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Abstract 

Background:  As the second cause of cancer death in women, breast cancer has become a worldwide priority. Previ-
ous studies based on tumour cell lines demonstrated that arachidonic acid (AA) and its metabolites promote cancer 
development. However, recent studies based on the tumour microenvironment revealed the antitumour effect of AA 
metabolism. Therefore, it is essential to reevaluate and elucidate the effect of AA metabolism on breast cancer.

Methods:  Raw data were obtained from The Cancer Genome Atlas (TCGA), Molecular Taxonomy of Breast Cancer 
International Consortium (METABRIC) and Gene Expression Omnibus (GEO) databases. The AA metabolic score of 
each sample, enrichment of differentially expressed genes (DEGs) and immune infiltration were analysed by bioinfor-
matics. Cox regression and least absolute shrinkage and selection operator regression were performed to establish an 
AA metabolism prognostic signature. An AA metabolism related nomogram for predicting the survival probability of 
patients was built.

Result:  AA metabolism was related to good prognosis in the TCGA-BRCA and METABRIC cohort. DEGs enrichment 
suggested that the upregulated DEGs of the high AA metabolism group were significantly enriched in immune-
related pathways. The high AA metabolism group was infiltrated with more CD8+ T cells and activated NK cells. An AA 
metabolic signature (SPINK8, KLRB1, APOD and PIGR) was constructed for breast cancer prognosis.

Conclusion:  The study indicated that a high level of AA metabolism may be a biomarker for good prognosis in 
breast cancer, providing a possible explanation for the discouraging effect of cyclooxygenase inhibitors in cancer 
therapy. Moreover, a novel AA metabolic prognostic signature was constructed in the study, providing a novel strat-
egy for breast cancer.
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Introduction
As the second cause of cancer death in women, breast 
cancer has aroused great attention [1, 2]. With the 
increase in body weight and decline in the fertility rate, 
the incidence rates of breast cancer are gradually increas-
ing by 0.5% per year [1, 3]. Current treatments based on 
the clinical subtype of breast cancer, including endocrine 
therapy, anti-HER2 therapeutic agents and other thera-
pies, have greatly benefited many breast cancer patients 
[4, 5]. However, the complex heterogeneity of breast 
cancer has resulted in numerous patients responding 
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negatively to existing therapies and developing a poor 
prognosis [1, 2, 4]. Therefore, it is urgent to clarify the 
development mechanism of various subtypes of breast 
cancer and develop reliable tools for the guidance of indi-
vidualized treatment.

Arachidonic acid (AA) is a polyunsaturated fatty acid, 
that is widely present in mammalian cell membranes, 
and is free from cell membranes after phospholipase A2 
activation by neural signals [6]. AA can be metabolized 
into hydroxyl-eicosapentaenoic acid, epoxy-eicosatrie-
noic acids, prostaglandin and other active metabolites 
through several pathways: cytochrome P450, lipoxyge-
nase and cyclooxygenase (COX) pathways [6–8]. Previ-
ous studies based on tumour cell lines suggested that AA 
and its metabolites promote the development of tumours 
by regulating the processes of cellular carcinogenesis, 
progression and differentiation, including cellular prolif-
eration, chemotaxis, mitosis, migration and apoptosis [6, 
9, 10]. Therefore, inhibitors of AA metabolism pathways, 
particularly COX inhibitors, has attracted great attention 
as promising antitumour agents. However, the results 
from clinical studies showed that the effectiveness of 
COX inhibitors in cancer was not encouraging [11–13].

Recent studies of the tumour microenvironment found 
that AA played an important synergistic role in the 
antitumour effect. One study found that ACSL4, a key 
inducer of ferroptosis, enhanced the ferroptosis sensitiv-
ity of breast cancer cells in an AA-dependent manner, 
and overexpression of ACSL4 was positively related to 
the sensitivity to ferroptosis induced by RSL3 in breast 
cancer cells [14]. Moreover, recent research found that 
AA played an antitumour role in three ways: promoting 
tumour cell ferroptosis induced by ACSL4, elevating the 
antitumour CD8+ T-cell response and sensitizing tumour 
cells to checkpoint therapy [15]. Therefore, it is quite 
necessary to reevaluate the effect of AA metabolism on 
breast cancer.

This study analysed the relationship between the AA 
metabolism level and prognosis in breast cancer. Then, 
the potential functions of differentially expressed genes 
(DEGs) and immune infiltration were evaluated. Finally, 
an AA metabolic prognostic signature and predictive 
nomogram were built and validated. The results of the 
current study indicated that a high level of AA metabo-
lism is related to a better prognosis and more active 
immune infiltration.

Materials and methods
Data processing
The transcriptome data and clinical and mutation infor-
mation were retrieved from The Cancer Genome Atlas 
(TCGA) (http://​cance​rgeno​me.​nih.​gov/) and Molecular 
Taxonomy of Breast Cancer International Consortium 

(METABRIC, http://​molonc.​bccrc.​ca/​apari​cio-​lab/​resea​
rch/​metab​ric/) databases. Information on the TCGA-
BRCA and METABRIC cohorts is shown in Tables 1 and 
2, respectively. The framework of study design was dis-
played in Fig. 1.

Calculation of the AA metabolism‑related score
Gene set variation analysis (GSVA) can estimate the 
activity of certain pathways based on transcriptomic 
data in a nonparametric and unsupervised manner 
[16]. GSVA was performed to enrich the AA metabo-
lism genes and calculate the AA metabolic scores. 
Fifty-eight AA metabolism genes were obtained from 

Table 1  Clinical information and its association with AA 
metabolism in the TCGA-BRCA cohort

Characteristics Low 
(N = 546)

High 
(N = 545)

Total 
(N = 1091)

P-value

Age 0.20

  < 60 301 (27.61%) 278 (25.50%) 579 (53.12%)

  ≥ 60 245 (22.48%) 266 (24.40%) 511 (46.88%)

Pam50 3.9e-25

  Normal 6 (0.55%) 34 (3.12%) 40 (3.67%)

  LumA 213 (19.52%) 351 (32.17%) 564 (51.70%)

  LumB 151 (13.84%) 64 (5.87%) 215 (19.71%)

  Basal 134 (12.28%) 56 (5.13%) 190 (17.42%)

  Her2 42 (3.85%) 40 (3.67%) 82 (7.52%)

Stage 0.16

  I/II 407 (38.14%) 393 (36.83%) 800 (74.98%)

  III/IV 124 (11.62%) 143 (13.40%) 267 (25.02%)

Table 2  Clinical information and its association with AA 
metabolism in the METABRIC cohort

Characteristics High 
(N = 952)

Low 
(N = 952)

Total 
(N = 1904)

P-value

Age 0.38

  < 60 431 (22.64%) 411 (21.59%) 842 (44.22%)

  ≥ 60 521 (27.36%) 541 (28.41%) 1062 
(55.78%)

Pam50 2.3e-35

  Normal 49 (2.57%) 5 (0.26%) 54 (2.84%)

  LumA 400 (21.01%) 198 (10.40%) 598 (31.41%)

  LumB 287 (15.07%) 477 (25.05%) 764 (40.13%)

  Basal 90 (4.73%) 154 (8.09%) 244 (12.82%)

  Her2 126 (6.62%) 118 (6.20%) 244 (12.82%)

Stage 0.98

  I/II 609 (43.56%) 665 (47.57%) 1274 
(91.13%)

  III/IV 60 (4.29%) 64 (4.58%) 124 (8.87%)

http://cancergenome.nih.gov/
http://molonc.bccrc.ca/aparicio-lab/research/metabric/
http://molonc.bccrc.ca/aparicio-lab/research/metabric/
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Kyoto Encyclopedia of Genes and Genomes (KEGG) 
gene set collections on the Molecular Signatures 
Database download page (https://​www.​gsea-​msigdb.​
org/​gsea/​downl​oads.​jsp). The median was set as the 

threshold for dividing the high and low AA metabo-
lism groups. Kaplan-Meier (KM) curves were drawn 
to evaluate the association of AA metabolism with 
prognosis.

Fig. 1  The framework of study design. TCGA, The Cancer Genome Atlas; AA, Arachidonic acid; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
GSVA, Gene Set Variation Analysis; METABRIC, Molecular Taxonomy of Breast Cancer International Consortium; LASSO, Least absolute shrinkage and 
selection operator; ScRNA-seq, Single-cell RNA sequencing

https://www.gsea-msigdb.org/gsea/downloads.jsp
https://www.gsea-msigdb.org/gsea/downloads.jsp
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Screening and functional annotation of DEGs
DEGs were screened by the limma R package. P < 0.05 
and fold change (FC) > 3/2 were defined as the selection 
criteria for screening the upregulated DEGs, and P < 0.05 
and FC > 2/3 were defined as the selection criteria for 
screening the downregulated DEGs.

The ClusterProfiler package was used to perform Gene 
Ontology (GO) enrichment and KEGG enrichment. 
P < 0.05 (Fisher’s precision probability test) was consid-
ered significant.

Evaluating immune cell infiltration
The abundance of immune cells was assessed by CIBER-
SORT and the relationship between the AA metabolic 
score and immune cell infiltration was analysed by Spear-
man’s correlation coefficient.

Mutation profile analysis
The Maftools package was used to sort the mutation data. 
First, the mutation profiles of key genes in the AA meta-
bolic pathways were analysed using data from the TCGA 
cohort. Next, the mutation profiles of the high and low 
AA metabolism groups were analysed.

Development of the AA metabolism related signature 
(AAMRS)
The AAMRS was constructed based on the TCGA-
BRCA cohort. Univariate Cox regression analysis was 
performed to identify genes related to overall survival 
(OS) from DEGs between high-and low- AA metabo-
lism group. Next, least absolute shrinkage and selection 
operator (LASSO) regression was used to select candi-
date genes. Then, the regression coefficient and multiple 
regression model of genes associated with survival were 
determined by multivariate Cox regression. After these 
steps, the AAMRS was established: Risk score = Σn1 
coefi*xi. The median score was set as the threshold for 
dividing the high and low risk groups by the AAMRS. 
KM curves were drawn based on the TCGA cohort for 
internal AAMRS validation and the METABRIC cohort 
for external AAMRS validation.

Construction of the AAMRS related nomogram
Multivariate Cox analysis of AAMRS grouping and clini-
cal factors were performed to screen independent prog-
nostic factors. Subsequently, age, stage and AAMRS 
group served as parameters to construct the AAMRS 
related nomogram by the regplot package. Furthermore, 
calibration curves were applied to visualize the proximity 
between the predicted and factual OS. KM curves were 
drawn evaluate the association of AAMRS related nom-
ogram with prognosis in the TCGA-BRCA and METE-
BRIC cohorts.

AA metabolic score in the single‑cell RNA sequencing 
(scRNA‑seq) cohort
ScRNA-seq analysis was performed based on GSE176078 
from the Gene Expression Omnibus (GEO) dataset 
((https://​www.​ncbi.​nlm.​nih.​gov/​geo/). The AA metabolic 
score was calculated by GSVA and AAMRS distribution 
were visualized by the Seurat package.

Statistical analysis
All data analyses were conducted with SPSS 22.0 or R 
4.0.0. Statistical significance was determined by two-
tailed t test or one-way ANOVA. The chi-square test was 
applied to analyse the correlation of categorical data.

Result
AA metabolism in breast cancer
First, the AA metabolic scores of normal and breast 
cancer samples were compared. Analysis of the TCGA-
BRCA cohort showed that the AA metabolism score of 
normal tissues was significantly higher than that of breast 
cancer tissues (Fig. 2A). The analysis of the expression of 
58 AA metabolism genes expression showed that 10.3% 
(6/58) of genes were highly expressed in breast cancer, 
36.2% (21/58) of genes had no expression difference, and 
53.4% (31/58) of genes were expressed at low levels in 
breast cancer (Fig. 2B).

Then, the association between clinical factors and 
AA metabolism in breast cancer patients was explored 
(Tables  1 and 2). The AA metabolic level was closely 
related to the breast cancer PAM50 grouping. Moreover, 
AA metabolism was most active in normal breast cancer 
and most inactive in basal breast cancer (Fig.  3A). KM 
analysis showed that the high AA metabolism group had 
a better prognosis internally (Fig. 3B). To verify the pre-
dictive performance of AA metabolism, KM analysis in 
the METABRIC cohort was also performed. The OS of 
the high AA metabolism group was consistently higher 
than that of the low AA metabolism group (Fig.  3C). 
Considering that there was a significant difference in AA 
metabolism in different PAM50 genotypes, multivariate 
Cox regression analysis was performed, suggesting that 
the AA metabolic score served as an independent prog-
nostic factor in both cohorts.

Subsequently, univariate Cox regression analysis was 
performed to identify survival related genes from 58 
AA metabolism genes. Seven good prognostic genes 
and 1 poor prognostic gene were identified (Supplement 
Table  1). However, the good prognostic genes were not 
concentrated on single downstream AA metabolism 
pathway (Supplement Fig, 1). suggesting that the effect 
of AA metabolism on breast cancer maybe not realized 
by single AA metabolite and the underlying mechanism 
maybe complex.

https://www.ncbi.nlm.nih.gov/geo/
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These results indicated that a high level of AA metab-
olism might be a biomarker of good prognosis in breast 
cancer and the underlying mechanism remain to be 
explored.

Identification of DEGs and functional annotations
Regarding the DEGs, 437 upregulated DEGs and 398 
downregulated DEGs were screened in the high AA 
metabolism group (Fig. 4A and B).

Next, functional annotations of DEGs was per-
formed. The upregulated DEGs of the high AA metab-
olism group were mainly enriched in immune-related 
pathways. The KEGG pathways were “Staphylococcus 

aureus infection”, “phagosome”, “Th1 and Th2 cell differ-
entiation” and “Th17 cell differentiation” (Fig. 5A). GO 
analysis showed that the most significantly enriched 
pathways were “leukocyte migration” in biological pro-
cess (BP), “collagen−containing extracellular matrix” in 
cellular component (CC), and “receptor ligand activ-
ity” in molecular function (MF) (Fig.  5B-D). For the 
downregulated DEGs, the functional annotations were 
related to cellular differentiation and progression. 
The KEGG pathways were “Cell cycle”, “Oocyte meio-
sis”, “Cellular senescence”, etc. (Fig.  5E). GO analysis 
showed that the most significantly enriched pathways 
were “organelle fission” in BP, “chromosomal region” in 
CC, and “chromatin binding” in MF (Fig. 5F-H).

Fig. 2  AA metabolism is more inactive in breast cancer tissues. A Scores of AA metabolism in normal and breast cancer tissues. B Heatmap of AA 
metabolism gene expression in normal and breast cancer tissues. * P < 0.05, ** P < 0.01, and *** P < 0.001
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High enrichment of immune-related pathways and low 
enrichment of cancer cell progression pathways may be 
the underlying cause of better OS in the high AA metab-
olism group.

The association between AA metabolism and infiltration 
of immune cells
Given that the functional enrichment analysis results 
suggested that AA metabolism was associated with the 

Fig. 3  High level of AA metabolism is related to good prognosis. A The AA metabolic level was the highest in normal breast cancer and the lowest 
in basal breast cancer, **** P < 0.001. B KM curve of the AA metabolism group in the TCGA-BRCA cohort; P was determined by a score test using the 
survival package. C KM curve of the AA metabolism group in the METABRIC cohort; P was determined by a score test using the survival package. 
D The forest plot of the TCGA-BRCA cohort showed that the AA metabolism score was linked to risk. E The forest plot of METABRIC cohort showed 
that the AA metabolism score was inversely associated with risk
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Fig. 4  Identification of DEGs between the AA metabolism groups. A Volcano plot of DEGs. B Heatmap of DEGs; the change from red to blue 
represents a gradual decrease in relative gene expression
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Fig. 5  Functional annotation by KEGG and GO enrichment. A KEGG pathways of upregulated DEGs. B-D GO pathways of upregulated DEGs. E 
KEGG pathways of downregulated DEGs. F-H GO pathways of upregulated DEGs
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immune response in the tumour microenvironment, the 
relationship between AA metabolism and the infiltration 
of immune cells was analysed. Scores of AA metabolism 
were positively correlated with the expression of plasma 
cells, CD8+ T cellss, activated NK cells, etc. Scores of AA 
metabolism were negatively correlated with resting NK 
cells, macrophages, eosinophils, etc. (Fig. 6).

The mutation profile of AA metabolism
The mutation profile related to AA metabolism was thor-
oughly analysed in the TCGA-BRCA cohort (Fig.  7). In 
the profile of key genes involved in the AA metabolism 
pathway, PLA2G4A was mutated most frequently (14.9%), 
followed by PTGS2 (11.9%), PLA2G6 (10.4%) (Fig.  7A). 
Then, the mutation burden of the two groups was com-
pared. TP53 was mutated more frequently in the low AA 
metabolism group (Fig. 7B), while PIK3CA mutated more 
frequently in the high AA metabolism group (Fig. 7C).

AAMRS construction and validation
To construct the AAMRS, univariate Cox regression 
screened 165 OS-related genes from DEGs between 
high- and low- AA metabolism group. To avoid overfit-
ting the AAMRS, LASSO regression analysis (Fig.  8A, 
B) and multivariate Cox regression (Fig.  8C) were fur-
ther performed. Finally, 4 genes were identified to 
establish the AAMRS: Risk score = 0.17661*SPINK8–
0.26264*KLRB1–0.09641*APOD -0.0832*PIGR.

The median of AAMRS divided patients into two risk 
subgroups (Fig.  8D). Then, the predictive performance 
of the AAMRS was validated using KM survival curves. 
The survival probability of patients in the high AAMRS 
risk group was significantly poorer in the TCGA-BRCA 
cohort (Fig. 8E). The KM survival curves in the META-
BRIC cohort showed consistent results with those in the 
TCGA-BRCA cohort (Fig. 8F).

Nomogram variable screening, construction and validation
Multivariate Cox regression was performed to select the var-
iables for forest plot (Fig. 9A, B). According to the forest plot, 
age, tumour stage and AAMRS group could serve as inde-
pendent prognostic factors. Then, a novel predicting nomo-
gram was built, with age, tumour stage and AAMRS group 
as parameters (Fig. 10A). The calibration curves showed that 
the AAMRS related nomogram accurately predicted the 
survival probability (Fig. 10B). The KM survival curves con-
firmed the predictive ability of the nomogram in the TCGA-
BRCA (Fig. 10C) and METABRIC cohorts (Fig. 10D).

ScRNA‑seq revealed AA metabolic characteristics 
and AAMRS distribution in breast cancer
The AA metabolic characteristics and prognostic gene 
expression characteristics of the scRNA-seq data from 

GSE176078 were analysed (Fig. 11A). The results showed 
that AA metabolism was not cell specific and widely 
existed in different cell types (Fig. 11B). For the AAMRS, 
SPINK8 and PIGR were mainly expressed in some epi-
thelial cells, KLRB1 was widely expressed in T cells, and 
APOD was expressed in mesenchymal, endothelial and 
epithelial cells (Fig. 11C-F).

Discussion
Breast cancer consists of different heterogeneous sub-
types, and each subtype has its own biological and clini-
cal characteristics [17]. One of the current hotspots in 
breast cancer is the discovery of reliable prognostic bio-
markers to identify high-risk breast cancer patients who 
could benefit from intensive treatment [18]. The rapid 
progression of genome, transcriptome and bioinformat-
ics approaches has advanced the process of cancer bio-
marker discovery and personalized cancer treatment over 
the last decade, providing an aid to treatment decisions 
in cancer [19–21]. By utilizing a bioinformatics approach 
and RNA-seq data, the present study confirmed that AA 
metabolism could be a potential factor for breast cancer 
prognosis and is related to good outcomes for breast can-
cer. Moreover, a reliable AA metabolic prognostic sig-
nature was built for the prognostic prediction of breast 
cancer, which may help to improve the diagnosis and per-
sonalized treatment of breast cancer patients.

Comparisons with other studies and what does the current 
work add to the existing knowledge
AA is ubiquitously expressed in every mammalian 
cell membrane and participates in metabolic activities 
throughout the whole cell cycle, including cancel cell 
growth and death [22]. Previous studies of tumour cell 
lines have mainly focused on the effect of AA and its 
metabolites on cancer progression through COX and 
other pathways. Therefore, much more effort has been 
devoted over the last decade to determine whether COX 
inhibitors could serve as promising agents for cancer 
therapy. However, the results are conflicting. Some stud-
ies suggested that COX inhibitors could reduce the risk 
of breast, stomach and colorectal cancers [8, 23]. In con-
trast, no protective effect of COX inhibitors also been 
generally reported [12, 24, 25]. More surprisingly, some 
studies reported that the use of COX inhibitors was 
related to an increased risk of cancer incidence and mor-
tality [11, 12]. This contradiction suggests that our under-
standing of AA metabolism in cancer is still limited.

Recent studies revealed the important role of AA 
metabolism in cancer cell death rather than cell growth. 
Experimental evidence based on many tumour cell lines 
proved that AA could induce tumour cell ferroptosis 
with IFN-γ and enhance antitumour immunity with 
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Fig. 6  Immune cell infiltration based on the AA metabolism group. P < 0.05 was considered statistically significant, R < 0 was considered a negative 
correlation and R > 0 was considered a positive correlation
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Fig. 7  Mutation profile. A Mutation profile of AA metabolism genes in the TCGA-BRCA cohort: PLA2G4A was mutated most frequently (14.9%), 
followed by PTGS2 (11.9%) and PLA2G6 (10.4%). B Mutation profile of the low AA metabolism group: TP53 was mutated more frequently (49.1%). C 
Mutation profile of the high AA metabolism group: PIK3CA was mutated more frequently (44.4%)
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CD8+ T cell [15]. More importantly, AA was essential 
to enhance the ferroptosis sensitivity induced by ACSL4 
in breast cancer [14]. Moreover, the increased level of 
AA promoted the sensitivity of gastric tumours to fer-
roptosis, and supplementation with AA was essential to 
induce gastric tumours to ferroptosis [26]. Consistent 
with these findings, this study found that the infiltration 
levels of CD8+ T cells were higher in high AA metabo-
lism group. The process by which CD8+ T cell suppress 
tumour development by inducing ferroptosis is a recently 
reported novel mechanism, and AA plays a synergistic 

role in this process [15, 27, 28]. A high level of AA could 
increase the function of CD8+ T cells in tumour cell fer-
roptosis. Moreover, the therapeutic efficacy of check-
point blockade could also be sensitized by AA [15]. In the 
present study, KEGG showed that the upregulated genes 
of high AA metabolic group were mainly associated with 
immune related pathways, suggesting that the immune 
infiltration of the high AA metabolic group is more active 
and intense in the tumour microenvironment. Therefore, 
a high level of AA metabolism may improve the progno-
sis of breast cancer by enhancing the induction of CD8+ 

Fig. 8  Construction and validation of the AAMRS. A and B LASSO Cox regression method (1000 iterations) was used to screen candidate genes, and 
the significance criterion was P < 0.001. C Multivariate Cox regression to screen key genes thoroughly. D Risk score and survival status in AAMRS. E 
KM curve of the AAMRS internal validation in the TCGA-BRCA cohort. F KM curve of the AAMRS external validation in the METRABIC cohort
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T cell on tumour cell ferroptosis and promoting immune 
responses to increase the sensitivity to checkpoint block-
ade therapy in tumour microenvironment.

Chronic inflammation is closely linked to the occur-
rence of cancer [29]. Overexpression of AA and its 
metabolites promotes the process of chronic inflamma-
tion and precancerous lesions. Numerous studies have 
proven that early intervention of COX inhibitors reduces 
the risk of cancer occurrence [8, 23]. However, once the 
tumour occurrs and advances, AA and its metabolites 
in the tumour microenvironment play a protective role 
against the tumour development [30]. This study found 
that a high level of AA metabolism in breast cancer is 
related to more active immune responses, which provides 
a reasonable explanation for the contradictory effect of 
COX inhibitors and helps to better clarify the role of AA 
metabolism in cancer.

In this study, four genes were identified in the AAMRS. 
KLRB1, APOD and PIGR were associated with low risk, 
while SPINK8 was associated with high risk. KLRB1 
encodes CD161, which is expressed on many T-cell 
subtypes. A previous breast cancer signature included 
this gene as a biomarker for good prognosis [31, 32]. A 
previous pan-cancer study also confirmed that upregu-
lation of KLRB1 was related to good prognosis in most 
cancers, including breast cancer [33]. Experimental evi-
dence proved that CD8+ CD161+ T cells exerted cyto-
toxicity against tumour cells and protected mice from 
tumours, while CD8+ CD161− T cells could not [34, 35]. 
This study found that KLRB1 was widely expressed in T 
cells, consistent with the conclusion that high expres-
sion of KLRB1 in T cell indicating a better prognosis. 
APOD encodes a component of high density lipopro-
tein involved in lipid metabolism and neuroprotection. 

Fig. 9  The forest plots for multivariate regression of clinical factors and AAMRS. A Age, AAMRS group and tumour stage were independent 
prognostic factors in the TCGA-BRCA cohort. B Age, AAMRS group and tumour stage were independent prognostic factors in the METABRIC cohort
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This study found that high APOD expression is related 
to longer survival, which is consistent with a previous 
breast cancer signature [36]. One study pointed out that 
APOD was most highly expressed in benign tumours 
and least expressed in invasive cancer and breast can-
cer with metastasis [37]. Interestingly, APOD could bind 
to AA and change the end products of AA metabolism 

to reduce the activity of tumour cells [37]. Therefore, 
the alternation of AA metabolism may be a contribu-
tor as well as a result of altered APOD expression and 
the underlying mechanism needs deeper investigation. 
PIGR encodes the partial immunoglobulin molecules of 
IgA and IgM. Although PIGR has been proven to pro-
mote hepatocellular carcinoma aggressiveness, the role 

Fig. 10  Establishment of the AAMRS related nomogram. A Nomogram for predicting the OS probability, by setting age, AAMRS group and tumour 
stage as parameters. B Calibration curves for verifying the prediction accuracy; red represents the 1-year prediction, blue represents the 3-year 
prediction, and green represents the 5-year prediction. C KM curve of the AAMRS related nomogram validation in the TCGA-BRCA cohort. D KM 
curve of the AAMRS related nomogram validation in the METABRIC cohort
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of PIGR in breast cancer is not clear [38]. A gene signa-
ture of luminal breast cancer indicated that PIGR served 
as one biomarker for good outcome [39]. Moreover, the 
PIGR expression is downregulated in breast cancer tis-
sues compared with paracancerous tissues [40]. This 
study also suggests that high PIGR expression is a bio-
marker for better OS and Its role in breast cancer pro-
gression appears to be entirely different from that of 

liver cancer, while the conclusion should be supported 
by more evidence. Unlike the roles of KLRB1, APOD and 
PIGR, the role of SPINK8 has not been reported previ-
ously. To the best of our knowledge, this the first study 
reported the expression of SPINK8 in the tumour cells. 
This study first identified SPINK8 as a biomarker for 
poor prognosis in breast cancer, and the role of SPINK8 
should be fully elucidated.

Fig. 11  Sc-RNA-seq analysis. A The distribution of various cell types in breast cancer. B AA metabolism was widely existed in different cell types. C-F 
Expression of SPINK8, KLRB1, APOD and PIGR
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Study strengths and limitations
The greatest strength of this study is the assessment 
of the role of AA metabolism in breast cancer from 
the perspective of the tumour microenvironment as a 
whole by bioinformatics, thus overcoming the limita-
tion of previous studies solely focused on tumour cell 
lines. However, the study was retrospective because raw 
data were obtained from public datasets. Furthermore, 
more in vitro or in vivo evidence is needed to validate the 
results. Finally, the underlying mechanisms of the four 
independent prognostic genes were not further explored. 
Therefore, functional experiments of the four independ-
ent prognostic genes were needed to validate the fund-
ings and clarify the potential molecular mechanism 
involved.

Conclusion
The present study indicated that a high level of AA 
metabolism might be a biomarker of good prognosis in 
breast cancer and developed a novel AAMRS for breast 
cancer. Moreover, a high level of AA metabolism was 
closely linked to immune infiltration, providing a possi-
ble explanation for the discouraging effect of COX inhibi-
tors in cancer therapy. Therefore, this study suggests that 
the role of COX inhibitors in cancer treatment should be 
cautiously reviewed.
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