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Abstract: Fourier transform infrared spectroscopy (FT-IR) is widely used in the analysis of the
chemical composition of biological materials and has the potential to reveal new aspects of the
molecular basis of diseases, including different types of cancer. The potential of FT-IR in cancer
research lies in its capability of monitoring the biochemical status of cells, which undergo malignant
transformation and further examination of spectral features that differentiate normal and cancerous
ones using proper mathematical approaches. Such examination can be performed with the use
of chemometric tools, such as partial least squares discriminant analysis (PLS-DA) classification
and partial least squares regression (PLSR), and proper application of preprocessing methods and
their correct sequence is crucial for success. Here, we performed a comparison of several state-
of-the-art methods commonly used in infrared biospectroscopy (denoising, baseline correction,
and normalization) with the addition of methods not previously used in infrared biospectroscopy
classification problems: Mie extinction extended multiplicative signal correction, Eiler’s smoothing,
and probabilistic quotient normalization. We compared all of these approaches and their effect on the
data structure, classification, and regression capability on experimental FT-IR spectra collected from
five different prostate normal and cancerous cell lines. Additionally, we tested the influence of added
spectral noise. Overall, we concluded that in the case of the data analyzed here, the biggest impact
on data structure and performance of PLS-DA and PLSR was caused by the baseline correction;
therefore, much attention should be given, especially to this step of data preprocessing.

Keywords: FT-IR spectroscopy; prostate cancer cells; preprocessing; PLS-DA; PLSR; EMSC

1. Introduction

Prostate cancer is one of the most common and deadliest types of cancers among men
in developed countries [1]. Currently, its incidence among men in the US is similar to
that of breast cancer among women. Even though prostate cancer can grow very slowly
and sometimes in an early stage does not significantly influence the quality of the life
of some patients, its early diagnostics and monitoring are crucial for treatment, which
otherwise will be ineffective against the advanced stage of the disease. In vitro cell cultures
of isolated human cells are powerful model systems to study malignant transformation and
to determine whether normal, primary, or metastatic cells differ in morphology, chemical
structure, proliferation, motility, or response to anticancer drugs. By analyzing a panel of
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normal and transformed prostate cells, the evolution of such differences can be correlated
with the disease state and thus, suggest more effective drug treatment or serve as an
additional prognostic factor.

Spectroscopic methods are widely applied to study the evolution of biochemical
compounds that can be subsequently elevated or diminished during malignant trans-
formation in single cells [2–5]. Methods like Fourier transform infrared spectroscopy
(FT-IR) and Raman spectroscopy are well established in biomedical applications [6–13]
and offer a label-free biochemical snapshot of various biological processes. They have
been successfully applied to prostate cell line discrimination in the past [14–23]. The bio-
chemical sensitivity of IR spectroscopy usually needs to be leveraged by the application
of advanced multivariate algorithms, which opens up a whole field of optimization of
such approaches [24–27]. It is known that every specific data structure will change the
optimal parameters of most optimizations; therefore, there is a need to perform optimiza-
tion for a given problem [28–38]. Here, we present the discrimination of five prostate
cell lines: one RWPE-1 cell line derived from the peripheral zone of the histologically
normal adult human prostate and four cancerous cell lines derived from prostate cancer
(22Rv1), and its metastasis to lymph nodes (LNCaP), the brain (Du145), and bone (PC3).
We also perform a comparison of several state-of-the-art methods commonly used in FT-IR
biospectroscopy (Figure 1). These include three steps of preprocessing: denoising, baseline
correction, and normalization. In each step, we test known methods with the introduction
of new ones. Baseline correction can be done in either a signal processing approach or
using a physics-based model. Resonant Mie scattering extended multiplicative correction
(RMie-EMSC) [39] has been the standard, but long computation time and the influence
of reference spectrum on the corrected spectra shapes led to the development of a more
accurate and stable upgrade in the form of Mie extinction extended multiplicative signal
correction (ME-EMSC) [40], which has been recently released. RMie-EMSC and ME-EMSC
were compared on the pancreas tissue spectra in our previous work [41]. Both algorithms
gave similar results in terms of spectral correction, but RMie-EMSC was around 20 times
slower than ME-EMSC. In the denoising part of preprocessing, we have already compared
most of the known methods for imaging purposes [28]. However, the method proposed by
Eilers et al. [42], which is not commonly applied in IR spectroscopy, is a potentially efficient
algorithm for single spectra. Finally, in the normalization part, we tested the probabilistic
quotient normalization (PQN) method [43]. This method is more commonly used for
the normalization of data acquired with nuclear magnetic resonance spectroscopy [44].
We compared all of these approaches in their effect on the data structure, classification,
and regression capability on experimental data (Figure 1). Additionally, we explored the
influence of added spectral noise to highlight the sensitivity to noise of different methods.
Our results show that even for the same data, it is important to optimize the classification
and regression approaches separately, as the optimal parameters are different.
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Figure 1. A scheme of the preprocessing steps—five prostate cell lines were imaged with FT-IR, then white noise was 
added to the original spectra. Raw data and data with added noise were preprocessed in the following order: denoising 
→ baseline correction → normalization. Individual methods coming from one preprocessing step were combined with 
each method from the remaining two preprocessing steps. Taking into account the above and the number of parameters 
adjusted for each method, the number of combinations (data sets) was equal to 2835. All of these combinations were then 
used to create a classifier discriminating cell lines and a regression model of class assignments giving more detail about 
the relative importance of different preprocessing factors and parameters. 

Figure 1. A scheme of the preprocessing steps—five prostate cell lines were imaged with FT-IR, then white noise was
added to the original spectra. Raw data and data with added noise were preprocessed in the following order: denoising→
baseline correction→ normalization. Individual methods coming from one preprocessing step were combined with each
method from the remaining two preprocessing steps. Taking into account the above and the number of parameters adjusted
for each method, the number of combinations (data sets) was equal to 2835. All of these combinations were then used to
create a classifier discriminating cell lines and a regression model of class assignments giving more detail about the relative
importance of different preprocessing factors and parameters.
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2. Materials and Methods
2.1. Cell Culture

PC-3, LNCaP, Du145, and 22Rv1 cells were grown in RPMI-1640 with L-glutamine, and
25 mM HEPES (Corning, Mediatech Inc., Manassas, VA 20109, USA) supplemented with
10% FBS (ATCC 30-2020) and 1% pen/strep. RWPE-1 cells were grown in Keratinocyte-SFM
(Gibco, Life Technologies) supplemented with 1% pen/strep.

2.2. Sample Preparation for Spectroscopic Studies

Cells were seeded onto CaF2 optical windows at a density of 40.000 cells/mL. 48 h
after seeding, cells were washed for 15 min in HBSS supplemented with calcium chloride
and magnesium chloride (Gibco, Invitrogen, #14025) at 37 ◦C and fixed in 4% PFA solution
(Affymetrix, Cleveland, OH, USA) in PBS for 20 min at 37 ◦C. Cells were washed and dried
in a gradient of HBSS from 100% to 0% including: 100%, 90%, 80%, 70%, 60%, 50%, 40%,
30%, 20%, 10%, and 0% (ddH2O) and air-dried. Each step was performed 1 time for 2 min.
All samples were washed and dried at room temperature.

2.3. FT-IR Measurements

FT-IR data were collected using a HYPERION 3000 FT-IR microscope (Bruker Optics,
Ettlingen, Germany) equipped with a 36× objective and liquid nitrogen cooled 64 × 64
Focal Plane Array (FPA) detector (1.1 µm projected pixel size). The FT-IR spectra of fixed
cells seeded onto CaF2 (13 × 1 mm) were acquired in a transmission mode in the range
from 3800 cm−1 to 900 cm−1. The spectral resolution was 4 cm−1 (with a zero-filling factor
of 1, giving rise to 1582 spectral points), and the number of scans per spectrum was 256.
Spectra from each of the cells were averaged to a single spectrum, giving rise to a set of
48 spectra across the 5 cell lines: RWPE-1 (14 spectra), 22Rv1 (7 spectra), PC3 (7 spectra),
Du145 (10 spectra), and LNCaP (10 spectra). The above approach provides data with the
dimensionality of 48 objects (cells) by 1582 variables (frequencies).

2.4. Noise Addition and Preprocessing

In order to understand the influence of spectral noise on the classification outcome,
a simulated homoscedastic noise was added to the original spectra as previously re-
ported [28] to achieve Signal to Noise Ratio (SNR) corresponding to only 32 scans per
spectrum. Before baseline correction, spectral ranges related to carbon dioxide and water
vapor were removed. Since some baseline correction methods require these removed
regions to correct baseline properly, the carbon dioxide region was interpolated. Raw data
and data with added noise after carbon dioxide removal can be seen in Figure S1 in the
Supplementary Materials. Computations were done using MATLAB software with internal
implemented algorithms (Savitzky–Golay, Fourier transform, PLS) and self-written scripts.
The baseline correction algorithms based on extended multiplicative scattering correction:
RMie-EMSC created by Bassan et al. [45] and ME-EMSC created by Solheim et al. [40], were
used as supplemented by the authors. Reasonable parameter ranges, which after correction
provide spectra of good quality, were chosen by an experienced spectroscopist based on
knowledge of the optical properties of cells. The number of data sets for each method is
equal to the number of values of adjusted parameters in chosen ranges. After the baseline
correction step, the carbon dioxide spectral region was trimmed again. Before Principal
component analysis, spectra were normalized to the maximum value in each dataset.

2.5. Regression and Classification

The dependent variable Y used in regression task was coded as follows (−2, −1, 0, 1,
2) in accordance with the assumed cancer progression and metastasis character: benign
RWPE-1 cells, primary prostate cancer 22Rv1 cells, and metastatic cell lines in arbitrary
order (PC3, Du145, LNCaP). For the classification task, a matrix of cells membership to a
given class (codded as 0 if a cell did not belong and 1 if the cell did belong to a given class)
with dimensionality 48 objects (cells) by 5 variables (classes) was created. Based on the
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prediction of 5 different two-class models for each of the classes, the object was assigned to
a class with the highest predicted class membership.

2.6. Model Calibration and Validation

Creation of the model set used for calibration (internal validation) and independent
test set used for prediction power assessment (external validation) was done with the
Kennard and Stone algorithm [46]: 75% and 25% of samples were chosen independently
from each class to the model and test sets, respectively. The above approach gave 34 and
14 spectra in model and test sets, respectively. Model and test sets preprocessing were
done independently. Leave-one-out cross-validation (LOOCV) was used to estimate the
root mean square of cross-validation (RMSECV) for overfitting diagnosis in partial least
squares regression (PLSR)—internal validation. The most appropriate latent variable (LV)
number was chosen based on RMSECV as follows: in the range of LVs between 1 and 8, the
LV giving the lowest RMSECV was chosen, unless in this range local minimum followed
by two LVs higher than this minimum appeared—in this case, the LV number giving this
local minimum was taken for model creation. The most appropriate LV number in partial
least squares discriminant analysis (PLS-DA) was chosen based on accuracy values coming
from internal validation (LOOCV), as follows: in the range of LVs between 1 and 8, the LV
giving the highest accuracy was taken for model creation. Test RMSEP (root mean square
of prediction) for the independent test set (external validation) was calculated to obtain the
model prediction power in PLSR. The assignment of the sample to a class in classification
with PLS-DA was done with the maximum predicted value criterion; model prediction
power was assessed with accuracy values.

2.7. Description of Methods

State-of-the-art preprocessing methods that are used in IR spectroscopy were compared.

2.7.1. Baseline Correction

In the Savitzky–Golay second derivative (DER) method, two parameters must be
optimized; the first is associated with frame width, and the second with a polynomial
degree. A polynomial of a set degree is fitted to the frame with the proper width, and next,
the second derivative of this local polynomial is calculated [47]. The parameters range
selected for this work were polynomial degrees 2 and 3 and a window size of 19:29 points.

The rubber band (RB) baseline correction method requires optimization of inter-
vals between variables/frequencies. Between s points defining intervals, the minimum
point is found, and a straight line or spline is fitted [48]. Then it is subtracted from the
original data. Nine frequencies for intervals were chosen using spectroscopic knowl-
edge: 1001 cm−1, 1280 cm−1, 1302 cm−1, 1761 cm−1, 1977 cm−1, 2412 cm−1, 2825 cm−1,
2997 cm−1, and 3519 cm−1.

The polynomial fitting (POL) method is based on the fitting of a polynomial with a
chosen degree to a set of frequencies given by the user. In the next step, this polynomial
is subtracted from a spectrum. In our research, frequencies were the same as for the RB
method. A polynomial of degree 3:5 was chosen as optimal.

The asymmetric least squares smoothing (ALS) method relies on Whittaker smoother
baseline estimation and least squares deviations weighting. Optimization of two parame-
ters needs to be performed: a smoothing parameter λ and parameter p applied for weights
wi calculations (introduction of this parameter gives higher weights for negative resid-
uals (yi − zi) and lower weights for positive one). The above approach is expressed by
the equation:

S = ∑
i

wi(yi − zi)
2 + λ∑

(
∆2zi

)2
(1)

where: wi—weights (if yi > zi wi = p, if yi < = zi wi = 1−p), yi—signal, zi—rough signal [49].
Parameters which were chosen after optimization: p = 0.1, λ = 106:108.
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Resonant Mie scattering extended multiplicative signal correction (RMie-EMSC) is a
physics-based model for generating Resonant Mie scattering curves is coupled with the
extended multiplicative scattering correction to correct distorted infrared spectra [39,45].
For each experimental spectrum, the algorithm estimates the refractive index across all the
spectral ranges based on experimental data and reference spectrum. This is done in an
iterative manner where for each iteration, a multitude of RMie curves (for combinations
of physical parameters) is generated and decomposed with principal component analysis
to extract loadings matrix. It is used to perform correction and model reference spectrum
for potential further iterations. As a starting point, it can use either a reference Matrigel
spectrum or an average of the experimental signal being corrected. The parameters to
optimize are the choice of reference spectrum and the number of iterations. Reference
Matrigel spectrum and 5 iterations were found to be sufficient the remaining physical
parameters were set as recommended by Bassan et al. in Resonant Mie Scattering (RMieS)
EMSC correction guide [50].

Mie extinction extended multiplicative signal correction (ME-EMSC) is the most recent
improvement of RMie-EMSC in the form of open-source code [40], implementing a few
features [51] in terms of the way certain estimations are made, which was already described
in our recent publication [41]. It results in a faster and more stable algorithm with a ‘PreRun’
function for optimization of parameters. In this study, the Matrigel spectrum and default
parameters were set as optimal for baseline correction except for the lower and upper
ranges for scattering particle diameter, which were set to 2 and 8, respectively, to preserve
the same input parameters as for RMie-EMSC.

2.7.2. Normalization

Normalization to constant (CON) is one of the most frequently used methods of
normalization, where normalization is performed to the most stable band/variable [52]. In
the case of the data analyzed here, the Amide I band (1656 cm−1) was the most stable and
was chosen for normalization.

In the total sum normalization (TSN) method, each spectrum is divided by the sum
of its absorbances [52]. This method introduces an artificial correlation between variables
because it is dedicated to closer data normalization.

In the first step of probabilistic quotient normalization (PQN), a standard—mean
spectrum (xs)—is calculated, then the ratios of corresponding features of the spectrum (xi)
and standard are computed. In the second step, a scaling factor—median of the ratios—is
calculated. In the third step, spectra are divided by a corresponding scaling factor. This
method has one assumption that the majority of the individual spectra and standard ratios
are stable [43].

xn =
xi

median(xi/xs)
(2)

2.7.3. Denoising

The principle of the Eilers (EIL) method is the same as in the ALS baseline correction
method, with the difference that now the signal is estimated, rather than the baseline, and
therefore weights are equal to one [42]. The optimal smoothing parameter λ for analyzed
spectra was found to be 2:24.

In the Savitzky–Golay (SG) method, denoising is done by fitting the polynomial to a
set of points indicated by frame width. The fitting process is executed multiple times until
the moving window covers all spectral variables. The polynomial used in this method was
optimized to be a degree of 2:3, frame size of 11:29.

Fourier transform (FT) is based on the transition from the signal domain to the
frequency domain. Spectra are fitted by a series of sine and cosine functions, which
after summation, reconstruct the original signal [53]. The optimization is done by adjusting
the threshold used to reject high-frequency components related to noise. In our research,
the threshold—size of the window in which low frequencies are included was set at
100:320 points.
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3. Results and Discussion
3.1. Spectral Changes

In the first step, a comparison of the relative effect of preprocessing steps on the
spectral shapes was performed using principal component analysis (PCA). The first two
PCs covering 96% of variance are plotted in Figure 2.
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Figure 2. Principal component analysis exploration of the original data structure after application
of three preprocessing steps. Each point corresponds to the individual spectrum coming from the
original dataset on which unique combinations of the three steps were used. Subsections a, b, and c
present the same PC projection but are colored according to a single preprocessing type: (a) denoising,
(b) baseline correction, and (c) normalization. For better understanding, a set of spectra on which
combinations of DER baseline correction method with other preprocessing steps are marked with
a circle.

According to PCA, the three preprocessing steps can be ranked in their relative in-
fluence on the spectra, i.e., baseline correction > normalization > denoising. Figure 2a
presents the impact of the denoising step on the data. Combinations for all denoising
methods were in the same PC1 and PC2 space, which indicates that preprocessing step
had no significant influence on the shape of the spectra. However, this was a high SNR
dataset since 256 scans were co-added, and spectra averaging was performed. In order to
observe the effect of noise, we simulated a noisier dataset by incorporating noise levels
corresponding to 32 scans (based on our previous work [27]) into the averaged spectra.
Noise addition has very little influence on PCA preprocessing steps ranking, as can be seen
in Figure S2 in the Supplementary Materials. Exploration of baseline correction methods
(Figure 2b) clearly shows the separation of the Derivative (DER) baseline correction method
from the others in PC1 (90%). This deviation is caused by a significant change in the shape
of spectra and is an expected and desired feature of derivatives. The next two signifi-
cantly outlying methods are the resonant Mie extended multiplicative signal correction
(RMie-EMSC) and Mie extinction extended multiplicative signal correction (ME-EMSC),
and they can be distinguished from the remaining baseline correction methods in the PC2
(7%). This result was less expected, but RMie-EMSC and ME-EMSC are physics-based
models and have more assumptions about the underlying data structure and, therefore,
altered them in a more significant matter. The widest point spread was observed for the
polynomial (POL) method in PC2 (7%)—it points out that the shape of spectra after POL
baseline correction was highly altered. Asymmetric least squares (ALS) and rubber band
(RB) partially overlapped, but ALS correction also gave spectra with shapes different than
other baseline correction methods. Figure 2c shows the influence of the normalization pre-
processing step on the data. It could be observed that probabilistic quotient normalization
(PQN) and normalization to constant (CON) differed the most from each other. Total sum
normalization was somewhat in between but it was more similar to PQN. POL combined
with CON also gave the most different shape of spectra—points were located in space free
from other combinations.

3.2. PLS Discriminant Analysis

Baseline correction was found to have the highest influence on the spectral shapes,
but this does not necessarily mean the highest influence on the classification capability
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of PLS-DA. The information critical for classification may be distributed elsewhere and
might not be affected by this correction. In order to investigate the relative influence of the
preprocessing steps, a PLS-DA was performed (Figure 3) on the original, high SNR dataset
(Figure 3a,c), and on a noisy dataset (Figure 3b,d). Since PLS results depend heavily on the
chosen number of latent variables (LVs), the accuracy of the classifier was plotted against
the number of LVs (from 1 to 30 for model creation).
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For the original data (Figure 3a), most of the combinations were placed between
10 and 30 LVs with an accuracy higher than 0.8. However, LVs in this interval can be risky
because more unwanted information (water vapor interference) or noise can be used by
the model and make it less robust. The best combinations of methods that gave very high
internal accuracy with the smallest reasonable LVs number (marked with the red circle in
Figure 3a) contains 12 combinations listed in Table 1. The FT method combined with DER
and CON/TSN normalization method is one of the most frequent combinations, which
gave high internal accuracy for LV 6. Beta coefficients (colored the same as cell classes)
for one of the best combinations (which gives high external validation accuracy equal
to 0.86) marked with green color in Table 1 are shown in the Supplementary Materials
in Figure S3a. The differences were clearly visible for proteins Amide I and Amide II
(1500–1700 cm−1), Amide A and Amide B (3000–3400 cm−1); nucleic acids (944–1140 cm−1)
and CH2/CH3 (2800–3000 cm−1) spectral regions—in-depth discussion of this can be found
elsewhere [23]. Following this, accuracy values for external and internal validation for
chosen LV obtained for each combination were compared. The high number of methods
gives accuracy values for external and internal validation above 0.8. However, some
methods result in internal accuracy above 0.8, but they gave a poor prediction for the
independent test set—below 0.2. The model was overfitted, which resulted from a small
number of samples, i.e., PQN method use mean spectrum as standard; therefore, this
method is fragile for spectral distortion, which can occur after the first preprocessing step—
baseline correction. Assuming that the test set contains a small number of samples, if certain
spectra are being distorted, the majority of the individual spectra and standard ratios can
be unstable. The method which gives the worst external accuracy and the best internal
accuracy values for original data is a combination of FT/POL and PQN (marked with a
green circle in Figure 3c). Spectra and beta coefficients for this combination are shown in
Supplementary materials (Figure S4a). Denoising methods had no significant influence
on classification stability for this dataset. However, data with added noise showed that
classification performance was worse than for original data (Figure 3b,d), as was expected.
Now three clusters of method combinations could be observed. In Figure 3b, most of the
combinations were placed between accuracy equals 0.4–0.85, whereas the original data
had accuracy intervals of 0.8–0.94. In noisy data case, there were 13 combinations which
gave the best accuracy value with a reasonable number of LV equal to six (marked with a
circle in the Figure 3b and listed in Table 1), consisting of SG denoising (the most frequent
method), EIL, and FT, with the ALS baseline correction method and the CON normalization
method. One of the combinations with the highest internal and external accuracy values
(marked with green color in Table 1) is presented in Supplementary Materials (Figure S3b).
Beta coefficients for data with added noise are different with the same spectral regions
as for original data (Figure S3b in Supplementary Materials). Comparison of accuracy
values for external and internal validation (Figure 3d) shows that there were two clusters
of combinations, but accuracy was below 0.8 for both validations. In comparison to the
original data (Figure 3c), the smaller number of methods provided external and internal
accuracy values higher than 0.8. The most overfitted model was the combination of FT/RB
and PQN (presented in Supplementary materials Figure S4b). Furthermore, the number
of combinations in which accuracy was above 0.8 for external and internal validation
was inspected (Figure 3e) to find which combinations were the most robust. Baseline
correction methods had a crucial impact on accuracy values. In the case of original data,
the DER method was found to be the most stable and achieved accuracy above 0.8 most
frequently. ALS method is the most robust baseline correction method for noise-added
data sets. This change in the best-performing baseline correction method was due to the
fact that each derivation of signal adds a certain amount of noise. For high SNR, this was
acceptable; however, if the starting SNR is not that great, the derivation of added noise
lowers the capability of the models. Normalization methods had a smaller impact on
PLS-DA classification. The most stable were combinations with CON and TSN and, while
PQN normalization was the most unstable.
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Table 1. The best combination of methods gave very high internal accuracy with the smallest reasonable LVs (marked with
the red circle in the left panel in Figure 3). Methods giving the best external validation values for original and raw data were
marked with green color.

Denoising Adjusted Parameter Baseline Adjusted Parameter Normalization Internal
Accuracy

External
Accuracy

Original Data

Fourier frame 100 Second
derivative Poly, frame 2, 27 CONSTANT 0.94 0.86

Fourier frame 100 Second
derivative Poly, frame 2, 29 CONSTANT 0.94 0.79

Fourier frame 100 Second
derivative Poly, frame 3, 27 CONSTANT 0.94 0.86

Fourier frame 100 Second
derivative Poly, frame 3, 29 CONSTANT 0.94 0.79

Fourier frame 100 Second
derivative Poly, frame 2, 23 TSN 0.94 0.86

Fourier frame 100 Second
derivative Poly, frame 2, 25 TSN 0.94 0.86

Fourier frame 100 Second
derivative Poly, frame 2, 27 TSN 0.94 0.86

Fourier frame 100 Second
derivative Poly, frame 2, 29 TSN 0.94 0.86

Fourier frame 100 Second
derivative Poly, frame 3, 23 TSN 0.94 0.86

Fourier frame 100 Second
derivative Poly, frame 3, 25 TSN 0.94 0.86

Fourier frame 100 Second
derivative Poly, frame 3, 27 TSN 0.94 0.86

Fourier frame 100 Second
derivative Poly, frame 3, 29 TSN 0.94 0.86

Noise Added Data

Fourier frame 140 ALS λ, p 6, 0.1 CONSTANT 0.91 0.86

Fourier frame 220 ALS λ, p 6, 0.1 CONSTANT 0.91 0.93

Eilers λ 6 ALS λ, p 6, 0.1 CONSTANT 0.91 0.86

SavitzkyG Poly, frame 2, 15 ALS λ, p 6, 0.1 CONSTANT 0.91 0.93

SavitzkyG Poly, frame 2, 17 ALS λ, p 6, 0.1 CONSTANT 0.91 0.86

SavitzkyG Poly, frame 2, 19 ALS λ, p 6, 0.1 CONSTANT 0.91 0.93

SavitzkyG Poly, frame 2, 21 ALS λ, p 6, 0.1 CONSTANT 0.91 0.93

SavitzkyG Poly, frame 2, 23 ALS λ, p 6, 0.1 CONSTANT 0.91 0.93

SavitzkyG Poly, frame 3, 15 ALS λ, p 6, 0.1 CONSTANT 0.91 0.93
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Table 1. Cont.

Denoising Adjusted Parameter Baseline Adjusted Parameter Normalization Internal
Accuracy

External
Accuracy

SavitzkyG Poly, frame 3, 17 ALS λ, p 6, 0.1 CONSTANT 0.91 0.86

SavitzkyG Poly, frame 3, 19 ALS λ, p 6, 0.1 CONSTANT 0.91 0.93

SavitzkyG Poly, frame 3, 21 ALS λ, p 6, 0.1 CONSTANT 0.91 0.93

SavitzkyG Poly, frame 3, 23 ALS λ, p 6, 0.1 CONSTANT 0.91 0.93

A general comparison between internal and external accuracy values for original and
noise added data (Table 1) reveals that these values for noise added data are much closer to
each other than for raw data. Noise added to raw data can mask artifacts like water vapor
present in the spectra and other spectral distortion.

As we presented above, baseline correction methods have a crucial impact on clas-
sification results. Therefore, in Figure 4, we decided to compare three interesting cases
of classification results for baseline correction methods. DER gives very high accuracy
values for external and internal validation in the case of original data; however, for noise
added data, accuracy values were moved in the direction of lower values. For original
and noise added data ME-EMSC seemed to be the most stable and gave high internal
and external accuracy values for both original and noise added data sets, while RMie-
EMSC gave accuracy values that were spread along the external accuracy validation x-axis.
Therefore, ME-EMSC was more stable in comparison to RMie-EMSC. Results for DER
were also spread along the x-axis, but as it was related to the high number of adjusted
parameters—some of the adjusted parameters could give higher data distortion and worse
classification results. This comparison for the remaining baseline correction methods can
be seen in the Supplementary Materials (Figure S5).

3.3. PLS Regression

Classification is often the most desirable outcome of an IR experiment, but in many
situations, a regression to an independent variable is of interest. Moreover, very good
classification (as in this example) can be reached with a large number of combinations, and
care must be taken that the discrimination is not based on spectral artifacts amplified by a
given preprocessing method. A better insight into model consistency is offered by PLSR.
In Figure 5a,b, relations between model error values of internal validation (RMSECV) and
external validation (RMSEP) for original and noise added data, respectively, are presented.
In the case of original data, most of the combinations were placed close to 0.5; in the
case of noise added data, some methods give values close to 0.5, but the center of gravity
values were moved between 1.5 and 2 for internal validation and 1 for external validation.
Relations between RMSECV and RMSEP for baseline correction methods are presented
in Figure S6 in Supplementary Materials. The robustness of methods was investigated
(Figure 5c), and 10% of all combinations giving the lowest RMSEP and RMSECV values
were compared. For the original data, the highest number of combinations giving RMSEP
and RMSECV values below 0.76 is achieved by the DER baseline correction method and
TSN normalization method. However, RB, POL, and ME-EMSC were also located in this
group of combinations. Noise added data, compared with original data, shows different
trends—POL baseline correction method and TSN normalization method combinations
achieve RMSEP and RMSECV lower than 1.2 the most frequently. ALS, RB, and ME-EMSC
baseline correction methods also are placed below this threshold. Similarly like in the
classification task, combinations with DER for noise added data seemed to be unstable in
contrast to the original data.
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For a more general overview, we also compared the mean RMSECV and RMSEP
calculated for all methods on each preprocessing step with optimal LVs allowed by CV
(Figure 6). A similar comparison for PLS-DA is presented in Figure S7 in Supplementary
Materials. For the original data (Figure 6a), the baseline correction method gave the lowest
mean RMSECV, and one of the lowest mean RMSEP is achieved with DER. The RMie-
EMSC gives one of the highest mean RMSECV and RMSEP with a high standard deviation
from this value. ME-EMSC gives better PLSR performance, especially on the external
validation. RB and ALS methods are quite stable and give similar results in internal and
external validation. Performance of the POL method is the worst in external validation in
the case of mean RMSEP, but the standard deviation was highly variable, which means
that this method was very sensitive for adjusting of polynomial degree, which should be
done very carefully. In the case of the normalization preprocessing step, the highest mean
RMSECV and its standard deviation were achieved by CON normalization, whereas TSN
and PQN had a slightly better performance. Similar to classification in regression PQN
method, which gives relatively good mean RMSECV values, also gave the worst result
for external validation. It can be concluded that in the case of small dataset analysis, this
method was the most sensitive for spectra distortions which could be passed or introduced
in the preceding preprocessing steps. Therefore, after PQN normalization of such dataset,
spectra become similar to each other within a given dataset (model or independent test
set), and the model was unable to classify independent test samples correctly.



Cells 2021, 10, 953 13 of 18

Cells 2021, 10, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 5. Comparison of RMSECV and RMSEP values for: (a) original data and (b) noise added data. Each dot on the plot 
presents a value for one combination of preprocessing methods. (c) Histogram of 10% of all combinations giving the lowest 
RMSECV and RSEMP for the original and noise added data. 

For a more general overview, we also compared the mean RMSECV and RMSEP cal-
culated for all methods on each preprocessing step with optimal LVs allowed by CV (Fig-
ure 6). A similar comparison for PLS-DA is presented in Figure S7 in Supplementary Ma-
terials. For the original data (Figure 6a), the baseline correction method gave the lowest 
mean RMSECV, and one of the lowest mean RMSEP is achieved with DER. The RMie-
EMSC gives one of the highest mean RMSECV and RMSEP with a high standard deviation 

Figure 5. Comparison of RMSECV and RMSEP values for: (a) original data and (b) noise added data. Each dot on the plot
presents a value for one combination of preprocessing methods. (c) Histogram of 10% of all combinations giving the lowest
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Figure 6. Comparison of PLSR mean RMSECV and RMSEP errors calculated for all methods on each preprocessing step
(model with optimal LVs allowed by CV was chosen) for (a) original data and (b) data with added noise. The standard
deviation of all models that used a given method (from the current preprocessing step) in combination with other methods
(from other preprocessing steps) was marked with error bars.
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In the case of data with added noise (Figure 6b), it could be seen that all of the RMSECV
values were significantly increased. The baseline method that suffered the most from noise
was DER, which was not surprising since each order of DER adds more noise to the dataset,
so it needs a high-quality input. ALS, RB, and ME-EMSC were stable and gave similar
mean RMSECV and RMSEP values. Comparable to original data, POL and RMie-EMSC
gave the highest standard deviation of the RMSEP. Normalization methods did not change
mean RMSECV qualitatively, but PQN gave the worst mean RMSEP values, like in the case
of original data. The choice of denoising method did not have a significant impact on the
outcomes of PLSR, but it could be caused by an increase in general model robustness. The
EIL method, which is not popular in the spectroscopy data analysis field, gave a similar
result to other denoising methods. Overall, all types of analyses were highly influenced by
the baseline correction method chosen, a much smaller effect from normalization, and the
least from denoising. IR is a relatively high SNR technique, and denoising did not play a
huge role unless the technique is pushed to its limits, e.g., two or four scans per spectrum
or with high-speed imaging with QCLs [29,54].

4. Conclusions

The comparison of examined preprocessing methods determined the baseline correc-
tion step to have the dominant influence on data structure, and therefore, on the classi-
fication and regression results of analyzed spectra of cells. The best baseline correction
method which gave the lowest RMSECV and RMSEP in original data is DER; however, this
method also introduced the biggest changes in classification and regression performance
for noisy data. The most stable baseline correction method in PLS-DA for noise added data
was ALS, and it was also one of the most stable methods in PLSR. A new version of the
physical model-based baseline correction method of ME-EMSC compared to well-known
RMie-EMSC appeared to be more stable and also gave lower mean RMSECV and RMSEP.
The second important preprocessing step is data normalization. For the original and noisy
data, normalization to a constant and TSN gave very good results. TSN and CON are
commonly used in IR spectroscopy, but sometimes they suffer from introducing additional
spectral correlations. The PQN method is relatively new to the spectroscopy field and
could be free of this limitation, but it has additional requirements which are not always
met in small datasets. The EIL method, which is new in FT-IR spectroscopy data denoising,
gave similar performance to the remaining denoising methods. However, in the case of the
analyzed high SNR data with homoscedastic noise, the denoising step had little influence
on improving the classification and regression performance. Therefore, further exploration
of the EIL method denoising potential should be done with a lower SNR data set.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10040953/s1, Figure S1: Spectra of cell lines marked with individual colors after CO2
removal for (a) original data; (b) data with added noise. Figure S2: Principal Component Analysis
exploration of the data with added noise after application of the following preprocessing approach
denoising → baseline correction → normalization; Figure S3: Spectra for the test set and beta
coefficients for the best combination of methods which gave very high internal accuracy with the
smallest reasonable LVs (marked with a red circle in the left panel in Figure S3: (a) original data and
(b) noise added data; Figure S4: Spectra for the test set and beta coefficients for the worst combination
of methods which gave very high internal accuracy and the worst external accuracy (marked with a
green circle in the left panel in Figure 3: (a) original data and (b) noise added data; Figure S5: Internal
and external accuracy values comparison for the best LVs for (a) original data and (b) noise added
data, for baseline correction methods: ALS, polynomial, rubber band; Figure S6: Comparison of
RMSECV and RMSEP values for the best LVs for (a) original data and (b) noise added data. Each
dot on the plot presents a value for one combination; Figure S7: Comparison of PLS-DA accuracies
calculated for all methods on each preprocessing step (model with optimal LVs allowed by CV was
chosen) for (a) original data; (b) data with added noise.
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