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Abstract

Model‐based iterative reconstruction (MBIR) reduces CT imaging dose while main-

taining image quality. However, MBIR reduces noise while preserving edges

which may impact intensity‐based tasks such as auto‐segmentation. This work

evaluates the sensitivity of an auto‐contouring prostate atlas across multiple

MBIR reconstruction protocols and benchmarks the results against filtered back

projection (FBP). Images were created from raw projection data for 11 prostate

cancer cases using FBP and nine different MBIR reconstructions (3 protocols/3

noise reduction levels) yielding 10 reconstructions/patient. Five bony structures,

bladder, rectum, prostate, and seminal vesicles (SVs) were segmented using an

auto‐segmentation pipeline that renders 3D binary masks for analysis. Perfor-

mance was evaluated for volume percent difference (VPD) and Dice similarity

coefficient (DSC), using FBP as the gold standard. Nonparametric Friedman tests

plus post hoc all pairwise comparisons were employed to test for significant dif-

ferences (P < 0.05) for soft tissue organs and protocol/level combinations. A

physician performed qualitative grading of 396 MBIR contours across the pros-

tate, bladder, SVs, and rectum in comparison to FBP using a six‐point scale.

MBIR contours agreed with FBP for bony anatomy (DSC ≥ 0.98), bladder (DSC ≥

0.94, VPD < 8.5%), and prostate (DSC = 0.94 ± 0.03, VPD = 4.50 ± 4.77% (range:

0.07–26.39%). Increased variability was observed for rectum (VPD = 7.50 ± 7.56%

and DSC = 0.90 ± 0.08) and SVs (VPD and DSC of 8.23 ± 9.86% range (0.00–
35.80%) and 0.87 ± 0.11, respectively). Over the all protocol/level comparisons, a

significant difference was observed for the prostate VPD between BSPL1 and

BSTL2 (adjusted P‐value = 0.039). Nevertheless, 300 of 396 (75.8%) of the four

soft tissue structures using MBIR were graded as equivalent or better than FBP,

suggesting that MBIR offered potential improvements in auto‐segmentation per-

formance when compared to FBP. Future work may involve tuning organ‐specific
MBIR parameters to further improve auto‐segmentation performance. Running
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1 | INTRODUCTION

One of the largest sources of uncertainty in radiation therapy plan-

ning (RTP) is the delineation of the target and organs at risk (OARs)

using computed tomography (CT) datasets.1 Aside from the uncer-

tainty introduced in the delineation process, manual delineation of

OARs is time‐consuming.2 Thus, efforts to implement auto‐seg-
mentation routines are advantageous and have shown promise for

several disease sites, most commonly for head and neck, and pros-

tate cancers.3–5 Current approaches to automated segmentation

are commonly atlas‐based or a combination of atlas‐ and model‐
based techniques.3 In the pelvis, auto‐segmentation has yielded

good overall performance (~3 mm distance to mean surface in

prostate segmentation from mean expert delineations).6,7 Atlas‐
based segmentation algorithms have appeared promising for the

segmentation of bladder, rectum, and prostate (Dice similarity

coefficient (DSC) > 0.70 with respect to radiation oncologist

ground truth delineations) for prostate cancer treatment planning.8

Another auto‐segmentation toolkit, Smart Probabilistic Image Con-

touring Engine (SPICE), has been applied to CT scans in various dis-

ease sites and has demonstrated promise for clinical utility.9,10

Current efforts are being made to move toward lower dose CT

scanning, although image noise can be a rate‐limiting step due to the

use of filtered back projection (FBP) for image reconstruction in CT

simulation (CT‐SIM) datasets.11 One potential way to overcome

image noise is to employ advanced reconstruction algorithms to

maintain the same image quality while increasing the contrast to

noise ratio.12,13 Advanced CT reconstruction methods such as hybrid

iterative reconstructions (HIR), model‐based iterative reconstruction

(MBIR), and adaptive statistical iterative reconstruction (ASIR) have

been integrated into clinical diagnostic CT scanners,14,15 whereas

their application in radiation oncology has been limited to date. In a

study conducted by Price et al., HIR was found to maintain image

quality with dose reduction protocols of up to ~ 70% when com-

pared to FBP for CT‐SIM datasets in the female pelvis.16 While dose

reduction is possible and MBIR has shown improvements in diagno-

sis and image quality,17 advanced iterative reconstruction algorithms

have been shown to change the overall texture of datasets com-

pared to standard FBP,13,18,19 which may lead to differences in

intensity‐dependent automatic segmentation routines.

This study aims to evaluate the sensitivity of an auto‐segmenta-

tion algorithm to MBIR CT reconstructions for prostate cancer treat-

ment planning and compare the results to the standard of care in

CT‐SIM (FBP). With a better understanding of the impact of recon-

struction methods on auto‐segmentation performance, the utility and

potential application of advanced reconstruction algorithms may be

integrated into the RTP workflow.

2 | MATERIALS AND METHODS

2.A | CT‐Simulation and patient cohort

Eleven prostate cancer patients underwent CT simulation to gener-

ate a patient model for external beam treatment planning using a

Brilliance Big Bore (Philips Health Care, Cleveland, OH) scanner posi-

tioned supine with the following parameters: 120–140 kVp,

500 mAs, 512 × 512 in‐plane image dimensions, 1.28 × 1.28 mm2

in‐plane spatial resolution, and 3 mm slice thickness. Patients were

immobilized using bands placed around the feet, a ring to hold on

their chest, and a shaped foam pad for leg immobilization. Raw sino-

gram data were exported from the clinical scanner and de‐identified
for further processing.

2.B | Model‐based image reconstructions

Raw sinogram data were retrospectively reconstructed using FBP

and MBIR algorithms with varied parameters using research recon-

struction software (IMR, Philips Medical Systems, Cleveland, OH).

The Philips Big Bore scanner specifies three user MBIR reconstruc-

tion protocols: Body Soft Tissue (BST), Body Routine (BR), and Body

Sharp Plus (BSP). Each protocol is distinguished primarily by the

reconstruction filter. Choice of filter reflects a tradeoff between

noise and contrast resolution, BSP having the highest noise and res-

olution.20,21 The MBIR reconstruction optimization equation is

defined as:

F xð Þ ¼ D xð Þ þ β � R xð Þ

where the function F(x) is composed of a data fit term D(x) and a

noise reducing (but edge preserving) regularization term R(x) with

strength controlled by the factor β. For FBP, image noise is known

to scale with well‐defined ratios based on slice thickness, patient

size, and mAs. While noise reductions arising from the MBIR recon-

struction levels (L1‐L3) depend on acquisition parameters including

slice thickness, mAs, and patient size, they do not scale in proportion

to the FBP noise.22 Nevertheless, as the underlying raw data acquisi-

tion parameters were fixed in this study, higher level reconstructions

(i.e., L3) were expected to have the largest reduction in noise, partic-

ularly for low dose protocols (e.g., ~60% noise reduction between L1

and L3 for an abdomen CT acquired at 300 mAs, 1 mm, Body Rou-

tine filter acquired with an Ingenuity CT scanner22).

2.C | Organ auto‐segmentation

For each reconstructed CT image, auto‐segmentation was performed

using a research prototype version of SPICE software (Philips,
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Cleveland, OH). The prostate cancer cases produced auto‐segmenta-

tions for nine OARs (four soft tissue (prostate, bladder, rectum, and

seminal vesicles) and five bony structures (left and right sides of the pel-

vis and femur, as well as the sacrum). The segmentation software pipe-

line includes three main steps: (a) global positioning, (b) organ‐specific
positioning, and (c) structure refinement, as described by Bzdusek

et al.23 Briefly, the first step rotates, translates, and performs an isotro-

pic scaling registration of a tissue probability atlas to a tissue classified

target image. In the second step, the organs are positioned while using

both the tissue classified image and the organ‐specific probability maps.

Lastly, in the third step, model‐based segmentation is used to bring the

surface mesh triangles to trained image features.23

Comparisons were performed to investigate the differences in

each organ segmentation (e.g., prostate, rectum) based upon the

MBIR protocol and level. The auto‐segmentations were compared

for the different MBIR reconstructions of the identical raw dataset,

as well as between patients to further understand the impact of the

CT reconstruction on auto‐segmentation of organs, and patient‐
specific differences.

2.D | Physician qualitative contour grading

Eleven prostate cancer patient datasets (396 generated contours (99

prostate, rectum, seminal vesicles, and bladder)) were qualitatively

evaluated by a physician instructed to grade the generated MBIR

contours at each protocol/level in comparison to those generated on

the reference dataset (i.e., FBP) using a six‐point scale (1: Better than

reference, 2: Slightly better than reference, 3: Equivalent to refer-

ence, 4: Slightly worse than reference, 5: Worse than reference, 6:

Clinically unacceptable).16,18 A score of six was also assigned to con-

tours that incorrectly segmented the organ regardless of agreement

to FBP. During the contour review, the physician was blinded to

reconstruction protocol/level. After review of the grading results, any

contour that was deemed clinically unacceptable (score of 6) was

removed from the patient cohort for any further statistical evalua-

tion to ensure that only clinically acceptable data fit for review were

maintained within the cohort.

2.E | Analyses and quantitative comparisons

The auto‐segmentations from each of the nine different MBIR

reconstructions and FBP were quantitatively evaluated using volume

percent difference (VPD) and DSC. For each prostate cancer case,

the auto‐segmentations were analyzed using an in‐house MATLAB

program (Mathworks, Natick, MA) to measure the volume of the

OARs. VPD was calculated with the FBP being the reference as

defined:

VPD ¼ ABS
MBIRvolume � FBPvolume

FBPvolume

� �
� 100

where MBIRvolume and FBPvolume are the measured auto‐segmented

volumes of an organ using the MBIR and FBP reconstructions,

respectively.

The resulting segmentations were also quantitatively compared

using the DSC to assess the regional overlap between the organs

according to:

DSC ¼ 2� A∩Bj j
Aj j þ Bj j

In this equation, A and B are the volumes of the reference (i.e., FBP)

and MBIR auto‐segmented organ respectively, and A∩B is defined as

the volume of the intersection of the auto‐segmented organ from

the two reconstruction methods. DSC equal to zero describes no

overlap and DSC equal to 1 demonstrates complete agreement of

the auto‐segmentations. Finally, center of mass (COM) comparisons

were made between the auto‐segmented organs from FBP and

MBIR reconstructions to elucidate potential location differences

across each major axes (X‐ (right‐left), Y‐(anterior‐posterior), and Z‐(-
superior‐inferior)).

2.F | Analyses for statistical comparisons

To determine differences among the nine MBIR protocols, since the

resulting index values were not normally distributed, a nonparametric

Friedman test plus post hoc for all pairwise comparisons was

employed.24 To test for differences among protocols, three pairwise

comparisons were conducted over all soft tissue organs. To test for

significant differences among protocol/level combinations, 36 pair-

wise comparisons were evaluated. Data were presented as mean ±

SD (standard deviation) and interquartile range (IQR). Adjusted P‐
values using Bonferroni corrections for multiple tests were used and

P‐values less than 0.05 (two‐tailed) were regarded as statistically sig-

nificant. All statistical analysis was performed using SPSS version

25.0 (SPSS, Chicago, IL, USA).

3 | RESULTS

All prostate cancer patient CT reconstructions were able to be seg-

mented by SPICE; however, 27 organ contours were deemed “clini-

cally unacceptable” by physician grading and were thus removed

from further quantitative evaluation. Of these 27 contours, 23 were

graded as clinically unacceptable for both MBIR and FBP. One such

patient had a high body mass index which caused the pubic symph-

ysis to be incorrectly identified as the prostate for both FBP and

MBIR reconstructions reconstructions [Fig. 1(c) and Fig. 2, Patient

10]. Another case that was graded clinically unacceptable is shown

in [Fig. 1(b)] where the patient had an abnormally full rectum that

adversely impacted auto‐segmentation performance as also indicated

in Fig. 2, Patient 6. A total of 369 out of 396 (93%) soft tissue con-

tours were clinically useable (score of 1‐5) and included in all subse-

quent quantitative analysis. Of the 4 scores that were scored as

adversely impacted by MBIR as compared to FBP, 3 were seminal

vesicles and 1 was a rectum case. Nevertheless, Fig. 2 highlights that

75.8% of MBIR auto‐segmentations were scored equivalent or better

than FBP across the patient cohort. Notably, 30.6% of the MBIR
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segmentations were graded as better or slightly better than FBP,

particularly for the prostate (38/99), SVs (33/99), and bladder (32/99).

The highly attenuating and high contrast structures (i.e., bony

anatomy) yielded similar auto‐segmentation results between the FBP

and MBIR reconstruction parameters (DSC > 0.98). Generally speak-

ing, the bladder was also insensitive to reconstruction protocol,

yielding the least amount of changes for the soft tissues between

the FBP and MBIR reconstructions (VPD = 2.15 ± 2.42%, range:

0.01–8.47%). A high degree of overlap was observed for the bladder

across all reconstructions (DSC = 0.97 ± 0.01, range: 0.94–0.99).
One subject had a maximum COM difference of 3.06 mm for this

soft tissue reconstruction.

Table 2 summarizes the MBIR auto‐segmentation results (VPD,

DSC, and COM) for the soft tissue organs by protocol as compared

to FBP for the 11 patients. Figure 3 highlights typical auto‐segmen-

tation results for FBP and MBIR reconstructions across the three dif-

ferent protocols evaluated. Over all 11 patients, the rectum had an

average VPD of 7.50 ± 7.56% (range: 0.11–42.80%). The average

(a) (b) (c)

F I G . 1 . Comparison between auto‐segmentation results for three different patient cases (Body Sharp Plus protocol at L1). Each image has
both the filtered back projection (FBP) and model‐based iterative reconstruction (MBIR) contours shown with (a) an average patient result, (b)
abnormal case with an abnormally full rectum, adversely impacting the auto‐segmentation performance for MBIR, and (c) patient with a high
body mass index where the seminal vesicles (SVs) had worse agreement and the pubic symphysis was incorrectly identified as the prostate for
both reconstructions. Numerical values labeling each organ represent the Dice similarity coefficient (DSC) value for comparison of MBIR to
FBP.

F I G . 2 . Physician grading scores using a 6‐point scale (1: Better than reference, 2: Slightly better than reference, 3: Equivalent to reference,
4: Slightly worse than reference, 5: Worse than reference, 6: Clinically unacceptable) for bladder, prostate, rectum, and seminal vesicles (SVs).
This was done for all 11 patients for each of the nine protocol/level combinations which yielded 396 contours for evaluation. Protocol and
level combinations defined in text.
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DSC values were 0.90 ± 0.08 (range: 0.66–0.98). The rectum yielded

the largest COM shifts between MBIR reconstructions and FBP (av-

erage shift of 4.5 mm) largely due to deviations in the superior/

inferior extent as shown in the sagittal images of Fig. 3(b) where dis-

crepancies in the superior and inferior extents were observed

between the FBP and MBIR BSP protocol.

(a) (b) (c)

F I G . 3 . Model‐based iterative reconstructions and accompanied auto‐segmentations for the (a) Body Routine, (b) Body Sharp Plus, and (c)
Body Soft Tissue protocols at L1 as compared to filtered back projection (FBP) segmentations.

F I G . 4 . Dice similarity coefficient (DSC) boxplot comparison between the four soft tissue organs: bladder, prostate, rectum, and seminal
vesicles (SVs), for each protocol type and level for 11 prostate cancer patients. Boxplots, thick line, and whiskers represent the interquartile
range, median, and 5th and 95th percentiles, respectively. Data points displayed as a small circle represent a value >1.5 times the interquartile
range (IQR) and the star represents a value >3×IQR.
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For the prostate, the average magnitude of the VPD was

4.50 ± 4.77% (range: 0.07–26.39%). The prostate measured average

DSC values to be 0.94 ± 0.03 (range: 0.77–0.97). There was a maxi-

mum COM difference of 4.95 mm between the FBP and MBIR.

Auto‐segmentation results for the seminal vesicles yielded a mean

VPD of 8.23 ± 9.86% (range: 0.00–35.80%) with an average DSC of

0.87 ± 0.11 (range: 0.48–0.98). When evaluating the impact of the

three MBIR protocols (BR, BSP, BST) on soft tissue segmentation,

there were no observed differences for rectum, bladder, and SVs

when analyzing comparisons. The prostate VPD experienced signifi-

cant differences between the BSPL1 and BSTL2 combinations (ad-

justed P‐value = 0.039).

These sensitivity results demonstrate differences between the

FBP and MBIR CT reconstruction algorithms for auto‐segmentation,

further described by Table 2 for the COM differences in the X‐
(right‐left), Y‐(anterior‐posterior), and Z‐(superior‐inferior) directions.

There were minor differences noticed in the COM X‐, Y‐, and Z‐di-
rections for the bladder (mean of 0.69 mm) and prostate (mean of

0.99 mm), however one outlier was observed for the prostate (COM

deviation of up to −106.88 mm in the X). The rectum measured

large changes in the superior‐inferior (Z‐direction) with COM

differences ranging from −31.40 to 15.91 mm, suggesting challenges

in identifying the upper and lower bounds of the organ. The SVs

demonstrated large variation in the COM Z‐ and X‐directions with

ranges of −4.23 to 51.85 mm and −7.20 to 8.01 mm, respectively.

Figures 4 and 5 highlight boxplots indicating specific organ and pro-

tocol/level combination auto‐segmentation results for the cohort for

both DSC and VPD.

4 | DISCUSSION

This work sought to determine the impact of a model‐based iterative

reconstruction algorithm on auto‐contouring performance for pros-

tate cancer patients. Quantitative comparison between FBP and

MBIR revealed that the soft tissue organs, such as the rectum, pros-

tate, and SVs, experienced the greatest amount of segmentation

variability. However, the high contrast bony structures were the

least affected (average DSC > 0.98). A similar result was found by

Delpon et al. that high attenuating structures, such as the pelvic

bones, had a DSC of ~ 0.90 when compared to the physician delin-

eations used in their study.25

F I G . 5 . Volume percent difference (VPD) boxplot comparison between the four soft tissue organs: Bladder, prostate, rectum, and seminal
vesicles (SVs), for each protocol type and level for 11 prostate cancer patients with the top row displaying different Y‐axis magnitude than the
bottom row. Boxplots, thick line, and whiskers represent the interquartile range, median, and 5th and 95th percentiles, respectively. Data
points displayed as a small circle represent a value >1.5 times the interquartile range (IQR) and the star represents a value >3×IQR.
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Auto‐segmentation performance has also been shown to be

impacted by organ size, as found by Kumarasiri et al. where soft tis-

sue structures were classified by size for CT auto‐segmentation.26 In

studies focusing on the pelvic region, similar results were found in

that larger structures, such as the bladder, had smaller volume varia-

tions when compared to smaller structures similar to the prostate.27

This was also observed in our study where the bladder was more

accurately contoured in comparison to the smaller structures (rec-

tum, prostate, and SVs), as shown by the DSC results in Table 1 and

the COM distance results shown in Table 2. Our results were com-

parable to work done by Isambert et al. in which the auto‐contouring
software used was reliable for large structures, but still in need of

additional delineation revisions by an expert for small, more complex

structures.2 In addition to size, contrast also impacts auto‐segmenta-

tion performance, lending to more accurate bony segmentation

observed in this study compared to all other organs.

Our statistical results showed us that between the protocol/level

combinations there were significant differences for reconstructions

in both the bladder and the prostate. This suggests that there may

be a specific protocol that is optimal for prostate auto‐segmentation

tasks and that using iterative reconstruction techniques may be

advantageous to these RT tasks as well. While limited segmentation

data are available for direct comparison, several groups have evalu-

ated the impact of model‐based iterative reconstruction on image

quality tasks. For example, FBP has been found to have inferior

image quality as compared to both MBIR and hybrid iterative recon-

struction (HIR) and that MBIR yielded superior image quality to HIR

for the cross‐sectional view.15 A study conducted by Hèrin et al.

concluded that MBIR reconstructions of reduced‐dose CT and FBP

reconstruction of standard‐dose CT both obtained the same low

TAB L E 1 The average of the volume percent difference (VPD)
magnitude, Dice similarity coefficient (DSC), and distance between
the model‐based iterative reconstruction (MBIR) and filtered back
projection (FBP) center of mass (COM) all with standard deviations
(SD) based on the MBIR and FBP reconstruction methods.

Organ Protocol

ABS VPD (%) DSC (A.U.) COM (mm)

MEAN +/– SD MEAN +/– SD
MEAN +/–
SD

Range (min,
max)

Range (min,
max)

Range (min,
max)

Bladder BR 2.20 ± 2.62 0.98 ± 0.01 0.69 ± 0.76

(0.01, 8.47) (0.95, 0.99) (0.11, 2.84)

BSP 1.82 ± 2.21 0.98 ± 0.01 0.65 ± 0.75

(0.04, 7.81) (0.95, 0.99) (0.05, 2.75)

BST 2.44 ± 2.44 0.97 ± 0.01 0.74 ± 0.79

(0.17, 8.04) (0.94, 0.99) (0.11, 3.06)

Prostate BR 3.53 ± 3.40 0.94 ± 0.03 0.89 ± 0.97

(0.07, 17.16) (0.87, 0.97) (0.07, 3.61)

BSP 2.31 ± 2.12 0.94 ± 0.03 0.83 ± 0.84

(0.07, 9.26) (0.87, 0.97) (0.08, 3.27)

BST 7.65 ± 6.14 0.92 ± 0.04 1.24 ± 1.31

(0.10, 26.39) (0.77, 0.96) (0.16, 4.95)

Rectum BR 8.00 ± 9.31 0.91 ± 0.07 4.01 ± 3.94

(0.11, 41.97) (0.69, 0.98) (0.14, 16.01)

BSP 7.62 ± 7.84 0.90 ± 0.08 4.67 ± 3.59

(0.41, 42.80) (0.72, 0.98) (0.11, 13.01)

BST 6.91 ± 5.32 0.89 ± 0.08 4.87 ± 3.91

(0.33, 21.30) (0.66, 0.98) (0.06, 14.51)

SVs BR 9.41 ± 10.74 0.87 ± 0.10 2.22 ± 2.29

(0.05, 34.69) (0.61, 0.98) (0.12, 7.54)

BSP 7.19 ± 9.02 0.88 ± 0.09 1.97 ± 2.11

(0.00, 32.82) (0.63, 0.96) (0.11, 7.98)

BST 8.05 ± 9.90 0.86 ± 0.14 2.37 ± 2.85

(0.16, 35.80) (0.48, 0.97) (0.15, 9.58)

TAB L E 2 The average of the MBIR protocols for the magnitude of
the distance between the MBIR and FBP COM with SD for the
X‐ (right‐left), Y‐(anterior‐posterior), and Z‐(superior‐inferior) axes.
The range includes the minimum and maximum distances of the
measured values. All measurements are in millimeters (mm).

Organ Protocol

COM X COM Y COM Z
MEAN +/– SD MEAN +/– SD MEAN +/– SD
Range (min,
max)

Range (min,
max)

Range (min,
max)

Bladder BR 0.04 ± 0.18 0.27 ± 0.89 0.22 ± 0.43

(−0.33, 0.38) (−0.40, 2.72) (−0.75, 0.97)

BSP 0.02 ± 0.17 0.28 ± 0.81 0.11 ± 0.46

(−0.26, 0.40) (−0.40, 2.66) (−0.67, 1.59)

BST −0.01 ± 0.16 0.27 ± 0.89 0.24 ± 0.49

(−0.41, 0.30) (−0.62, 3.00) (−0.58, 1.09)

Prostate BR −0.03 ± 0.73 0.08 ± 0.53 0.22 ± 0.87

(−1.25, 3.27) (−0.51, 1.65) (−1.53, 2.22)

BSP −0.16 ± 0.43 0.06 ± 0.51 0.30 ± 0.92

(−1.60, 0.41) (−0.68, 1.56) (−1.26, 2.74)

BST −3.20 ± 19.63 0.20 ± 0.80 −0.05 ± 2.05

(−106.88, 4.22) (−0.68, 3.78) (−9.40, 2.65)

Rectum BR 0.14 ± 0.65 −0.05 ± 0.81 1.48 ± 5.36

(−0.64, 2.71) (−1.77, 1.95) (−7.27, 15.91)

BSP 0.39 ± 1.66 0.27 ± 1.29 1.15 ± 5.43

(−1.51, 6.65) (−3.06, 3.59) (−10.43,
12.65)

BST 3.50 ± 18.18 1.66 ± 9.32 −0.44 ± 8.08

(−0.62, 102.76) (−2.87, 52.26) (−31.40,
13.96)

SVs BR 0.84 ± 2.32 0.12 ± 0.77 0.27 ± 1.88

(−5.83, 6.84) (−0.81, 2.68) (−3.84, 5.19)

BSP 0.63 ± 1.96 0.14 ± 0.99 0.36 ± 1.38

(−3.33, 7.56) (−0.68, 4.11) (−1.35, 5.02)

BST 0.52 ± 2.68 1.03 ± 5.47 2.06 ± 9.45

(−7.20, 8.01) (−3.12, 29.35) (−4.23, 51.85)

BSP, body sharp plus; BST, body soft tissue; COM, center of mass; FBP,

filtered back projection; MBIR; model‐based iterative reconstruction; SD,

standard deviations; SVs, seminal vesicles.
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contrast detectability on a phantom.28 This suggests that model‐based
iterative reconstruction methods have the potential to perform better

than FBP in terms of overall image quality and thus may impact Radia-

tion Oncology‐related tasks. A limitation of our work is the sample size

(11 evaluable patients). However, 11 patients were reconstructed with

nine protocol/level combinations with the four soft tissue structures

evaluated yielding a total of 396 data points for review. Conducting this

evaluation on a larger sample size may be advantageous to determine

any further statistical significance in our findings.

Our work on the analysis of nine MBIR reconstruction protocol/

level combinations differs from previously reported work by examin-

ing the application to the RTP‐specific task of auto‐contouring. MBIR

has been previously shown to improve image quality by reducing

noise and enabling the acquisition of lower dose scans that can sub-

stantially reduce imaging dose when compared to FBP.29,30 The abil-

ity to reduce imaging radiation dose following as low as reasonably

acceptable (ALARA) and “imaging gently” procedures will reduce the

risk of overexposure to the patient. Reducing radiation exposure can

still allow for appropriate OAR segmentations by improving recon-

struction algorithms, such as MBIR.

In the cohort evaluated, while all patient CT reconstructions

were able to be successfully segmented by SPICE, some erroneous

segmentation results were encountered. There were 27 (6.82%) soft

tissue contours that received a score of “Clinically Unacceptable”

although only four of them were attributed to MBIR while the

remaining 23 were due to abnormal patient anatomy. This suggests

that in cases where the atlas cannot adequately perform auto‐seg-
mentation, the reconstruction protocol will not offer improvement to

the overall auto‐segmentation performance. A similar result was

found in a study conducted by McBain et al. in that irregularly

shaped anatomy was not properly contoured by an automatic con-

touring system.31 Nevertheless, out of the 396 generated contours

for the four soft tissue structures using MBIR, 300 (75.8%) of them

were graded as equivalent to or better than FBP. Notably, ~38% of

prostate and ~ 32–33% of bladder and SV contours segmented on

MBIR data scored qualitatively better/slightly better than the FBP

corresponding contours, suggesting that MBIR offered improvement

in auto‐segmentation performance as compared to FBP. The ability

to properly segment the OAR with automatic segmentation increases

the efficiency of RTP by allowing the physician to spend less time

manually delineating each organ needed for dose calculations which

is described by La Macchia et al. in which the automatic contouring

workflow was shown to be significantly shorter than the manual

contouring process.9

An additional limitation of this work is that all MBIR segmenta-

tion results were reported in reference to FBP. Although FBP is con-

sidered the gold standard for radiation oncology delineations,32 FBP

may be limited by sensitivity to noise, motion, metal, and streak arti-

facts.33 Nevertheless, this work incorporated qualitative scoring by a

physician to assess differences between FBP and MBIR results.

Work to integrate advanced reconstruction algorithms into CT‐SIM
platforms is ongoing.16 Future work can build on our qualitative

grading by incorporating physician‐based ground truth delineations

to find the most promising MBIR algorithm combinations for differ-

ent contouring endpoints. Although our study did not use physician

delineations, the quantitative differences found between FBP and

MBIR demonstrated for both VPD and DSC show that the advanced

reconstruction algorithms are providing images with different charac-

teristics than the FBP reconstruction and thus have an impact on

auto‐segmentation for lower contrast organs such as the prostate

and SVs. Additionally, more research on MBIR reconstruction is

needed to further investigate how it can be used or improved to be

implemented in the treatment or location detection of a specific

organ. As MBIR makes its way into Radiation Oncology CT‐SIM plat-

forms to enable reductions in imaging dose, the impact on auto‐seg-
mentation task performance will be of increasing importance for

clinical efficiency. This work revealed that auto‐segmentation perfor-

mance on MBIR images was comparable or better than FBP for 75%

of the generated soft tissue contours, although more complex struc-

tures, such as the SVs may still require manual edits.

5 | CONCLUSION

Automatic segmentation for MBIR on high contrast structures was

successful and offered improved segmentation quality for 30‐40% of

the bladder, prostate, and SV contours as compared to FBP.

Although manual modifications may still be necessary, when coupling

MBIR with auto‐segmentation, both imaging dose and treatment

planning time are reduced. Future work may involve selecting organ‐
specific MBIR parameters to improve auto‐segmentation perfor-

mance.
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