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With the rise of biomass-based materials such as nanocellulose, there is a

growing need to develop statistical methods capable of leveraging inter-

dependent experimental data to improve material design, product

development, and process optimisation. Statistical approaches are essential

given the multifaceted nature of variability in lignocellulosic biomass, which

includes a range of different biomass feedstock types, a combinative

arrangement of different biomass processing routes, and an array of

different product formats depending on the focal application. To account

for this large degree of variability and to extract meaningful patterns from

research studies, there is a requirement to generate larger datasets of biomass-

derived material properties through well-designed experimental systems that

enable statistical analysis. To drive this trend, this article proposes the cross-

disciplinary utilisation of statistical modelling approaches commonly applied

within the field of statistical genetics to evaluate data generated in the field of

biomass-based material research and development. The concepts of variance

partitioning, heritability, hierarchical clustering, and selection gradients have

been explained in their native context of statistical genetics and subsequently

applied across the disciplinary boundary to evaluate relationships within a

model experimental study involving the production of sorghum-derived

cellulose nanofibres and their subsequent fabrication into nanopaper

material. Variance partitioning and heritability calculates the relative

influence of biomass vs. processing factors on material performance, while

hierarchical clustering highlights the obscured similarity between experimental

samples or characterisation metrics, and selection gradients elucidate the

relationships between characterisation metrics and material quality.

Ultimately, these statistical modelling approaches provide more depth to the

investigation of biomass-processing-structure-property-performance

relationships through outlining a framework for product characterisation,

quality evaluation, and data visualisation, not only applicable to

nanocellulose production but for all biomass-based materials and products.
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1 Introduction

Biomass-derived nanocellulose is a highly versatile material

currently under investigation across a wide range of burgeoning

material applications, including paper and packaging,

adsorbents, cosmetics, catalysts, construction, biomedicine,

and electronic devices (Pennells et al., 2020). The bio-based

origin of lignocellulosic biomass significantly contributes to the

sustainability of nanocellulose materials. However,

lignocellulose variability is a significant challenge for the

development of bio-based nanocellulose products (Zhu et al.,

2016). The multifaceted nature of lignocellulose variability

involves: 1) The inherent biological variability of

lignocellulose from different genetic sources (plant species)

and environmental growth conditions; 2) Biological

variability across different tissue types within the same plant;

3) The hierarchical complexity of both the feedstock material

and final product structure; and 4) Material variability

attributed to differences in biomass handling, storage,

processing, and product fabrication (Ciesielski et al., 2020).

This variability is reflected in the versatility of nanocellulose

materials, which are able to be produced from a wide variety of

biomass sources (i.e., from aquatic and terrestrial biomass or

through bacterial biosynthesis), generated through a range of

different processing routes (i.e., enzymatic, thermal, chemical,

and mechanical treatments), or fabricated into a range of

different product formats (i.e., aqueous suspension or paste,

dried into a networked film, spray dried into solid particles,

compounded in a polymer matrix, freeze dried into an aerogel

structure, or carbonized at high temperatures). Hence, this

complex nature of variability must be considered when

investigating biomass-derived nanocellulose materials.

Experimental system design and statistical modelling

approaches that account for these sources of variability are

a significantly underdeveloped aspect of the nanocellulose

research field (Ramakrishna et al., 2019). Statistical

approaches are most commonly utilised in nanocellulose

research for process optimisation (Rojsitthisak et al., 2017;

Rodrigues et al., 2019; Baruah et al., 2020; Hisham et al., 2020;

Nardi et al., 2020; Mairpady et al., 2021; Lim et al., 2022; Prabu

et al., 2022; Soleimanzadeh et al., 2022; Zubair et al., 2022),

property evaluation (Chinga-Carrasco, 2013; Lin et al., 2014;

Desmaisons et al., 2017; Kriechbaum et al., 2018; Schenker

et al., 2018; Motohashi and Hanasaki, 2019; Espinosa et al.,

2020; de Carvalho Benini et al., 2021; Sankhla et al., 2021),

predictive modelling (Hayes, 2012; García-Gonzalo et al.,

2016; Lengowski et al., 2016; Ramachandran et al., 2017;

Malucelli et al., 2018; Gao et al., 2019; Ferdous et al., 2021;

Demir et al., 2022), and fibre morphology estimation (Postek

et al., 2011; Legland and Beaugrand, 2013; Aguado et al., 2016;

Arcari et al., 2019; Ang et al., 2020; Campano et al., 2020;

Uetani et al., 2021). However, statistical approaches also have

the potential to be employed in alternative and creative ways.

A well-structured experimental design and sample

characterisation methodology can help to answer questions

relating to both which biomass source and/or processing

conditions generate the highest performing material, as well

as the mechanisms by which high performance is achieved.

This article offers a statistical approach to deal with the

challenge of lignocellulose variability, through co-opting a

handful of concepts from the field of statistical genetics. These

statistical methodologies—including variance partitioning,

heritability, hierarchical clustering, and selection

gradients—have conventionally been utilised to decipher

phenotypic and/or genetic variance between organisms

within a species population. However, these concepts have

been re-applied across disciplinary boundaries to demonstrate

their utility in material research and development.

This work utilizes data from an experimental system outlined

in an existing research study, involving the generation of cellulose

nanofibres (CNFs) from sorghum agricultural byproducts and

the subsequent fabrication of nanopaper material (Pennells et al.,

2021). The factors within the experimental dataset include

nanofibre samples from different: 1) sorghum varieties; 2)

plant sections; 3) energy levels for mechanical fibrillation;

which were subsequently fabricated into multiple 4)

nanopaper material duplicates; and 5) nanopaper strip

replicates per duplicate for mechanical testing. A summary of

this experimental system is outlined in the Supplementary

Material (Supplementary Figure S1).

The key characterisation metrics used in this study

included the nanofibre-water interaction properties of

sedimentation behavior and water retention value, and the

mechanical properties of nanopaper material, specifically

nanopaper tensile index. Sedimentation behavior was based

on the sediment height of a series of diluted cellulose

nanofibre samples after settling over a period of 48 h. The

derivative of the sediment height trendline over the dilution

series is used to calculate the estimated average nanofibre

aspect ratio based on the Effective Medium Theory (Varanasi

et al., 2013). The water retention value metric was based on the

solids content of cellulose nanofibre samples after a

standardised centrifugation process at 3,000 rpm for

10 min, which indicated the capacity for the sample to

entrain water within the nanofibre network as a proxy for

the specific surface area (Gu et al., 2018). Subsequent

fabrication of cellulose nanofibres into nanopaper material

was achieved with a Rapid Köthen handsheet former (Xell,

Austria) according to ISO 5269–2:2004 (International

Organization for Standardization, 2004). The mechanical

properties of nanopaper material were assessed through

tensile testing of multiple nanopaper strips with the Instron

model 5,543 universal testing machine (Instron Pty Ltd.,

Melbourne, Australia), using a 500 N load cell, a crosshead

speed of 1 mm/min, and a gauge length of 100 mm (Pennells

et al., 2021).
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2 Variance partitioning & heritability

In statistics, variance partitioning (or partitioning of the

sums of squared deviations) involves estimating the spread of

observations from the mean value for different sources of

variability (or “components”) within the data set.

Interestingly, the development of this field of statistics was

largely driven by its application in quantitative genetics. In

quantitative genetics, this concept is used to partition the

variance in a phenotypic trait based on the effect of genetic

and environmental components, as well as the interaction

between these components. In other words, variance

partitioning in this field estimates the influence of genetic and

environmental factors on the phenotypic outcome of interest, a

concept that is also known as heritability. In common parlance,

this is the technical aspect of the “nature vs. nurture” debate.

Based on the variance partitioning results, heritability can be

calculated as the proportion of phenotype variance attributed to

genetic factors out of the total phenotype variance for a specific

trait (i.e., height).

In the context of the current biomass-based material study,

the genetic component is attributed to the type of biomass

feedstock utilised for CNF preparation. On the other hand,

the environmental component is not attributed to the growth

conditions of the biomass, as would typically be the case in

heritability studies. In this case, the variance due to the growth

conditions is assumed to be negligible, as the biomass was grown

in the same geographical location over the same period of time.

Instead, the environmental component is attributed to the

laboratory processing conditions, which act as a pseudo-

environment encompassing everything from biomass grinding,

pulping, nanofibrillation, and nanopaper fabrication. Therefore,

heritability in the context of biomass-based material engineering

is a measure of the relative influence of biomass factors

(i.e., sorghum variety and plant section) compared to the

influence of processing conditions on the phenotypic trait

value. The phenotypic trait can be selected as any property

measured for the CNF or nanopaper material samples, such

as a metric of nanofibre morphology, or the nanopaper tensile

strength or toughness. The methodology required to partition the

variance of biomass and processing components within the

experimental system initially involves application of a

statistical model to fit the data. In this case, a linear mixed-

effects model was developed to fit the data, with the sorghum

variety, plant section, and processing energy level comprising the

fixed effects and the nanopaper duplicate and nanopaper strip

replicates comprising the random effects. The experimental

factors included within this Biomass-to-Nanopaper model are

outlined in Table 1.

The response variable of the model was initially selected as

the nanopaper tensile index (TI), as this metric generally

indicates the quality of CNF samples for nanocomposite

reinforcement applications. Therefore, the mixed-effects model

is required to determine which experimental factors significantly

influence the value of nanopaper tensile index value (i.e., through

analysis of variance) and allow the statistical ranking of samples

based on this metric (i.e., through pairwise comparison testing).

However, determination of the variance attributed to the biomass

factors in relation to the processing factors required the

conversion of the mixed effects model into a purely random

effects model. The structure of the random effects model that was

implemented within the R software workspace is outlined in Eq.

1, using the lme4 package (Bates et al., 2015).

lmer(TI ~ (1|variety) + (1|variety:section) + (1|energy)
+ (1|nanopaper/strip))

(1)
Subsequently, an analysis of variance (ANOVA) was

performed on the random effects model, with the outcome

yielding component variance values. The heritability scores for

each component were calculated as a proportion of the overall

variance, as outlined in Eq. 2, where VG is the variance attributed

to genetic factors and VE is the variance attributed to laboratory

“environment” factors.

h2 � VG

VG + VE
(2)

The break down of results for the partitioning of variance

analysis are presented in Table 2. This statistical genetics-

inspired analysis highlights that the “heritability” of the

variety factor is a low as 2.2%, indicating that the type of

sorghum variety had minimal relative impact on the

nanopaper tensile index in comparison to the other

TABLE 1 Experimental factors within the Biomass-to-Nanopaper model.

Variable Variable type Description Levels

Gi Fixed, nominal Sorghum variety Sugargraze, Yemen, GreenleafBMR, Graingrass

G: Sij Fixed, nominal Plant section; nested within sorghum variety Leaf, Sheath, Stem

Ek Fixed, ordinal Mechanical energy level (homogenisation) Low, Medium, High

nl Random, nominal Nanopaper duplicate 1–2

n: zlm Random, nominal Nanopaper strip replicate; nested within nanopaper duplicate 1–8
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experimental factors. On the other hand, the mechanical

treatment energy level (HPH) had a significantly greater

influence on the nanopaper tensile index (35.3%), highlighting

the predominant effect that processing has on nanofibre and

nanopaper mechanical properties. Meanwhile, the residual

variance (43.8%) outweighed all other factors, emphasizing the

significant degree of unaccounted for variance in the outcome of

nanopaper mechanical strength.

In a similar manner, the response variable for the random

effects model, which in the case above was the nanopaper tensile

index, can be changed to any other CNF or nanopaper

characterisation metric within the experimental system. To

demonstrate an example of this, the response variable was

changed to each one of the fibre morphology metrics assessed

on CNF suspension samples using an automated fibre analysis

device (MorFi, Techpap, France). Refer to the Supplementary

Material for a full description of each of the fibre morphology

parameters (Supplementary Table S1). In this case, the variance

score of components (variety, section, energy level) were

calculated for each of the fibre morphology parameters, as

shown in the Supplementary Material (Supplementary Table

S2). Utilizing these component variance scores, the

‘heritability’ of each morphology parameter was calculated as

the proportion of the genetic variance scores of Section:Variety

and Variety over the total parameter variance, as demonstrated in

Eq. 3.

h2 � Var(Variety) + Var(Section:Variety)
Var(Total) (3)

In this sense, a higher heritability value indicates a fibre

morphology parameter that is more influenced by biomass

factors related to different sorghum varieties or plant sections,

TABLE 2 Partitioning of factor variance for the Biomass-to-Nanopaper random effects model for the response variable of nanopaper tensile index.

Groups Name Variance Std. Dev Factor “heritability” (%)

strip:nanopaper (intercept) 0.01 0.11 0.004

Section:Variety (intercept) 57.40 7.58 18.3

Variety (intercept) 6.74 2.60 2.2

HPH (intercept) 110.59 10.52 35.3

Nanopaper (intercept) 1.28 1.13 0.4

Residual 137.34 11.72 43.8

SUM 313.4 100

FIGURE 1
Ranking of heritability scores for each fibre morphology parameter.
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while a lower heritability value indicates a fibre morphology

parameter that is more influenced by the processing factor

related to the mechanical treatment energy level. Figure 1

presents the ranked heritability score of each fibre

morphology parameter. Overall, this methodology of

experimental design and statistical modelling is effective at

untangling intertwined relationships between different factors

within the experimental system and can be applied across

different bio-based material research studies given a well-

structured experimental design.

3 Phylogenetic clustering

In phylogenetics, hierarchical clustering is a statistical method

used to evaluate the genetic similarity between a set of different

genes, species, or other taxa, typically visualized in the form of a

branching tree diagram. The data used to generate the relationship

between samples in the form of phylogenetic trees

(i.e., dendrograms) is typically measured phenotypic data, or

more recently on the nucleotide sequence of genes. However, this

statistical method of measuring similarity between samples can be

applied to a wide variety of different data set types, including for

CNF morphology generated in the experimental system visually

outlined in the Supplementary Material (Supplementary Figure S1).

In this case, hierarchical clustering can be used to evaluate the

similarity between each CNF sample within the experimental series

based on the amalgamation of all fibre morphology parameters

(Supplementary Figure S2a), or alternatively to evaluate the

similarity of different fibre morphology parameters based on all

CNF samples (Supplementary Figure S2b).

Interestingly, the groupings generated for both the biomass

sample and fibre morphology parameter clustering were highly

intuitive and presented informative groups. For biomass sample

clustering, this approach readily distinguishes the variability in

fibre morphology for the leaf section of sorghum biomass

(Supplementary Figure S2a, Cluster 2 + 4). In addition, the

characterisation metric clustering convincingly delineates the

different types of fibre morphology characteristics, such as the

fine content parameters (Supplementary Figure S2b, Cluster 1),

fibre kink parameters (Supplementary Figure S2b, Cluster 2), and

fibre length parameters (Supplementary Figure S2b, Cluster 3).

Therefore, this methodology has the potential to provide deeper

insights into the relationships between different experimental

samples, in addition to drawing links between the relationship of

different characterisation methods or sample properties.

4 Selection gradients & predictive
evolution

In statistical genetics, the Breeder’s equation is a statistical

tool utilised to predict natural microevolution or the inter-

generational effects of selective breeding. The multivariate

form of the equation can include a collection of phenotypic

traits of a species population, mapping the relationship between

traits to the fitness score for the population from generation to

generation. This information is sufficient to predict the

evolutionary shift in the average value of each measured

phenotype over one generation of reproduction or breeding.

The Breeder’s equation, also known as the Lande Equation, is

shown in Eq. 4 below.

Δ�z � Gβ (4)

In expanded form, the multivariate Breeder’s equation can

also be written as in Eq. 5, where Δ�zn is the change in the value of

phenotypic trait n from generation 1 to 2, G is the variance-

covariance matrix for all phenotypic traits included in the model,

and β is the selection gradient matrix describing the relationship

between each phenotypic trait and fitness.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Δ�z1
Δ�z2
. . .
Δ�zn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
V1 Cov1,2 . . . Cov1,n

Cov2,1 V2 . . . Cov2,n
. . . . . . . . . . . .

Covn,1 Covn,2 . . . Vn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
β1
β2
. . .
βn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (5)

While the production of CNF from biomass feedstock is not an

evolving system, which prevents the complete application of the

Breeder’s equation in this context, some aspects of this methodology

can be applied for biomass-derived material research. For example,

while each row within Eq. 5 would typically represent a different

phenotypic trait of the species population, in the case of material

processing each row can represent a different characterisationmetric

for the CNF sample population. The variance of each metric (Vn)

represents the standardised spread in that metric value across the

entire sample population, while the covariance (Covn,m) represents

the relationship between metric n and metric m.

This methodology becomes interesting when considering the

role of the selection gradient βn, which in the context of

quantitative genetics represents the relationship between the

phenotypic trait and the evolutionary fitness of the organism.

The selection gradient value is simply the slope of the linear

regression between the phenotypic trait values for all individuals

within the population and their fitness score, indicating the

positive or negative relationship to evolutionary fitness with

an increased trait value. However, in material processing,

fitness can be considered as the overall quality of the material

sample. Along this thread, our recent research article has outlined

a novel method to distil multiple characterisation metrics into a

single quality score value, in a flexible and tunable manner that is

valid for any material application (Pennells et al., 2022). The

quality score acts as a proxy for evolutionary fitness in this

context. Therefore, the “fitness” (or quality) of material samples

varies depending on the selected definition of quality, based on

the focal application, whereas the definition of fitness in the

evolutionary sense is more constrained to the reproductive

success of the individual organism.
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Utilizing this tunable property of quality in the context of

material engineering, multiple selection gradient values can be

generated for each characterisation metric as specified by

different quality definitions. The utility of this approach for

CNF quality evaluation is demonstrated in Figure 2, where the

selection gradient values for each fibre morphology metric are

compared across two different quality definitions. Quality 1 (Q1)

represents the sole definition of the nanopaper tensile index as

the quality indicator, while Quality 5 (Q5) represents the

nanofibre-water interaction properties of CNF sedimentation

ratio and water retention value (Pennells et al., 2022). Each

“box plot” within Figure 2 consists of two data points, which

represent the Q1 and Q5 selection gradient values for each fibre

morphology parameter. Refer to the Supplementary Material for

a full description of each of the fibre morphology parameters.

This diagram presents three key pieces of information: 1) The

ascending order of the mean value between the selection gradient

values for the two quality definitions (represented as the middle

line of each box plot) signifies how the fibre morphology

parameter influences quality on average across the two

contexts. For example, fibre coarseness (fibre_coarse) has a

strong negative selection gradient (i.e., a negative relationship

with sample quality) for both the Q1 and Q5 definitions,

indicating that a high fibre coarseness generates a low quality

material in both the fibre-fibre and fibre-water interaction

strength situations. On the other hand, a high fibre content

(fibre_cont) generates a high quality material for both of these

situations; 2) The fibre morphology parameters that are situated

in the middle of the diagram (i.e., fibre_L.L, fine_n, fibre_A.L,

fine_cont.A, fine_cont.L.L, fine_cont.L) exhibit a minimal impact

on product quality for both situations; and 3) The spread of the

box plot indicates howmuch the selection gradient value changes

across the two quality definitions. For example, fibre length

(fibre_L) has a very similar influence on product quality for

both fibre-fibre and fibre-water interaction applications, whereas

the fine content (fine_cont) has a divergent influence on product

quality depending on the application, such that a high fine

content sample generates a high quality material for the fibre-

water interaction application but significantly less so for the

nanopaper strength application.

Overall, this quantitative genetics-inspired methodology

provides a new approach to visualizing the effect of

characterisation metrics on nanocellulose material quality

across multiple focal applications. Utilizing the selection

gradient values in concert with the metric variance and

covariance values, as outlined in Eq. 5, Δ�zn values can be

calculated for all characterisation metrics. In this context,

these values would represent the true relationship that each

FIGURE 2
Comparison of biomass fibre morphology selection gradients across the Q1 (nanopaper tensile index) and Q5 (CNF sedimentation aspect ratio
and WRV) quality definitions.
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characterisation metric has with material quality, taking into

account the degree of variation exhibited throughout the

population and the correlation with other metrics that may

negatively impact quality.

5 Conclusion

This article outlines a novel approach to experimental data

analysis and visualisation for biomass-based material processing,

utilizing a combination of statistical methods commonly applied

in quantitative genetics. Variance partitioning and heritability

estimation (of the experimental system) presents the opportunity

to uncover the relative influence of biomass or processing factors

on the final material performance, given a well-structured

experimental design. Furthermore, the relative influence of

biomass or processing factors can be estimated for each CNF

characterisation metric, which in this case was demonstrated for

the fibre morphology parameters. The relationships between

characterisation metrics can also be assessed through a

phylogenetics approach, which estimated the relative similarity

of samples or characterisation metrics within the data set and

exhibited intuitive clustering of the fibre morphology parameters.

Lastly, a statistical approach commonly employed for predictive

evolution and selective breeding studies was utilised to generate

selection gradient values outlining the relationship between each

characterisation metric and the quality score of samples within

the experimental population, which serves as a proxy for

evolutionary fitness. This approach enables visualisation of the

characterisation metric influence on sample quality, when

quality can be defined in different ways depending on the

product type or focal application. The importance of these

statistical approaches resides in their versatility across

different material types—these methods are not limited to

nanocellulose materials but can be applied across different

studies that involve the processing of biomass feedstock for

the production of various bio-based materials or products.

Overall, integration of statistical genetics concepts into the

field of biomass-based material engineering has the potential

to increase the depth of investigation into the factors that

influence sample quality, the relationships between

characterisation metrics, and creates the opportunity for

incorporation of genetic data of biomass feedstock in

sustainable material investigation, all of which are essential

for the industrial scale-up of highly variable and difficult to

quantify, and qualify, nanocellulose materials.
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