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a b s t r a c t

Astragali radix (AR, the dried root of Astragalus) is a popular herbal remedy in both China and the United
States. The commercially available AR is commonly classified into premium graded (PG) and ungraded
(UG) ones only according to the appearance. To uncover novel sensitive and specific markers for AR
grading, we took the integrated mass spectrometry-based untargeted and targeted metabolomics ap-
proaches to characterize chemical features of PG and UG samples in a discovery set (n¼16 batches). A
series of five differential compounds were screened out by univariate statistical analysis, including
arginine, calycosin, ononin, formononetin, and astragaloside Ⅳ, most of which were observed to be
accumulated in PG samples except for astragaloside Ⅳ. Then, we performed machine learning on the
quantification data of five compounds and constructed a logistic regression prediction model. Finally, the
external validation in an independent validation set of AR (n¼20 batches) verified that the five com-
pounds, as well as the model, had strong capability to distinguish the two grades of AR, with the pre-
diction accuracy > 90%. Our findings present a panel of meaningful candidate markers that would
significantly catalyze the innovation in AR grading.
© 2020 Xi'an Jiaotong University. Production and hosting by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Astragali radix (AR), the dried root of Astragalus membranaceus
(Fisch.) Bge. var. mongholicus (Bge.) Hsiao or Astragalus mem-
branaceus (Fisch.) Bge. [1], is a widely used traditional Chinese
medicine (TCM) in the treatment of many conditions, such as car-
diovascular diseases, stroke, and diabetes [2e4]. In 2018, the Na-
tional Health Commission of China officially announced that AR
could be used as not only medicine but also food in a range of us-
ages and dosages. Meanwhile, a variety of AR preparations are also
commercially available in the United States as a general tonic or
dietary supplement, to strengthen the immune system, fight
University.
ality Control and Pharmaco-
f Education, Nanjing, 210009,

(Z. Zhang), huangyin@cpu.

on and hosting by Elsevier B.V. Thi
viruses and bacteria, and reduce the side effects associated with
cancer treatment [5]. Among all the AR products, the most
commonly used is the crude dried root which has two grades [6].
The price of premium graded (PG) AR is about double that of un-
graded (UG) one. In contrast to the significant difference in price,
the classification of AR is still mainly based on the sensory evalu-
ation of TCM workers; the longer and thicker root is usually graded
as of better quality. Although assessing the AR quality by appear-
ance is readily available, it is also easily influenced by personal
feelings because the specific and quantifiable markers are lacking.

Novel approaches, such as metabolomics that sheds light on the
relationship between small molecule compounds and biological
system phenotypes [7,8], can serve as powerful tools for screening
new potential markers for the evaluation of AR grade. Metab-
olomics can be divided into untargeted and targeted approaches,
which represent the breadth-first and depth-first screening stra-
tegies, respectively [9e11]. Untargeted metabolomics provides
semi-quantitative assessments of all the detectable compounds
including chemical unknowns in a sample, while targeted metab-
olomics focuses on the accurate measurement of limited groups of
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compounds. Currently, both approaches have been applied for the
quality control of AR and related preparations, such as decoction,
extraction, and injection [12e15].

However, previous studies have mainly focused on the identi-
fication and detection of a defined set of bioactive compounds
including saponins and flavonoids, and have not uncovered or
verified the compounds indicative of the AR grade [16e18]. For
instance, an nuclear magnetic resonance spectroscopy (NMR)
based untargeted metabolomics study identified 38 primary me-
tabolites that have high concentrations in AR water extracts, but
failed to capture the information of secondarymetabolites with low
levels [13]. Some liquid chromatography-mass spectrometry (LC-
MS) based targeted metabolomics studies compared the differ-
ences of chemical compounds of AR from different geographical
areas with a list containing no more than 26 compounds [15,19]. It
is, therefore, possible that new grading markers cannot be detected
with the current methods.

The primary goal of this study was to elucidate the global
chemical features of two grades of AR and screen out novel quality
markers by using the integrated untargeted and targeted metab-
olomics approaches with machine learning. Briefly, a discovery set
consisting of 9 batches of PG and 7 batches of UG samples was
analyzed by liquid chromatography-high resolution mass spec-
trometry (LC-HRMS) to screen out the differential compounds
associated with AR grades. These potential markers were
confirmed by a follow-up targeted metabolomics analysis using
liquid chromatography-tandem mass spectrometry (LC-MS/MS),
and their prediction ability was further validated in an independent
validation set of 20 batches of AR samples (11 PG and 9 UG) by
building a logistic regression model.

2. Experimental

2.1. Chemicals and reagents

Standards consisting of five compounds and two internal stan-
dards were obtained commercially from National Institute for Food
and Drug Control (Beijing, China), Chengdu Esite Biotechnology Co.,
Ltd. (Chengdu, China), Chengdu Mansite Biotechnology Co., Ltd.
(Chengdu, China), and Sigma-Aldrich (St. Louis, MO, USA). HPLC
grade methanol and acetonitrile were obtained from Merck
(Darmstadt, Germany). Analytical grade formic acid was purchased
from Nanjing Chemical Reagent Co., Ltd. (Nanjing, China). Distilled
water was purified by Milli-Q system (Millipore, Milford, MA, USA).

2.2. Plant materials and sample preparation

A total of 36 batches of AR crude slices, among which 20 were
PG and the rest were UG, were produced in Gansu Province, China
and purchased from Bozhou Traditional Chinese Medicine Market
(Bozhou, China). The length, width and price of each batch of AR
samples were recorded, and then the slices were pulverized into
homogeneous powders (40 meshes). The microscopic examination
of powdered AR samples was observed under the microscope
(Olympus CX41, Tokyo, Japan).

The AR powder (10.0 g) was boiled at 100�C two times for 2 h
with 100 mL of deionized water. The extracts were filtered, com-
bined and then dried by a freeze-dryer (Labconco, Kansas City, MO,
USA) at �83�C. For untargeted metabolomics analysis, a pile of
freeze-dried powder containing approximately 100 mg crude slices
was mixed with 1,000 mL of methanol/water (70:30, V/V). The
mixture was vortexed for 10 min, extracted ultrasonically for
10 min, and centrifuged for 10 min at 16,000 rpm. The supernatant
was filtered through a 0.2 mm filter for LC-HRMS analysis. For tar-
geted analysis, the freeze-dried powder was mixed with 1,000 mL of
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75% methanol containing 2 mg/mL pregabalin and 150 mg/mL aloe
emodin as internal standards. After extraction and centrifugation,
the supernatant was diluted 10 times with acetonitrile/0.1% (V/V)
formic acid in water (85:15, V/V) and filtered through an organic
filter for LC-MS/MS analysis.

2.3. LC-HRMS analysis

Untargeted metabolomics analysis was performed on an ultra-
fast liquid chromatography ion trap/time-of-flight mass spec-
trometry (UFLC-IT-TOF/MS; Shimadzu, Tokyo, Japan) system.
Samples were separated on a Waters XSelect HSS T3 XP (2.1
mm�100 mm, 2.5 mm; Agilent, Santa Clara, CA, USA) column at the
oven temperature of 40�C. The mobile phase consisted of 0.1% (V/V)
formic acid in water (A) and methanol (B) with a flow rate of
0.25 mL/min. A 28-min elution gradient was performed as follows:
0e6 min, 1% B; 6e7 min, 1%e35% B; 7e13 min, 35% B; 13e14 min,
35%e50% B; 14e16min, 50% B; 16e17min, 50%e75% B; 17e20min,
75% B; 20e21 min, 75%e100% B and 21e25 min, 100% B. Finally, the
initial conditions were recovered and kept for 3 min.

MS detection was performed by an electrospray ionization (ESI)
source operated in both positive and negative modes with the data
acquisition range of m/z 100e1000. The other main parameters
were as follows: detector voltage 1.8 kV, interface voltage 4.5 kV
and �3.5 kV, curved desorption line temperature 200�C, heater
block temperature 200�C, and ion accumulation time 20 ms.

2.4. LC-MS/MS analysis

The quantitative analysis of potential markers was achieved
using a Shimadzu Nexera UFLC system coupled to an MS-8040
triple quadrupole mass spectrometer system (Tokyo, Japan)
equipped with an ESI source. The separation was performed on a
Zorbax SB C18 (2.1 mm � 150 mm, 3.5 mm; Agilent, Santa Clara, CA,
USA) column with a flow rate of 0.25 mL/min at 40�C. Acetonitrile
and 0.1% formic acid in water were used as mobile phase under a
gradient program. The MS was operated in positive/negative
switching mode with multiple reaction monitoring (MRM). Colli-
sion energy and fragment ions were optimized individually for each
compound. The method was validated in terms of linearity and
range, precision, accuracy, and recovery. The details are shown in
Tables S1eS4.

2.5. Data analysis

The raw data obtained from untargeted metabolomics analysis
were extracted, preprocessed, statistically analyzed, and identified
mainly on the basis of our previous studies [20]. Briefly, data matrix
consisting of aligned peaks with m/z, retention time, and intensity
were acquired by Profiling Solution software (Ver 1.1, Shimadzu,
Tokyo, Japan) and imported to Mathematica (Ver 12.0, Wolfram,
Champaign, IL, USA) for further multivariate and univariate statis-
tical analyses. Volcano plot was used to filter important peaks that
showed significant fold change (FC > 1.2 or < �1.2) and statistical
significance (adjusted P < 0.05) between the PG and UG samples.
The free databases, such as TCMSP (http://tcmspw.com) and HMDB
(http://www.hmdb.ca), and commercially available standards were
used for the identification of compound candidates.

The quantitative data collected from targeted LC-MS/MS anal-
ysis were also imported toMathematica for constructing a machine
learning-based prediction model with logistic regression algo-
rithm. The machine learning process mainly involved two steps:
the data from discovery set (16 batches of AR) were used to train
the model and subsequently the data from validation set (20
batches of AR) were employed to evaluate the performance of the
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model with the area under the receiver operating characteristic
curve (AUC-ROC).

3. Results

3.1. Appearances of two grades astragali radix

We compared the morphological and microscopic characteris-
tics of PG and UG samples. As shown in Fig. 1, the length and width
of PG crude slices were about twice those of UG samples, while the
microscopic characteristics of the two grades powdered samples
under normal and polarized light microscopy were almost the
same. These results indicated that there were deficiencies in the
method of grading AR by appearance, especially for the powder.

3.2. Discovery of differential compounds

Untargeted metabolomic analysis was conducted in the dis-
covery set to uncover differential compounds between PG and UG
groups. After screening of the detected peaks using "QC variation <
30%" and "80% rule", a total of 777 peaks were extracted from LC-
HRMS data. The unsupervised multivariate principle component
analysis (PCA) was subsequently applied to characterize chemical
patterns of two grades of AR. As illustrated by the PCA scatter plot
(Fig. 2A), PG samples were mostly separated from UG samples with
only one overlap. Totally 97 differential peaks were screened out
with adjusted P < 0.05 and |FC| > 1.2 (Fig. 2B). Eventually, five
differential compounds including arginine, calycosin, ononin, for-
mononetin, and astragaloside Ⅳ were identified and confirmed
using commercial standards (Table S5 and Fig. S1). Their detailed
information, including m/z, retention time, adjusted P value, and
fold change, is listed in Table S6. In addition, on the basis of semi-
quantitative data, it was found that four of the five identified dif-
ferential compoundswere accumulated in PG samples, whereas the
level of astragaloside Ⅳ decreased (Fig. S2).

3.3. Targeted analysis and prediction model construction

We measured the five differential compounds in all samples of
the discovery set by LC-MS/MS. Similar results (Fig. 3A) with the
untargeted study were observed, showing a marked increase in the
concentration of arginine, calycosin, ononin, and formononetin in
the PG group (P¼0.0004, 0.022, 0.016, and 0.021, respectively) as
well as a significant decrease of astragaloside Ⅳ (P¼0.019).
Fig. 1. The morphological and microscopic characteristics of two grades of AR crude slices. (A
length and width between UG and PG samples; (C) microscopic examination at 400� mag
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Therefore, we performed machine learning on the quantitative
data, and built a logistic regressionmodel to predict the grade of AR
samples. The equation is as follows:

Logit ðPÞ¼ � 116:7 þ 0:0505 arginine þ 0:4323 calycosin

þ 1:2689 ononin þ 0:6649 formononetin

� 0:4299 astragaloside IV

where Logit (P) is the log-odds of the probability of the event that
the AR sample is PG, and the sign of each coefficient indicates the
direction of the relationship between a compound and the log-
odds.

3.4. Validation of predictive ability

To further validate the capabilities of the five differential com-
pounds in the prediction of the AR grade, we also quantified and
compared their levels in an independent set of 20 batches of AR
crude slices, including 11 PG and 9 UG samples. We confirmed the
findings from the discovery set (Fig. 3B), and more importantly, the
classification tests indicated that the five differential compounds
showed a good potential to discriminate PG samples from UG
samples in both discovery and validation sets (AUC¼1 and > 0.949,
respectively; Figs. 4A and B). The prediction probability values of
them are shown in Figs. 4C and D. At the traditional cut-off value of
0.5, 9 of 9 and 10 of 11, PG samples were correctly classified when
respectively compared with UG samples in the discovery and
validation sets, giving a composite accuracy of 90% to 100%. These
results indicated that the five differential compounds could serve as
quality markers for accurate grading of AR crude slices, even if they
were powdered.

4. Discussion

Using untargeted and targeted metabolomics, we identified
specific chemical compounds that were significantly affected due to
the grade of AR. Previous variability studies [21e23] have suggested
that high-quality herbs usually contain higher levels of active
substances that can trigger beneficial physiological effects or
enhance the taste, which is consistent with our observations of
flavonoids (calycosin, ononin, and formononetin) in two grades of
AR. Studies have shown that these flavonoids have antioxidant,
anti-inflammatory, anti-diabetic, anti-cancer, anti-obesity, and
) Morphology evaluation of UG and PG samples; (B) significant difference (P < 0.001) in
nification of the powders of UG and PG samples. UG: ungraded; PG: premium graded.



Fig. 2. Statistical analysis for the data obtained from discovery set. (A) PCA score plot of two grades of AR; (B) volcano plot of all ions. UG: ungraded; PG: premium graded.

Fig. 3. Concentration differences of five potential markers between two grades of AR in the (A) discovery and (B) validation sets. UG: ungraded; PG: premium graded.
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cardioprotective effects [24,25]. Specifically, our data also demon-
strated a reduction in the concentration of astragaloside Ⅳ that
associates with high-quality AR crude slice (Fig. 4). AstragalosideⅣ
has been reported to have protective effects on the cardiovascular,
immune, digestive, and nervous systems [25,26]. It is believed to be
one of the bioactive as well as representative compounds in AR, and
works as a widely used marker for the quality control of various AR
preparations such as crude drugs, injections, and oral solutions
[15,27,28]. A recent tissue-specific study has shown that the con-
centration of saponins decreases from the outer layer toward the
center of AR slices, especially the periderm accumulates more than
614
80% of them [29]. Thus, it is mechanistically feasible that a lower
level of astragaloside Ⅳ in PG samples compared to UG samples
may be associated with the smaller proportion of periderm caused
by the relative greater size (Fig. 1).

Another critical feature between the UG and PG samples was the
significant difference of arginine level, whichwas rarely reported as
AR quality marker. We not only screened out arginine but also
quantified that its concentration in the PG group was 1.51 and 1.27
times higher than that in the UG group in the discovery and vali-
dation sets, respectively (Fig. 3). Arginine can act as a vasodilator by
releasing nitric oxide for the treatment of cardiovascular conditions



Fig. 4. Evaluation of the potential capability of five compounds and the model to predict the AR grade. ROC curve of the combination of five potential markers in the (A) discovery
and (B) validation sets; confusion matrix of the logistic regression model in the (C) discovery and (D) validation sets. UG: ungraded; PG: premium graded.
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and erectile dysfunction, having similar effects as AR to reinforce
the vital energy [30]. However, previous studies generally
employed the AR-specific compounds including flavonoids and
saponins as markers to achieve the high specificity of quality
evaluation [12,15]. The only exception is a chemical composition
study that determined 17 amino acids in different AR species but
failed to use them as a conclusive distinction [31]. Therefore, our
subsequent ROC analysis for the first time suggested that arginine
could distinguish PG samples from UG samples, with 81.8% sensi-
tivity and 55.6% specificity (Table S7), providing a supplementary
role to flavonoids and saponins.

On the basis of our systematic analysis in the discovery set and
linking the findings to an independent validation set, we confirmed
the classification ability of a panel of five compounds and con-
structed a logistic regression-based prediction model that provided
more than 90% accuracy (Fig. 4). To further explore the effect of
each compound in grading AR, we examined the potential impor-
tance of them via the logistic regression coefficient and ROC anal-
ysis. It was found that ononin had the greatest coefficient as well as
the highest AUC among the five compounds (Table S7). Ononin is an
isoflavone glycoside found in many herbs and plants such as radix
glycyrrhizae [32], and therefore previous studies always measured
it together with other isoflavones to characterize the chemical
features in different species or parts of AR [15,19]. Our findings
suggest that ononin could serve as a high importance marker for
the discrimination of two grades of AR, which is worth special
attention and further exploration.

Our study has several strengths. We used a state-of-the-art
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metabolomics methodology that possesses good reproducibility
and quantitative capability, and applied the machine learning to
construct a prediction model. The five markers we found as well as
the model may provide a new possibility not only for the classifi-
cation of AR crude slices but also for the quality control of
astragalus-containing herbal preparations. However, there remain
certain limitations. We used the crude slices of authentic AR pro-
duced from only one geographical region (Gansu, China) and the
sample size was relatively small (10e20 samples per class). More-
over, we screened out a panel of five potential markers without
uncovering the underlying biological mechanism. Thus, larger
validation experiments and in-depth mechanistic studies may be
necessary to confirm our findings and further clarify the association
between the five compounds and AR grade.

5. Conclusion

In summary, we demonstrated that the integration of untar-
geted and targeted metabolomics approaches and machine
learning could benefit the discovery of quality markers of AR.
Specifically, we found that a panel of five compounds, arginine,
calycosin, ononin, formononetin, and astragaloside Ⅳ, had a high
capability in the discrimination of commercial PG and UG samples,
and constructed a logistic regression model on the basis of the
quantitative data that provided more than 90% prediction accuracy.
From a translational perspective, the five potential markers, as well
as the prediction model presented here, could help develop novel,
sensitive, and specific tools for AR grading.
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