this magnetic field area to allow visual control of the presence of these species.
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Figure S3 (Supplementary Material) shows an enlargement of the EPR spectra of
Figure 5 in the (180–400)mT range, revealing the additional presence of contributions
of different LS species. For both WT KpDyP and the D143A variant (without glycerol,
Figure S3A) we find contributions of hydroxo-ligated ferric heme species. In the former
this only accounts for 4% of all the ferric heme contributions, but the EPR spectrum of
D143A displays three different contributions of hydroxo-ligated heme species that together
account for ~30% (Table S2). This agrees with the contribution of a hydroxo-ligated ferric
form in the optical absorption spectrum of D143A (Figure 2). The g-values of the different
hydroxo-ligated heme species are summarized in Table 1. While the g-tensor of species
OH1′ is very similar to the one found for horseradish peroxidase (HRP) [30], the parameters
of OH2/OH2′ and OH3′ are more common for alkaline forms of cytochrome c peroxidase
and mammalian myoglobin [24,29,31]. A high diversity of hydroxo-ligated species was
found in hemoglobin of Thermobifida fusca [32] and the globin domain of the GLB-33 globin
of C. elegans [33]. The Arg-232 variants (both single and double variant) do not exhibit
hydroxo-ligated species. However, all but the D143A variant show a contribution (labeled
LS2) with g-values ascribed to binding of a glutathione or a buffer molecule in other heme
proteins [34,35]. In addition, the EPR spectrum of the double variant reveals the same
LS form of unknown nature (LS1) observed at pH 7. Addition of glycerol removes all LS
contributions, except for the LS2 form in the R232A variant. Addition of 30% glycerol
reduces the pH of borate buffer to pH 7 [36], where all variants are predominantly HS.
The LS2 form, retained in R232A, is thus likely a buffer molecule, as it is not observed in
phosphate buffer.

Table 1. Experimental principal g-tensor values of the low spin species in frozen solutions from
WT KpDyP and the D143A variant in pH 10 borate buffer without glassing agent (experimental
error ± 0.02 for gz and ± 0.05 for gx,y) and a representative selection of heme proteins with a distal
hydroxo ligation at alkaline pH. HRP, horseradish peroxidase; CcP, cytochrome c peroxidase; swMb,
sperm whale myoglobin; CeGLB-33: GLB-33 from C. elegans; Tf Hb, hemoglobin from Thermobi-
fida fusca.

gz gy gx Ref.

WT KpDyP
OH2 2.77 2.17 1.77 this work

D143A KpDyP
OH1′ 2.89 2.12 1.78 this work
OH2′ 2.728 2.15 1.772 this work
OH3′ 2.67 2.214 1.82 this work

HRP 2.94 2.08 1.63 [30]

CcP 2.74 2.22 1.74 [31]

swMb 2.55 2.17 1.85 [29]

CeGLB-33 2.62
2.845

2.20
2.12

1.815
1.69 [33]

Tf Hb
2.73
2.66
2.82

2.19
2.19
2.32

1.76
1.81
1.60

[32]

The optical absorption spectra (Figure 2) showed a drastic effect of the use of a glycine-
KOH buffer at pH 10. Both D134A and the double variant show maxima at 533 nm and 574
nm, which are distinct from the absorption maxima typical for OH− ligation observed for
D134A in borate buffer (540, 574 and 610 nm). This is confirmed in the corresponding EPR
spectra (Figure 6). Without addition of glycerol, only the EPR spectrum of the WT enzyme
shows an appreciable contribution of HS ferric heme forms (~27%) (Figure 6A). The majority
of the EPR signal of WT KpDyP stems from a LS Fe(III) species with maximum g-value
3.27 (species Gly2 in Table S3, supplementary material, Figure S5). Similar contributions
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are also present in the R232A and D143A variants (Figure 6A, Table S3). In addition, LS
species with gz ≈ 3.11–3.14 and gy ≈ 2.09–2.11 are observed in all single variants, which we
indicate as Gly1-type signals (Table S3). For the double variant, the contribution of a single
LS species with g-values in between those of Gly1 and Gly2 is observed (Gly2′ in Table S3).
Figure S5 (Supplementary Material) shows a detailed comparison of the LS species.
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of WT KpDyP and variants in glycine-KOH buffer (pH 10.0) without (A) and with (B) glycerol.
EPR simulation parameters can be found in Table S3 and the different contributions are displayed
in Figure S4 (Supplementary Material). An asterisk (*) indicates the position of a stable organic
radical identified earlier in the resting-state of the protein [12] and the gz-component of the Gly1
(dashed-dotted) and Gly2 (dashed) species is indicated as well. The spectra are shown normalized
to allow facile comparison. An inset in (B) highlights the presence of a Gly2 species in the R232A
variant (5× amplified).

Upon addition of glycerol, the Gly2 contribution disappears fully from the EPR
spectrum of WT KpDyP and the HS ferric heme forms again dominate the spectrum
(Figure 6B and Figure S4, Table S3). Similarly, the EPR spectrum of R232A KpDyP is
governed by HS forms, while only the Gly2 LS contribution remains present in the EPR
spectrum (Table S3). The D143A variant exhibits a less appreciable influence of glycerol
addition with both LS features only shifting in relative amount and no appearance of
a HS contribution (Table S3). Finally, the EPR spectrum of the double variant remains
essentially the same upon addition of the cryoprotectant, with small shifts in the g-values
that can be attributed to the change in the dielectric constant. The g-values point to a
Gly2-type, rather than Gly1-type contribution (Table S3). Note that the optical absorption
spectra revealed a dominant HS form for WT and R232A KpDyP in this buffer, while for the
variants in which the Asp-143 is mutated only the LS heme form is detected independently
of the presence of glycerol (Figure 2). This highlights that the glycerol-dependent LS↔HS
conversion observed by EPR for WT and R232A KpDyP is to some extent also induced by
the low temperatures.

W-band electron-spin-echo (ESE) detected EPR experiments were performed in an
attempt to facilitate the interpretation of the X-band CW EPR shown in Figure 6B (see Sup-
plementary Material, Figure S6). Although the experiments essentially confirmed the above
analysis of the X-band EPR data, only minor additional information could unfortunately
be obtained due to the low spin-echo intensity and the presence of contaminants.
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2.3. Subtle Changes in the Heme Pocket Revealed by Pulsed EPR

While optical spectroscopy revealed that the heme of each described variant is in a
HS Fe(III) state at pH 7 (Figure 2), CW EPR spectroscopy revealed clear differences in the
g and zero-field parameters of these HS forms (Table S1, Figure 3), which can be related
to subtle changes in the electronic structure of the heme pocket. Mutation of the distal
Asp-143 and/or Arg-232 in KpDyP formation of HS species with lower rhombicity of the
zero-field parameters (smaller E/D) is more favored, especially in the presence of glycerol
(Table S1).

Here, we will deploy X-band hyperfine sublevel correlation (HYSCORE) spectroscopy
to further evaluate the implications of the distal changes on the electronic structure of
the cofactor. This 2D pulsed EPR experiment enables the determination of hyperfine and
nuclear quadrupole values of the neighboring magnetic nuclei. The latter interaction is
present for nuclei with nuclear spin I > 1

2 such as 14N.
In HS ferric forms of globins, such as mammalian myoglobin, low E/D-values are

observed when a water molecule is ligating the heme iron on the distal side [4]. In order
to probe whether water ligation induces the observed reduction in the rhombicity of the
zero-field values in the KpDyP variants, 1H HYSCORE is measured of WT, D143A and
R232A KpDyP in glycerol-containing frozen solutions at pH 7 (Figure 7, bottom spectra).
If distal water ligation occurs, characteristic cross peaks are found in the 1H HYSCORE
spectra measured at the high-field magnetic-field position (gz

eff) [37,38]. The region in
which these cross peaks are expected is indicated in the spectra in Figure 7. It is clear that
the HYSCORE spectra of all three KpDyP variants lack this feature and that distal water
ligation therefore does not occur in the three proteins under these conditions.
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Figure 7. X-band HYSCORE of frozen solutions of WT, D143A and R232 KpDyP variants in phosphate
buffer (pH 7.0) and 25% glycerol, taken at 4 K and B0 = 348 mT (magnetic field setting corresponding
with gz

eff). The (-, +) quadrant (top panel) shows cross peaks stemming from the 14N heme nuclei and
the (+, +) quadrant in the (10–20, 10–20) MHz region (lower panel) indicates interaction between the
electron spin and nearby protons. The experimental spectrum (black) and the simulation (red) in the
top panel are obtained by averaging over four τ-values (96 ns, 104 ns, 114 ns and 128 ns). Essential
simulation parameters are highlighted in Table 2. The red circles (lower panel) indicate the position
where the cross peaks due to distal water protons should appear in the case of an aquomet form [37].
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Figure 7 (top panel) shows the (−, +) quadrant of the HYSCORE spectra for WT,
D143A and R232A KpDyP variants taken at a magnetic-field setting corresponding to gz

eff.
The observed cross peaks correspond to the interaction between the electron spin and the
14N heme nuclei, in accordance with observations for other HS heme proteins, such as
globins [37,39] and peroxidases [38] (Table 2). The interpretation of the individual cross
peaks in the HYSCORE spectra is given in the supplementary information (Figure S7).
Because of the orientation selection at this magnetic-field setting, the spectral simulation of
the cross peaks only reveals the z-component (i.e., component along the heme normal) of
the hyperfine and quadrupole tensor of the porphyrin 14N nuclei (Table 2). While ferric
WT and D143A KpDyP show identical 14N hyperfine values, a marked change is observed
for the R232A variant.

A previous in-depth study of aquometmyoglobin showed that the cross peaks related
to the interaction of the electron spin with the Nε of the proximal histidine are usually
weak or suppressed in the standard HYSCORE spectra, as is also observed here. At other
magnetic-field settings, the matched 1H HYSCORE spectrum reveals the characteristic cross-
peaks due to the protons at the Cε and Cδ positions of the proximal His (Figure S8) [40].

The (0–7, 0–7) MHz region of the HYSCORE spectra at g = gz
eff reveals signals from

the interaction of the electron spin with weakly coupled 14N and 13C nuclei, the latter in
natural abundance (Figure S9) [37]. Again, marked shifts are found in these couplings
upon mutation of the distal Arg-232, while this is not the case for the mutation of the distal
Asp-143 (see supplementary material for more details).

Table 2. Comparison between the z-component of the hyperfine (experimental error ± 0.03 MHz)
and nuclear quadrupole values (experimental error ± 0.05 MHz) of the porphyrin 14N nuclei in WT,
D143A and R232A KpDyP variants and those of other HS heme proteins. The z-direction is along the
heme normal. n.r., not reported.

|Az
eff| [MHz] |Qz| [MHz]

KpDyP (this work)
WT

14Nporf,1

6.90 0.25

14Nporf,2 6.70 0.28

D143A
14Nporf,1

6.90 0.25

14Nporf,2 6.70 0.28

R232A
14Nporf,1

7.07 0.32

14Nporf,2 6.95 0.28

metMb [39]
14Nporf,1

7.42 0.33

14Nporf,2 7.10 0.23

NGB [37]
14Nporf

7.25 0.23

Dehaloperoxidase [38]
14Nporf 7.50 n.r.

CcmE chaperone [41]
14Nporf

8.01 0.25

3. Discussion
3.1. Heme Cavity Heterogeneity and the Influence of Glycerol

At neutral pH, the heme in the homodimeric dye-decolorizing peroxidase of K. pneu-
moniae exhibits a high-spin Fe(III) state both at room temperature and in frozen solution.
Mutation of the catalytically important residues Asp-143 and Arg-232 to alanine or the addi-



Int. J. Mol. Sci. 2021, 22, 9849 12 of 19

tion of a glassing agent, i.e., glycerol, preserves the oxidation and high-spin state. While this
observation may be derived from both optical absorption (Figure 2) and low-temperature
EPR spectroscopy (Figure 3), significant differences are observable in the electronic ar-
chitecture. WT KpDyP and variants display a heterogeneous heme pocket depicted by
the presence of contributions of different HS states in the EPR spectra, characterized by a
changing rhombicity of the zero-field splitting parameter (Figure 3). An increase in this
rhombicity (larger E/D-value), which translates in a splitting of the EPR feature at g ~ 6,
reflects a departure from the tetragonal symmetry that is distinctive for the porphyrin and
that has been related to an increased admixture with the intermediate S = 3/2 state [25,26].
This lowering of the symmetry is governed by the physical environment, i.e., the ligands
of the heme and its incorporation in the protein matrix. The HS metal ion is thus able to
sense conformational changes of the protein moiety that impact the geometry of the heme
cavity [42,43].

For many HS ferric heme proteins, small E/D-values are related to the binding of a
water molecule at the distal site, as is known to be the case for aquometmyoglobin [3,39].
However, while the EPR spectra of both the Asp-143 and Arg-232 variants of KpDyP
contain species with small E/D-values (HS3, Table S1), water binding is contradicted by
the HYSCORE data (Figure 7). Our earlier study revealed that WT KpDyP and variants
exhibit a pronounced hydrogen-bonding network [12]. The reported presence of multiple
water molecules in the heme pocket [12], stabilized by the catalytically important residues
and a heme propionate (Figure 1), suggest that different arrangements in the distal heme
area are possible and may explain the heterogeneity in the heme cavity observed by
EPR. Earlier EPR studies already pointed out that heme peroxidases commonly display
a certain variability in their active site [6,10,42,44,45]. Moreover, measurements of in situ
horseradish peroxidase (HRP) showed that the HS Fe(III) signals changed their spectral
shape upon transfer from a test tube to an EPR tube [42]. And studies on yeast cytochrome
c peroxidase indicated that an identical preparation of the enzyme gave rise to EPR spectra
with a different ratio in LS and HS species [46]. A similar observation was made here with
different batches of WT KpDyP (Figure 4A). Cao et al. showed that the freezing and thawing
rate in potassium phospate buffers influenced the denaturarion of different proteins [47].
Both surface denaturation and pH shift due to precipitation of the buffer salt are indicated
as likely reasons of protein damage during freezing. Note, however, that the observation
of high fractions of HS heme species with E/D ≥ 0.017 by EPR at low temperature for ferric
WT and D143A KpDyP (Table S1) correlate with the observation of a broadened Soret peak
and red shift of the CT band at room temperature optical absorption spectra (Figure 2),
indicating that the observed EPR-spectral differences between the variants is not merely an
effect of the low temperature.

The variability in the electronic structure of the heme pocket observed by low-
temperature EPR can be prevented by the addition of glycerol (Figure 4B). It has been
reported before that the use of a glassing agent not only affects the glassing temperature
of the solvent but also limits the co-existence of different conformational sub-states of the
protein [48]. Resonance Raman spectroscopy of ferric cytochrome c peroxidase revealed
that glycerol induces a stabilization of the protein structure, accompanied by a reduced
interaction of the iron with its distal ligand [49]. Furthermore, glycerol-induced changes
have been reported in the EPR spectra of ferric CcmE heme chaperone [41]. In the crystal
structure of ferrous as well as ferric KpDyP [12,14] a glycerol molecule was found to be
coordinated in the upper region (i.e., above the bottle neck) of the main access channel. Ad-
ditionally, although KpDyP displays a penta-coordination both with and without glycerol,
it is highly likely that the glycerol molecule is coordinated in the active site channel and
thus influences the active site hydrogen bonding network, its dynamics and variability in
solution. Indeed, addition of glycerol forces the different heterogeneous HS Fe(III) states
in different batches into an identical set of sub-states (Figure 4B). Moreover, the crystal
structure of the D143A/R232A variant reveals the presence of a glycerol molecule in the
heme pocket [12]. In fact, crystals of this double variant could only be obtained with



Int. J. Mol. Sci. 2021, 22, 9849 13 of 19

glycerol as part of the crystallization solution and glycerol was believed to be essential to
stabilize the heme region in a WT-like manner in place of Arg-232 [12].

3.2. The Non-Innocent Effect of Buffer Molecules

The comparison of the optical absorption and EPR spectra of WT KpDyP and variants
at pH 10 in two different buffers reveals the non-innocent effect of buffer molecules on
the electronic spin state of the heme iron. In a glycine-KOH buffer, the optical absorption
spectra show a full conversion to the low-spin state for D143A and D143A/R232A KpDyP
but not for WT KpDyP, while this is not observed in a borate buffer at the same pH (Figure 2).
EPR reveals that this is due to ligation of a strong base to the heme iron (Figure 6A,
Table S3). The large gz values (≥3) of species Gly1 and Gly2 (Table S3) are typical of a
highly anisotropic LS heme species [50], and are in line with parameters observed for
endogenous and exogenous amine ligands [4]. The difference in EPR parameters between
Gly1, Gly2 and Gly2′ probably relate to a different orientation and stabilization of the
glycine molecule in the heme cavity. Although addition of glycerol slightly changes the
EPR parameters, in line with the earlier discussed ability of glycerol to enter the heme
access channel or heme pocket, glycine remains bound to the heme iron in the variants
involving exchange of Asp-143 for an alanine (Figure 6B, Table S3). At low temperature,
dominant ligation of glycine to the heme is also found for R232A KpDyP and to a minor
extent for WT KpDyP. This ligation is, however, far less resistant to glycerol addition
(Figure 6B, Table S3). Earlier studies of other heme proteins already hinted that the buffer
can affect the electronic structure of the active site and even its catalytic activity [6,49].
Interestingly the observed glycine ligation and the effect of glycerol addition seems to be
unique to Dye-decolorizing peroxidases, as it was not observed in an in-depth study on
myoglobin [36]. Moreover, the glycine ligation appears to be stronger in D143A/R232A
than in the R232A. As this cannot be solely due to accessibility of the active site, it suggests
that Asp-143 selectively blocks substrate binding.

3.3. Alkaline Transition in KpDyP Variants

From the above, it is clear that a well-considered choice of buffer is key to studying
alkaline transitions in dye-decolorizing peroxidases. Alkaline pH does not necessarily
imply ligation of a hydroxo ligand to the heme iron, especially if there is no aquomet state
present in neutral pH conditions. In borate buffer, an alkaline transition is observed for
D143A KpDyP, both at room temperature (Figure 2) and at 10 K (Figure 5A). Moreover, WT
KpDyP exhibits a small fraction of hydroxo-ligated species in frozen solution (Figure 5A,
Table S2). If R232 is missing, no hydroxo-ligation can be observed at all, suggesting that
R232 is required to stabilize this ligand. It is possible that in the case of WT KpDyP the
hydroxo-ligated fraction is either too low at room temperature to be detected in the optical
spectrum or that the OH− ligation observed at low temperature originates from packing
forces on the heme induced by freezing as is the case for the alkaline state at neutral
pH in HRP isozyme A2 [28,30]. Moreover, the pH of buffer solutions is known to be
slightly changed upon freezing with the effect being buffer-dependent [51]. Interestingly,
no hydroxo ligation is displayed in the variants of KpDyP where Arg-232 is replaced by an
alanine. This agrees with the general observation that binding of OH− in heme peroxidases
is accommodated by a distal arginine forming a hydrogen bond [52–54]. The presence
of hydrogen bonding can be deduced from the gz component that reflects the strength of
the stabilization [33]. The most dominant contribution in D143A KpDyP, OH1′, shows g
values very similar to the values found for HRP isozyme A2 and lignin peroxidase isozyme
H2 [27,28,30] and is indicative of strong hydrogen bonds between the hydroxo ligand
and the distal Arg-232. On the other hand, there is a small contribution of OH3′ with a
significantly lower gmax in the range that is common for globins [29]. A third component is
observed in both the WT and D143A variant and appears to be a species where the hydroxo
ligand experiences a stabilization with intermediate strength.
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Both optical absorption and EPR spectroscopy reveal no alkaline transitions in the
KpDyP variants in the presence of glycerol. It is reported, however, that the acidity of a
boric acid solution is lowered upon addition of glycerol, possibly explaining the inhibition
of an alkaline transition [55,56].

Comparison of Tables S1 and S2 shows that the nature of the HS heme species is also
affected by the pH. In general, when the HS Fe(III) state is maintained in borate buffer, the
rhombicity of the co-existing species changes (see Table S4). A study on the ferric heme
forms of the catalase peroxidase (KatG) of Mycobacterium tuberculosis reported an increase in
rhombicity with increasing pH [6]. For KpDyP, we generally observe the opposite behavior,
showing that these trends are not uniform across various peroxidase structural families.

3.4. The Distal Heme Side in KpDyP

In the previous section, we highlighted the importance of Arg-232 for stabilizing a
distal hydroxo ligand at high pH, as well as its general importance in maintaining the
WT-like loop conformation (Figure 1). In the WT-like conformation the heme iron is
accessible through a main access channel (Figure 1, green channel), proposed as the main
entry route for hydrogen peroxide and located perpendicular to the heme plane [12]. The
channel’s bottleneck is formed by Asp-143, Arg-232 together with Phe-248 and Leu-246
and blocks larger molecules such as glycerol from reaching the heme iron. Molecular
dynamics simulations have shown that the D143A and D143A/R232A variants display
a broader access channel and thus an increased solvent and substrate accessibility [13].
Fittingly only in these variants a glycine molecule is able to enter and occupy the sixth
binding position of the Fe(III) ion at room temperature. Although glycine binding is also
observed for WT and R232A KpDyP at low temperature, this is most likely mediated by
freezing-induced distortions of the heme cavity/entrance channels as already seen for
other heme proteins [7–10]. Notably, this is not a common feature of all heme proteins,
since ferric myoglobin is not binding glycine at room or low temperatures [36].

The heme architecture of WT, D143A and R232A KpDyP was further analyzed at
pH 7 in the presence of glycerol using the HYSCORE method. Glycerol was needed in
this case as glassing agent to increase the electronic relaxation times and allow HYSCORE
experiments. The overall HYSCORE features of the different KpDyP variants are quali-
tatively in agreement with what was observed for other high-spin heme systems [37–42].
While the HYSCORE results are essentially the same for WT and D143A KpDyP, subtle but
significant difference were observed for R232A. Not surprisingly, a change was observed
in the spectral region where contribution of remote 14N nuclei, such as the nitrogen of the
distal Arg-232 are expected (Figure S9). However, the mutation of Arg-232 to Ala also
influences the hyperfine interactions with the porphyrin 14N (Table 2). This does not seem
to be correlated with the difference in E/D values, which are more alike for the two variants
than for WT KpDyP (Table S1). X-ray crystallography has, however, shown that the heme
cavity architecture is lost in the R232A variant, including displacement of a loop that holds
Asp-143, thus altering the active site access channels [12]. The structural reorganization
is also accompanied by the loss of a salt bridge involving a modified orientation of the
heme propionate p7. It is thus interesting to note that the spin-density distribution in
the heme plane is sensitive to these changes at the periphery of the heme moiety. So far,
high-spin heme proteins are still scarcely studied by hyperfine spectroscopy allowing only
limited comparison. Overall, the hyperfine values of the heme 14N nuclei of the KpDyP are
somewhat lower than those observed for other heme proteins (Table 2). All the investigated
variants of KpDyP show magnetically inequivalent heme nitrogens, in line with an earlier
observation for metMb [39,56]. Quantum-chemical computations are needed to link the
observed differences to the electronic structure of the ferric heme center, but state-of-the-art
techniques, such as DFT, still fail to accurately reproduce the EPR parameters of these
high-spin systems.
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4. Materials and Methods
4.1. Protein Preparation

WT KpDyP, and three variants (D143A, R232A and D143A/R232A) were recombi-
nantly expressed and purified following the procedure described in [12]. Buffer exchange
from a 50 mM phosphate buffer (pH 7.0) to a 50 mM borate buffer (pH 10.0) or a 50 mM
glycine KOH buffer (pH 10.0) was done by dissolving the protein in a 10-fold excess of
the new buffer solution and subsequent centrifugation in 0.5 mL Amicon centrifugation
units (30 kDa cut-off). This was repeated three times, with an effective dilution of the
initial buffer of 1 to 10,000 (UV-vis) or 1:400 (EPR) including the initial dilution to reach the
desired protein concentration.

4.2. Optical Absorption Spectroscopy

Absorption spectroscopy in the UV and visible region was performed using a Varian
Cary 5E UV-Vis-NIR spectrometer combined with 10 mm quartz cells (Hellma Analytics,
Kruibeke, Belgium). The spectra of all samples (protein concentration ≈ 20 µM) were
recorded at room temperature for wavelengths ranging from 250 to 700 nm. In some cases,
glycerol was added up to 25% of the total volume. All results were corrected with a baseline
of the buffer (and glycerol) solution.

4.3. EPR Spectroscopy

EPR was conducted on frozen protein solutions (enzyme concentration ≈ 500 µM) in
the absence and presence of glycerol (25%). All samples were inserted in quartz EPR tubes
(o.d = 4 mm for X-band and 0.6 mm for W-band) and flash frozen in liquid N2.

• X-band continuous-wave (CW) EPR experiments were performed on a Bruker ESP300E
spectrometer (Bruker Biospin, Rheinstetten, Germany) operating at a microwave
frequency of ca. 9.44 GHz equipped with a liquid-helium cryostat (Oxford Inc.,
Oxford, UK) to enable temperatures from 2.5 K up to room temperature. Calibration
of the magnetic field was done using a Bruker ER035M NMR Gaussmeter. The EPR
tubes were vacuum-pumped to 1 mbar prior to and during the experiments to remove
excess of paramagnetic dioxygen.

All spectra of the ferric proteins were recorded at 10 K under non-saturating conditions
at 1 mW microwave power, 0.5 mT modulation amplitude and 100 kHz modulation
frequency.

• X-band HYSCORE (hyperfine sublevel correlation spectroscopy) experiments [57]
were carried out on a Bruker E580 Elexsys spectrometer (Bruker Biospin, Rheinstetten,
Germany) (microwave frequency ≈ 9.74 GHz) equipped with an Oxford Instruments
gas-flow cryogenic system to obtain an operating temperature of 4 K. The pulse
sequence π/2-τ- π/2-t1-π-t2- π/2-τ-echo was performed using tπ/2 = 16 ns, tπ = 32 ns
and was repeated for four different τ-values (96, 104, 114 and 128 ns) at a magnetic
field corresponding to gz

eff. Matched HYSCORE [58] was performed at a magnetic
field corresponding to gy

eff, using tπ/2 = 16 ns, tπ = 32 ns, tHTA = 24 ns and was repeated
for two different τ-values (144 and 164 ns). t1 and t2 were varied in time steps of
16 ns, starting from 96 ns to 4896 ns. The HYSCORE spectra are baseline corrected
using a third-order polynomial, apodized with a Hamming window and zero-filled.
After Fourier transformation, the absolute value spectrum was calculated. HYSCORE
measurements recorded with different τ-values were added together as indicated in
the figure captions.

• W-band (93.98 GHz) electron spin echo (ESE)-detected EPR were performed on a
Bruker Elexsys E680 spectrometer (Bruker Biospin, Rheinstetten, Germany) equipped
with a standard single-mode cylindrical resonator from Bruker and a continuous-flow
cryostat and superconducting magnet from Oxford Instruments. Using a π/2-τ-π-τ-
echo sequence, the low-field part (<1800 mT) was obtained using π/2 (π) pulse lengths
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of 60 (120) ns and τ = 200 ns. The high-field part, representative for the low-spin
signals, required π/2 (π) pulse lengths of 80 (160) ns and τ = 400 ns.

Simulation of the experimental spectra was done using EasySpin [59], a toolbox
developed for EPR simulations using MATLAB (MathWorks, Natick, MA, USA).

5. Conclusions

The spectroscopic study on WT KpDyP and variants presented here draws attention
to the impact of experimental conditions on the coordination state of heme proteins in
general and more specifically of dye-decolorizing peroxidases. Buffer choice is often based
on habit rather than reasoning. The case of the TRIS buffer exemplifies this; it is one
of the most commonly used buffers, despite the fact that it strongly interacts with the
peptide backbone [60]. Notably, other buffers such as HEPES have been shown to form
radicals, rendering them unsuitable for studying redox active enzymes. Here, we have
shown that a well-considered choice of buffer is important since buffer components are
not only able to perturb the electronic architecture of the active site but can also be directly
involved in binding. We have demonstrated the non-innocent role of buffer components
by comparing WT KpDyP and the D143A, R232A and D143A/R232A variants in widely
used borate and glycine-KOH buffer at pH 10. The buffer molecule glycine is found to
bind at high pH to the heme iron at the distal side of the heme when the bottle neck of the
access channels is widened by an exchange of Asp-143 to Ala. When studying alkaline
transitions in dye-decolorizing peroxidases (and other heme proteins), a careful choice of
the buffer is thus needed. Indeed, hydroxo ligation at room temperature only occurs for
the D143A variant at pH 10. Low-temperature EPR shows that the distal hydroxo ligand
can be stabilized in this protein in three ways associated with different hydrogen bond
strengths. Less frequently used buffers CHES and CAPS may provide good alternatives,
but will require thorough investigation [61].

In line with earlier observations for other peroxidases, EPR reveals a large heterogene-
ity in the observed heme centers of WT KpDyP and variants at different pH values. This
heterogeneity is due to a combination of freezing effects, (undesired) ligation of exogenous
molecules, pH and overall flexibility of the heme cavity. The freezing-induced artifacts
can be prevented by a glassing agent, such as glycerol. Glassing agents are indispensable
when performing pulsed EPR spectroscopy to reveal changes in the hyperfine values of the
surrounding magnetic nuclei. However, our data show that glycerol may also influence
the outcome of some of the experiments in a structure-dependent manner. Since glycerol
can be accommodated in the access channel to the active site or in the heme pocket when
the bottle neck radius of the channel allows so, it may prevent distal heme ligation, as
observed for some of the variants at high pH. Conversely, as the effect of glycerol and
buffer molecules is protein-variant specific, it may, when analyzed with care, be used to
gain information on the accessibility of the heme region.

Both Asp-143 and Arg-232 are fully conserved in DyPs. The present work supports
the role of this amino-acid pair in restricting the access to the heme cavity. Additionally,
the observed strong ligation of glycine to all variants lacking Asp-143 suggests that is
selectively inhibits substrate/ligand binding. With the exception of hydrogen peroxide
no organic or inorganic substrates can enter the heme cavity nor approach the heme
periphery for electron delivery. The ferric high-spin WT KpDyP efficiently reacts with
hydrogen peroxide, thereby forming a stable and unreactive Compound I with Asp-143
acting as proton acceptor in the heterolytic cleavage of hydrogen peroxide [12]. The role
of Arg-232 in Compound I formation could not be evaluated so far because the distal
heme cavity collapsed upon its exchange [12]. We previously proposed that Arg-232
supports Compound I formation by H-bonding of the hydroperoxyl anion (i.e., Compound
0 state) and heterolysis of the O–O bond electrostatically. That a hydroxo ligation is only
possible in the presence of Arg-232, which presumably forms a hydrogen bond with the
hydroxo-anion, strongly supports this hypothesis.
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