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Constructing and Validating High-
Performance MIEC-SVM Models 
in Virtual Screening for Kinases: A 
Better Way for Actives Discovery
Huiyong Sun1,2,*, Peichen Pan1,*, Sheng Tian3,*, Lei Xu1, Xiaotian Kong3, Youyong Li3,  Dan Li1 
& Tingjun Hou1,2

The MIEC-SVM approach, which combines molecular interaction energy components (MIEC) derived 
from free energy decomposition and support vector machine (SVM), has been found effective in 
capturing the energetic patterns of protein-peptide recognition. However, the performance of this 
approach in identifying small molecule inhibitors of drug targets has not been well assessed and 
validated by experiments. Thereafter, by combining different model construction protocols, the issues 
related to developing best MIEC-SVM models were firstly discussed upon three kinase targets (ABL, 
ALK, and BRAF). As for the investigated targets, the optimized MIEC-SVM models performed much 
better than the models based on the default SVM parameters and Autodock for the tested datasets. 
Then, the proposed strategy was utilized to screen the Specs database for discovering potential 
inhibitors of the ALK kinase. The experimental results showed that the optimized MIEC-SVM model, 
which identified 7 actives with IC50 < 10 μM from 50 purchased compounds (namely hit rate of 14%, and 
4 in nM level) and performed much better than Autodock (3 actives with IC50 < 10 μM from 50 purchased 
compounds, namely hit rate of 6%, and 2 in nM level), suggesting that the proposed strategy is a 
powerful tool in structure-based virtual screening.

Virtual screening (VS) exhibits undefeatable advantage in today’s drug discovery campaign1–3, which shows 
short development time, low financial cost, whereas high production ratio4,5. Roughly, the VS approaches can 
be divided into two categories: ligand-based and structure-based strategies6. The ligand-based VS approaches 
employ ligand properties, such as molecular weight, number of hydrogen bond donors/acceptors, solvent acces-
sible surface area, various molecular fingerprinting, etc., to construct prediction models according to known 
actives. Whereas the structure-based VS approaches additionally employ the target information for the predic-
tions of actives, such as molecular docking, which can give the binding information of ligands upon their targets, 
i.e. the binding poses, the binding affinities, and even the residue-ligand interaction details. In principle, the 
compounds derived from the ligand-based VS approaches may usually be limited in the scope of similar core 
fragment molecules due to the reason that the ligand-based VS approaches can only depend on known actives. 
Whereas, the structure-based VS approaches may find complete new lead compounds by considering the target 
information. Thereafter, the structure-based VS approaches are more feasible in finding new lead compounds 
compared with the ligand-based VS approaches7–10.

Up to date, numerous strategies based on ligand-based and structure-based approaches have been proposed 
for VS. For instance, Sato et al. put forward a ligand-based VS strategy by combining three-dimensional molecu-
lar shape overlap method and support vector machine (SVM) to evaluate 15 drug targets and gained much better 
results compared with other two-dimensional structure-similarity based VS strategies11. Kong et al. developed a 
biologically relevant spectrum by considering the structures of the primary metabolites of organisms12, and found 
it effective in classifying launched drug from other phase candidates13. Our group has proposed a structure-based 
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VS strategy by combining multiple protein structures, including crystallized structures and structures generated 
by molecular dynamics (MD) simulations, and machine leaning approaches6,14. Besides, we have also developed a 
unique structure-based VS approach by combining residue-ligand interaction matrix (also known as Molecular 
Interaction Energy Components, MIEC) and SVM to discriminate the binding peptides from the non-binders 
for protein modular domains15, and the prediction results have been validated by various experiments16,17. 
Since the residue-ligand interaction network can totally reflect the binding specificity of a ligand to the target, we 
can construct the classification models based on machine learning approaches to discriminate small molec-
ular actives from non-actives. Fortunately, some pioneering work have engaged in this subject, for example, Ding  
et al. have evaluated the performance of MIEC-SVM in discriminating strong inhibitors of HIV-1 protease from a large 
database (ZINC database)18 and they have successfully predicted the binding of a series of HIV-1 protease mutants to 
drugs19. Nevertheless, the performance of MIEC-SVM needs to be assessed by the predictions to more drug targets and 
validated by real experiments. Moreover, this approach is parameter-dependent, and therefore the strategy to generate 
the best MIEC-SVM model needs to be addressed. Here, in conjunction with molecular docking, ensemble minimi-
zation, MM/GBSA free energy decomposition, and parameters tuning of SVM kernel function, we discussed how to 
construct a highly performed MIEC-SVM model in three kinase targets (Fig. 1). The best performed MIEC-SVM 
model for the ALK system was then used for VS, and the experimental results showed that the optimized MIEC-SVM 
model had markedly improved screening performance compared with the traditional molecular docking method.

Materials and Methods
Dataset Preparation and Processing. To summarize the best strategy for the MIEC-SVM construc-
tion, three tyrosine kinase targets were at first used for the evaluation, namely ABL (Abelson tyrosine kinase), 
ALK (Anaplastic lymphoma kinase), and BRAF (v-Raf murine sarcoma viral oncogene homolog B). The crystal 

Figure 1. Workflow of the MIEC-SVM based classification model construction and experimental testing. 
(a) molecular docking, the most contributed residues were colored in orange; (b) residue decomposition, two 
strategies were used here: the top 1 docking pose was directly used for energy decomposition; and the top three 
docking poses were at first rescored by MM/GBSA approach, and then the best rescored docking pose was used 
for the decomposition analysis; (c) MIEC matrix construction, different combinations of energy components 
and top contributed residues were used for the matrix construction; (d) hyper-parameters optimization, c and 
γ were tuned using the grid searching approach and the corresponding MCC values were colored from blue 
(bad performance) to red (good performance); (e) model evaluation, the ROC curve, inhibitor probability, and 
Pearson correlation coefficient were employed for the model evaluation; (f) experimental testing, compound 
activity enrichment, enzyme inhibitory rate distribution, and the IC50 curves were used for the comparison of 
the methodologies.
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structures of 2HYY (for ABL)20, 3LCS (for ALK)21, and 3IDP (for BRAF)22, were employed for the evaluation 
due to the good performance of Autodock in reproducing the binding modes of their co-crystallized ligands as 
shown in Table S1 in Supporting Information. All the inhibitors with IC50 (Ki) <  10 μM were obtained from the 
BindingDB database23. In total, 286, 342, and 402 inhibitors were collected for ABL, ALK, and BRAF, respectively. 
Although DUD dataset24 and other strategies25 have been proposed for the decoys construction, we did not try 
to use these strategies to avoid constructing models with limited range of the chemical properties. Thereby, 7000 
compounds randomly chosen from the ChemBridge database by using the Find Diverse Molecules protocol in 
Discovery Studio 2.5 were used as non-inhibitors (or background molecules). The structural diversity was shown 
in Figure S1, where the structural similarity was calculated between the training dataset and the test dataset for 
the known inhibitors (Figure S1 A–C) and non-inhibitors (Figure S1G), and also between the known inhibitors 
and non-inhibitors for each target (Figure S1D–F). To the end, the ratio between inhibitors and non-inhibitors is 
approximate 1:24, 1:20, and 1:17 for ABL, ALK, and BRAF, respectively.

Molecular Docking. Autodock 4.226 with Lamarckian genetic algorithm (LGA)27 was employed for the 
docking mode selection due to its good performance of reproduction capability28–30, Before molecular docking, 
the protein targets were prepared with the Structure Preparation Tool module in Sybyl-X1.1, which added hydro-
gen atoms, repaired side-chains of the imperfect crystallized residues, and optimized the steric hindrance of 
side-chains. The protonation states of the proteins were determined by using PROPKA (version 3.1)31. Autodock4 
atomic radii and Gasteiger partial charges32 were assigned to the macromolecules and the small molecules in 
molecular docking. The conformation selection space of a ligand was set to 18.75 ×  18.75 ×  18.75 Å3 (correspond-
ing to 50 ×  50 ×  50 grids, with each grid 0.375 Å in length) around the binding pocket for each target. Each ligand 
was docked for 10 times to meet the demand of retrieving the top three docking poses with sufficient selection 
space.

Molecular Mechanics Optimization. Prior to molecular mechanics optimization, the ligand-protein 
systems were constructed with antechamber and tleap modules33 in Amber12 simulation package34. AM1-BCC 
charges35 were calculated for the small molecules by using sqm module in Amber12 due to its good performance 
and low computational cost36,37. The cutoff value was set to 8 Å to handle the short range electrostatic and van der 
Waals interactions, while the Particle mesh Ewald (PME) algorithm was employed to deal with the long-range 
electrostatic interactions38. Amber03 force filed39 and General Amber force field (GAFF)40 were used for the 
proteins and small molecules, respectively. Counter-ions of Na + and Cl− were added to neutralize the unbalanced 
charges of the systems. Octahedral-shaped TIP3P water box41 was added for each ligand-protein complex with 
5 Å extended out of the solute to save the computational resources. Three phases of minimization were used to 
optimize each ligand-protein system. In the beginning, 50 kcal/mol · Å2 elastic constant was used to constrain the 
backbone atoms of protein for 1000 cycles (500 cycles of steepest descent and 500 cycles of conjugate gradient 
minimization); then, the elastic constant was decreased to 10 kcal/mol · Å2 for 1000 cycles; finally, the whole sys-
tem was relaxed without any constrain for 3000 cycles. The optimized structure was submitted for free energy 
decomposition to derive the energy components.

Molecular Interaction Energy Components (MIEC) Matrix Calculation. The classifiers based on 
MIEC have been found effective in discriminating the known binding peptides from non-binders for protein 
modular domains in the previous studies16,18,42,43, Here, the MM/GBSA free energy decomposition approach was 
employed for the MIEC matrix construction based on the optimized structures. The residue-ligand interactions 
can be expanded as following:

∆ = ∆ + ∆ + ∆

= ∆ + ∆ + ∆ + ∆
−G G G G

G G G G (1)
residue ligand vdW ele solvation

vdW ele GB SA

where ΔGresidue-ligand denotes the total interaction energy between a residue and a ligand, which is composed of 
four terms: the van der Waal interaction (ΔGvdW), the electrostatic interaction (ΔGele), the polar part of solva-
tion energy (ΔGGB), and the non-polar part of solvation energy (ΔGSA). The modified GB model developed by 
Onufriev et al. was employed for the polar solvation energy calculation44, and the ICOSA algorithm was employed 
to estimate the non-polar part of solvation energy45. Due to the good performance of a relatively higher interior 
dielectric constant in kinase systems46,47, all the free energy decompositions were performed under the interior 
dielectric constant of 4 (εin =  4). Here, the MIEC matrices were constructed by using two strategies based on the 
top 1 docking pose and the best of the top three docking poses due to the fact that the rescoring process may 
re-rank the originally scored binding modes of the small molecules48,49. For the later strategy, MM/GBSA was at 
first used for rescoring of the top three docking poses (εin =  4)47, and then, the best rescored binding pose (of the 
three docking poses) of each system was employed for MM/GBSA decomposition.

MIEC-SVM Model Construction. The energy components were selected and combined (such as the com-
binations of ΔGele and ΔGvdW; ΔGGB and ΔGSA; ΔGele and ΔGGB; ΔGvdW and ΔGSA; and ΔGele, ΔGvdW, ΔGGB, and 
ΔGSA, as shown in Tables S2–S4) to construct the MIEC matrices, where the energy components of the vital res-
idues for the inhibitor binding, i.e. the top 20, 25, and 30 contributed residues (that is, 40, 50, and 60 vectors for 
the combinations of ΔGele and ΔGvdW, ΔGGB and ΔGSA, ΔGele and ΔGGB, ΔGvdW and ΔGSA, and 80, 100, and 120 
vectors for the combination of ΔGele, ΔGvdW, ΔGGB, and ΔGSA; and the top residues were chosen by adding all the 
residue-ligand interaction pairs for all the known inhibitors, averaging the total energies for each residue-ligand 
pair according to the number of known inhibitors, and sorting the averaged residue-ligand pair for each tar-
get), were selected as the eigenvectors for the classification of inhibitors and non-inhibitors. Herein, the SVM 
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algorithm50,51 implemented in libsvm package52 was employed for the model construction. Although SVM has been 
widely used in the scope of drug design due to the high accuracy of nonlinear fitting53–55, it may miss the best model 
if without the hyper-parameters optimization, such as when using the Radial Basis Function (RBF) as the kernel 
function, the parameters cost (c, which scales the penalty of classifying the samples to a false group) and gamma 
(γ, which regulates the inverse radius of influence of the training samples) should be adjusted carefully because 
they may significantly affect the classification performance56. Herein, RBF was also used as the kernel function, 
and grid searching was employed for the parameter tuning for the purpose of finding the best Matthews corre-
lation coefficient (MCC) of the training dataset. The c and γ values were designed exponentially growing against 
2, namely 2n, where n denotes c or γ and goes from − 2 to 10 and − 10 to 2, respectively. The grid space was set to 
0.5 for both c and γ. Thereby, a total of 525 models were constructed for each protocol (Fig. 2, which will be dis-
cussed below). In searching different values of c and γ, different MCC values will be produced (as shown in Fig. 2),  
and the c and γ values corresponding to the highest MCC value were termed as best c and best γ, respectively, which 
were used for the external test dataset validation (Tables S2–S4). Here, half of the molecules (half inhibitors and 
non-inhibitors for each target) were randomly selected as the training set for model construction and the remaining 
molecules were used as the external test set for model verification. To assess the statistical significance of the classi-
fiers, 5-fold cross-validation was employed for the validation of each model (or grid). Due to the unbalance of the 
inhibitors and non-inhibitors (~1:20), a higher weight (1.2) was set for the inhibitors to balance the classification42.

To evaluate the performance of the MIEC-SVM models, besides the MCC values, the sensitivity (SE), specific-
ity (SP), prediction accuracies for inhibitors (Q+) and non-inhibitors (Q−) shown in Equations (2)~(6) were also 
considered for the comparison.

=
+

SE TP
TP FN (2)

Figure 2. Parameter optimization of the training set. The MCC values are plotted from blue to red. The 
different top contributed residues, docking poses, and combinations of energy components are employed to give 
a comparison.
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+
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=
× − ×

+ + + +
MCC TP TN FN FP

TP FN TP FP TN FN TN FP( )( )( )( ) (6)

where TP and FP denote the number of true positives (inhibitors) and false positives, and TN and FN represent 
the number of true negatives (non-inhibitors) and false negatives. Moreover, the AUC value (area under curve) 
of the ROC (receiver operating characteristic) curve was also employed to quantitatively evaluate the prediction 
accuracy of each model based on the probability of a molecule to be an inhibitor given by the support vectors. The 
workflow of the data processing, model construction, and experimental testing was briefly summarized in Fig. 1.

Virtual Screening and Compounds Selection. To evaluate the performance of the optimized 
MIEC-SVM model in real experiments, the ALK system was used for the experimental testing. Here, the best 
performed MIEC-SVM model (model 15 in Table S3 with top 1 docking pose) for the ALK system was used to 
virtually screen the Specs database (containing ~220,000 compounds). Due to the high computational cost of the 
MIEC matrix calculation, herein, a hierarchical strategy was used for virtual screening: (1) all the compounds in 
Specs were docked into the binding site of ALK by Autodock 4.2 and scored by the Autodock scoring function; 
(2) the top 30,000 molecules ranked by the Autodock score were extracted for the MIEC matrix calculation 
and scored by the optimized MIEC-SVM model; (3) the top 300 compounds ranked by the MIEC-SVM model 
(inhibitor-probability derived from the SVM algorithm) and Autodock score were then respectively filtered by 
Lipinski’s “rules of five” (compounds with violation number ≥  2 were eliminated) and the drug-likeness model 
developed by our previous study57,58; (4) in order to maximize the chemical diversity of the collected compounds 
for bioassays, the remaining compounds were structurally clustered, and the compounds with the Tanimoto sim-
ilarity matrix computed from the MACCS structural keys higher than 0.80 were clustered into the same group59. 
The top molecule in each group was then sorted by the inhibitor-probability based on the MIEC-SVM model or 
the docking score based on Autodock. Finally, the top 50 compounds in each group (ranked by the MIEC-SVM 
probability and the Autodock docking score) available from Specs were purchased for experimental testing 
(purity ≥  95%, confirmed by Specs, Table S5).

Reagents and Materials for Bioassays. All reagents and anhydrous solvents were obtained from com-
mercial sources and used as received. The positive control inhibitors of ALK, crizotinib and ceritinib, were pur-
chased from Bangshunda Technology and Selleck Chemicals, respectively. The compounds were dissolved in 
100% dimethyl sulfoxide (DMSO) as a 10 mM stock solution. The final DMSO concentration in each reaction 
was less than 1%. Purified recombinant human ALK protein (Catalog number: PV3867) as well as reagents for 
TR-FRET assay, including Lantha Screen™  Tb-PY20 (Catalog number: PV3552), Fluorescein-Poly GT (Catalog 
number: PV3610), ATP (Catalog number: PV3227), Kinase Quench Buffer (Catalog number: P2832), Kinase 
Buffer (Catalog number: PV3189), and Antibody Dilution Buffer (Catalog number: PV3574), were all obtained 
from Life Technologies Inc.

In vitro Inhibitory Activity Assay of ALK. Lantha Screen™  kinase assay based on TR-FRET technology 
was used to measure the inhibitory activity of the screened compounds. All the assays were carried out in 384-well 
plate format. The 4 ×  test compounds were firstly prepared before the enzyme reaction starts. The 4 ×  recombi-
nant human ALK protein and 2 ×  Substrate/ATP mixture were separately prepared in 50 mM HEPES (pH =  7.5), 
0.01% BRIJ-35, 10 mM MgCl2, 4 mM MnCl2, 1 mM EGTA, and 2 mM DTT. The final 10 μL kinase reaction con-
sists of 5 μL 1 ×  Substrate/ATP mixture (0.2 μM substrate and 5 μM ATP), 2.5 μL ALK (5 ng/ml ALK protein), and 
2.5 μL 1 ×  test compounds with desired concentration. The assay plate was shook on a plate shaker for 30 seconds 
to mix the reactions thoroughly. After 1 hour kinase reaction incubation at room temperature (20 ~ 25 °C), 10 μL 
of pre-prepared 20 mM EDTA and 4 nM Tb-labeled antibody solution was then added to terminate the kinase 
reactions and to initiate antibody binding, and the assay plate was incubated for another 1 hour at room tem-
perature. Then, the assay plate was placed into a fluorescence plate reader (BioTek Synergy™  4) to measure both 
fluoresce in and terbium emission signals (excitation: 340 nm; emission: 520 and 495 nm, respectively) with 100 μs 
delay time and 200 μs integration time. To determine the IC50 values, the resulted inhibitory activity calculated 
from TR-FRET emission ratio (i.e. fluoresce in emission intensity/terbium emission intensity) was plotted against 
the concentration of inhibitor, and the data was fitted to a dose-response curve with a variable slop.

Results and Discussion
Vital Residues for Model Construction. To construct an effective classification model, distinguishable 
features should exist between the positive and negative samples, though it may be hard to be discriminated by 
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simple observations. In the spirit of MIEC-SVM model, it considers only the binding specificity of the known 
inhibitors and non-inhibitors rather than the chemical structures of the known inhibitors. The model can dis-
criminate the specific energetic spectra of the systems with even very little difference, such as a series of similar 
drug derivatives against a same protein60–62, a same drug against homologous proteins (drug selection)63,64 or 
protein mutants (drug resistance)65–67, etc. Therefore, the MIEC-SVM model is superior to most of the ligand/
structure-based methods that usually bias the models to screen some known structures in the training set.

Here, the energetic contributions based on vital ligand-residue pairs were employed as the classification fea-
tures to discriminate the inhibitors from non-inhibitors. The energy contributions of the top 11 contributed 
residues (within ~4 Å of the co-crystallized ligands for the three targets) to the inhibitors and non-inhibitors for 
the three targets were averaged and shown in Figure S2. Apparently, the energy contributions of the vital residues 
to the inhibitors (red bar) are always larger than those to the non-inhibitors (green bar) for all the three systems, 
implying that it is intrinsically distinguishable between the inhibitors and non-inhibitors by using the molecular 
interaction energy components contributed from the vital residues.

Importance of Tuning Hyper-parameters in MIEC-SVM Model Construction. As has been dis-
cussed above, two hyper-parameters (c and γ) may significantly affect the prediction performance of the models 
when using the RBF kernel function56. However, numerous studies ignored this key step by just using the default 
parameters (such as in libsvm c =  0 and γ =  log2(1/n_features), with 2n in unit)18,19,42,43,54, and thereafter may loss 
the best model. Here by using the grid searching approach, the c and γ values were optimized by finding the grid 
with the highest MCC value to construct the best prediction models. Afterward, the best models were validated by 
the predictions to the prior prepared test sets. As shown in Fig. 2, remarkable difference was observed of the MCC 
values when using different combinations of the c and γ values for the training set. The MCC values of the training 
set vary from 0.2 (blue grids) to 0.7 (red grids) for the different groups of c and γ (grids were not colored when 
the predicted MCC less than 0.2). By using different combinations of energy components and docking poses  
(will be discussed in the following), 30 best performed MIEC-SVM models were constructed for each target as 
shown in Tables S2–S4. Interestingly, there is no best models located in the grid of c =  0 (or 2c =  1), implying that 
it may miss the best choice to construct the SVM classifiers based on the default parameters.

The correlation of the top 30 models for each target is plotted in Figure S3. Although the MCC values are large 
for the models based on the different combinations of the selected classification features (as illustrated in Tables 
S2–S4), high correlation coefficients were found across all the systems (r =  0.7 ~ 0.9), meaning that the models 
in each combination are stable and not over-fitted. Thereby, it is reliable to analyze the predicted results of the 
external test set based on the best model for each target (herein, the best model was chosen based on the highest 
training set MCC values for each target). The probability of a molecule to be an inhibitor was estimated by the 
SVM model as shown in Fig. 3A1–A3, where model 15 of ABL (based on the top 1 docking pose strategy), model 
5 of ALK (based on the best of the top three docking poses strategy), and model 15 of BRAF (based on the best 
of the top three docking poses strategy) are plotted. It can be found that most of the non-inhibitors (blue cycles) 
are located at the bottom of the figures (Fig. 3A1–A3), suggesting that a large part of the molecules are recog-
nized as in-actives, which is consistent with the fact that only few compounds natively show activities to the drug 
target. The corresponding ROC curve for each test set was also calculated based on the probability as shown in 
Fig. 3B1–B3, where the inflection points are shown in green dot lines (the inflection points were measured by 1% 
false positive rate of the test set as the fact that actives always exist in the chemical background, though the ratio 
is very low, usually <  1%).

To give a comparison, the ROC curve for the test set based on the top 1 docking scores of the inhibitors and 
non-inhibitors were also plotted for each target (Fig. 3C). As shown in Fig. 3B,C, the AUC values based on the 
best MIEC-SVM models (0.866 for ABL, 0.937 for ALK, and 0.892 for BRAF, Fig. 3B1–B3) are all significantly 
higher than the corresponding results based on the top 1 docking scores (0.848 for ABL, 0.898 for ALK, and 
0.816 for BRAF, Fig. 3C1–C3), with the AUC values increased by ~2% for ABL, ~4% for ALK, and ~8% for BRAF. 
Besides, it shows that the inflection points of the ROC curves based on the SVM probabilities (green dot lines in 
Fig. 3B) are also much higher than the corresponding docking results (red dot lines in Fig. 3C) (0.4 ~ 0.5 versus 
0.1 ~ 0.3 for the MIEC-SVM models and molecular docking, respectively), meaning that there is more opportu-
nity to find more inhibitors with much lower false positive rate by using the hyper-parameters-tuned MIEC-SVM 
models. Taken all, considering that a little improvement of the model accuracy (i.e. 1%) will remarkably decrease 
the false positive rate of VS using a large database, it should be a good choice to use the hyper-parameters-tuned 
MIEC-SVM models for structure-based VS.

High Quality Model Construction by using More Energy Components. As the fact that the perfor-
mance of a prediction model is usually affected by multiple factors such as the selection of different combination 
of feature vectors14,42,56,68, apart from tuning the kernel function parameters, we also optimized the MIEC-SVM 
models by considering different combinations of the feature components, such as different number of most con-
tributed residues (top 20, 25, and 30 residues), different docking poses (top 1 docking pose and the best of the top 
three docking poses), and different energy components (ΔGele and ΔGvdW; ΔGGB and ΔGSA; ΔGele and ΔGGB; ΔGvdW 
and ΔGSA; and ΔGele, ΔGvdW, ΔGGB, and ΔGSA). Although Ding et al. found that the use of the top 30 most contrib-
uted residues may be the best choice to construct the MIEC-SVM models for the HIV-1 protease18, we show here 
that there is no remarkable difference when using the top 20, 25, or 30 most contributed residues to construct the 
MIEC-SVM models for the tyrosine kinase systems. As shown in Fig. 2, similar distribution patterns of the MCC 
values were found across all the groups using different numbers of top contributed residues (here, the three panels 
in each line within a same target, containing the top 20, 25 and 30 most contributed residues, was considered as 
a group), indicating that the MIEC-SVM models are not too sensitive to how many top contributed residues are 
used for model construction (at least for the case that more than 20 top contributed residues were used).
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Different from the issue of selecting how many most contributed residues for model construction, the 
MIEC-SVM models are more sensitive to which energy components are used. As shown in Tables S2–S4, the 
MCC values are quite different for the training sets. The models based on the combinations using all the four 
energy components, namely ΔGele, ΔGvdW, ΔGGB, and ΔGSA, have better performance than those based on the 
other combinations of energy components. For instance, in the system of BRAF, the MCC values increase from 
0.44 for the combination of ΔGGB and ΔGSA (model 4 in Table S4) to 0.63 for the combination of the four energy 
components (model 5 in Table S4). Moreover, as shown in Tables S2–S4, the combinations of ΔGele and ΔGvdW 
always yield better models than those of ΔGele and ΔGGB across all the constructed models. The reason why 
the combinations of ΔGele and ΔGGB always perform worse than those of ΔGele and ΔGvdW may be attributed 
to the high correlation between the electrostatic interactions (ΔGele) and the polar part of solvation energies 
(ΔGGB) upon the binding of small molecules. As shown in Figure S4A1–C1, very high negative correlations 
(r =  − 0.80 ~ − 0.95) between the electrostatic interactions and the polar part of solvation energies exist for most 
contributed residues among all the three systems (the energies were calculated by summing up the energy com-
ponents of the most contributed residues in Figure S2 for all the inhibitors and non-inhibitors), implying that 
much information derived from the features is redundant and it is not sufficient to use just the two features (ΔGele 
and ΔGGB) to construct models. On the contrary, there is no obvious correlations (r =  − 0.11 ~ 0.16) between the 
electrostatic (ΔGele) and van der Waals (ΔGvdW) interactions for the three systems as shown in Figure S4A2–C2, 
thereby supplying sufficient information for model construction. Nevertheless, the more energy components are 
used, the more information of features can be included, and the higher quality models can be constructed. One 
may argue that it may be a better way to normalize or reduce dimensions (such as using principle component 
analysis, PCA) for the model construction. Considering that the energies calculated here are all based on the 
same method (or calculating framework) with the same unit (kcal/mol), to keep the explicit physical meaning, we 
would like not to use any scaling or dimension reduction methods for the model construction.

The Performance of Using More Docking Poses for Models Construction. As the rescoring pro-
cess (MM/GBSA) may re-rank the docking poses derived from the original docking results47,49, we rescored the 

Figure 3. Comparison of the ROC curves of the SVM probabilities and the docking poses for the test set of 
the three systems. The probability of a molecule to be an inhibitor is plotted in panel (A), where the inhibitors 
and the non-inhibitors are colored in red and blue, respectively. The ROC curves based on SVM probabilities 
(the inflection points are shown in green dot line) and docking scores (the inflection points are shown in red 
dot line) are illustrated in panel (B,C), respectively. The inflection points were measured by 1% false positive 
rate (Considering the test set contains 3500 non-inhibitors, the point with 35 non-inhibitors classified into the 
inhibitor group was used to determine the inflection point position).
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top three docking poses by the MM/GBSA approach (with the top rescored poses used for model construction). 
It is well known that docking with multiple pocket conformations derived from different crystal structures is 
usually superior to one using a single pocket conformation6,14. However, it will be much time consuming to 
construct MIEC-SVM models in considering multiple crystal structures. Nevertheless, the optimization of the 
ligand-receptor complex in the MIEC-SVM model construction actually introduced induced-fit effect upon the 
ligand binding, which may be superior to the models constructed based on rigid receptor docking. Thereby, 
herein, two strategies were used for model construction: (1) the top 1 docking poses derived from Autodock were 
directly decomposed into residue-ligand pairs for model construction; and (2) the top three docking poses were 
rescored by the MM/GBSA approach at first, and then, the top 1 rescored poses were submitted to energy decom-
position for model construction. As shown in the lower half of Fig. 2, which denotes the models derived from the 
best of the top three docking poses, similar patterns of the MCC distributions were found for the models based 
on the top 1 docking poses (the upper half of Fig. 2), meaning that the parameter optimization will not depend 
on which docking pose is used, but the MCC values are very different when using different docking poses. For 
instance, the best models derived from the top 1 docking pose strategy are mostly better than those derived from 
the best of the top three docking poses strategy in the system of ABL (Table S2), whereas, in the system of BRAF, 
the best models derived from the multiple docking poses strategy always perform better than those derived from 
the top 1 docking pose strategy (Table S4). Thereby, it may be system-specific whether to use multiple docking 
poses for MIEC-SVM model construction.

Comparison of the Optimized MIEC-SVM Model and the Traditional Molecular Docking Method 
based on Experimental Testing. The above issues have discussed how to generate the best MIEC-SVM 
models for virtual screening. To test whether the optimized MICE-SVM model is really better than the traditional 
molecular docking methods, the best-performed MIEC-SVM model for the ALK system (model 15 in Table S3) 
was employed to virtually screen the Specs database. Before experimental testing, we analyzed and compared 
the distributions of three important molecular properties (molecular weight, octanol/water partition coefficient, 
and aqueous solubility) for the top 300 molecules predicted by MIEC-SVM and those predicted by Autodock. As 
shown in Fig. 4, the molecular properties of the top 300 molecules predicted by MIEC-SVM are much closer to 
the averaged properties of the known ALK inhibitors (red dot lines in Fig. 4). Besides, we analyzed the violation 
number of Lipinski’s “rules of five” for the top molecules predicted by MIEC-SVM and Autodock. Apparently, as 
shown in Table 1, most of the top 300 molecules predicted by MIEC-SVM are drug-like compounds (86% with the 
violation number ≤  1), while most of the top 300 molecules predicted Autodock are non-drug-like compounds 
(with only 30.3% exhibiting violation number ≤  1), suggesting that the molecules predicted by MIEC-SVM are 
more drug-like than those predicted by Autodock.

Thereafter, the top 50 molecules in each strategy (MIEC-SVM and Autodock methods) remained from 
the drug-likeness filtering and structural clustering were purchased and submitted to enzyme-based bioassay. 
Overall, 7 out of 50 (14%) tested compounds chosen by the MIEC-SVM model exhibited remarkable ALK inhib-
itory activity with IC50 <  10 μM (4 molecules showed nM level of activity as shown in Table 2), which is signifi-
cantly higher than those chosen by Autodock (3 out of 50 molecules, namely hit rate of 6%, and 2 molecules in 
nM level of activity as shown in Table 2) and consistent with the conclusion that MIEC-SVM model usually goes 
with higher enrichment ratio (Fig. 3). Moreover, the averaged ALK inhibitory ratio of the tested molecules chosen 

Figure 4. Chemical properties of the top 300 compounds scored by MIEC-SVM (yellow bars) and the top 
300 compounds scored by Autodock (blue bars) for ALK. The averaged values of the corresponding chemical 
properties of the known ALK inhibitors were shown in red dot lines. The distributions of the molecular weight 
(MW), the predicted octanol/water partition coefficient (logP), and the predicted aqueous solubility (logS) were 
shown in panels (A–C), respectively.

Lipinski violation rate (%)  > 50% inhibitory 
rate at 2 μg/ml (%)

Averaged inhibitory rate of the 
purchased 50 molecules (%)

Significantly inhibitory 
number (<10 μM)0 1 ≥2

MIEC-SVM 46.7 39.3 14.0 14 15.0 7

Autodock 3.3 27.0 69.7  6  9.7 3

Table 1. Overall experimental result of MIEC-SVM model and Autodock for ALK system.
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Compound Specs ID IC50 (μM) Method Ranka MWb LogPc LogSd Similaritye

Crizotinib – 3.33 nM – – 450.3 4.73 − 2.96 –

Ceritinib – 3.94 nM – – 558.1 3.90 − 2.54 –

M1 AQ-390/42708910 0.359 MIEC-SVM 20 440.6 4.09 − 5.51 0.140

M2 AQ-390/42425809 0.513 MIEC-SVM 10 375.9 5.44 − 6.00 0.165

M3 AN-465/14952108 0.515 MIEC-SVM 19 460.6 6.89 − 7.19 0.149

M4 AM-900/40673285 0.863 MIEC-SVM 14 412.9 2.42 − 4.47 0.179

M5 AO-080/13867269 1.531 MIEC-SVM 36 337.4 4.30 − 5.44 0.367

M6 AQ-390/43364010 4.450 MIEC-SVM 7 329.3 − 0.28 − 3.15 0.147

M7 AQ-390/40910467 6.052 MIEC-SVM 23 409.5 3.39 − 5.27 0.170

M8 AS-871/43476359 11.529 MIEC-SVM 39 435.6 3.52 − 5.08 0.183

M9 AO-081/15045283 18.232 MIEC-SVM 41 403.5 3.75 − 5.15 0.208

A1 AK-968/15362399 0.572 Autodock 46 642.8 1.30 − 3.07 0.173

A2 AG-690/11426045 0.832 Autodock 78 517.6 4.17 − 6.17 0.190

A3 AN-919/13953019 1.535 Autodock 118 648.8 3.29 − 4.81 0.156

Table 2. Experimentally determined half-maximal inhibitory concentrations (IC50) and the corresponding 
chemical properties of the inhibitors of ALK. aRanks derived from inhibitor-probability based on MIEC-
SVM and docking score based on Autodock. bMolecular weight. cPredicted octanol/water partition coefficient. 
dPredicted aqueous solubility (S in mol/L). ePairwise Tanimoto similarity indices based on the FCFP_6 
fingerprints between each inhibitor and the known ALK inhibitors.

Figure 5. Binding modes and experimental IC50 curves of the ALK inhibitors (IC50 < 10 μM). The protein 
and ligands are shown in yellow surface and cyan stick models, respectively. Inhibitors M1-M7 (panels A–G) 
were identified by MIEC-SVM model, and inhibitors A1–A3 (panels H–J) were identified by Autodock 4.2.
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by MIEC-SVM is also significantly higher than that chosen by Autodock (15% versus 9.7%). The binding modes, 
chemical structures, and IC50 curves of the 10 actives (IC50 <  10 μM) are shown in Fig. 5.

Besides, to evaluate the novelty of these identified inhibitors with respect to known ALK inhibitors, the pair-
wise Tanimoto similarity indices based on the FCFP_6 fingerprints for these inhibitors in Table 2 with the known 
ALK inhibitors obtained from the BindingDB database were calculated through the Find Similar Molecules by 
Fingerprints protocol in Discovery Studio 2.5. It can be found in Table 2 that most of the inhibitors identified by 
the MIEC-SVM model have low Tanimoto similarity to the known ALK inhibitors (most molecules <  0.2, with 
only one molecule >  0.3, Table 2), exactly exhibiting the fact that the MIEC-SVM model considers more about the 
binding specificity of the small molecules rather than the chemical structure of the known inhibitors.

Conclusion
By using multiple parameters tuning strategy, we systemically evaluated the performance of MIEC-SVM models 
in discriminating small molecule kinase inhibitors from non-inhibitors. We found that the optimization of the 
hyper-parameters embedded in the kernel function of SVM is always necessary since the default parameters can-
not give the best result for any case of the studied systems. However, it is system-specific whether to use multiple 
docking poses for MIEC-SVM model construction. Besides, the MIEC-SVM models are not too sensitive to 
how many energy components are used, such as the models based on the MIEC matrices generated from of the 
top 20, 25, or 30 residues yield similar prediction capabilities. Whereas, the models are very sensitive to which 
energy components are employed for model construction, for example, the models based on the combinations 
of ΔGele, ΔGvdW, ΔGGB, and ΔGSA performed much better than those based on the other reduced combinations. 
By using the hyper-parameters-tuned MIEC-SVM model, we successfully found 7 significant inhibitors of ALK 
(IC50 <  10 μM) in 50 purchased compounds (with 4 in nM level), suggesting that the hyper-parameters-tuned 
MIEC-SVM model is a powerful tool for structure-based virtual screening.
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