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Abstract: We here report a novel strategy to control the bioavailability of the fibrillizing parathyroid
hormone (PTH)-derived peptides, where the concentration of the bioactive form is controlled by
an reversible, photoswitchable peptide. PTH1–84, a human hormone secreted by the parathyroid
glands, is important for the maintenance of extracellular fluid calcium and phosphorus homeostasis.
Controlling fibrillization of PTH1–84 represents an important approach for in vivo applications, in
view of the pharmaceutical applications for this protein. We embed the azobenzene derivate 3-{[(4-
aminomethyl)phenyl]diazenyl}benzoic acid (3,4′-AMPB) into the PTH-derived peptide PTH25–37 to
generate the artificial peptide AzoPTH25–37 via solid-phase synthesis. AzoPTH25–37 shows excellent
photostability (more than 20 h in the dark) and can be reversibly photoswitched between its cis/trans
forms. As investigated by ThT-monitored fibrillization assays, the trans-form of AzoPTH25–37 fibril-
lizes similar to PTH25–37, while the cis-form of AzoPTH25–37 generates only amorphous aggregates.
Additionally, cis-AzoPTH25–37 catalytically inhibits the fibrillization of PTH25–37 in ratios of up to
one-fifth. The approach reported here is designed to control the concentration of PTH-peptides,
where the bioactive form can be catalytically controlled by an added photoswitchable peptide.

Keywords: azobenzene; photoswitchable peptides; fibrillization; parathyroid hormone; aggregation

1. Introduction

Fibrillization of proteins and peptides is a supramolecular process [1,2] that leads
to the formation of peptide aggregates, containing a cross-β-sheet motif [3]. It involves
multiple steps [4] and is associated with many diseases such as Alzheimer’s disease,
Parkinson’s disease or diabetes type II [5–7]. However, in the past decades, it has also
been associated with amyloids with distinct physiological functions, so-called functional
amyloids, which are found in lower organisms [8–11]. Subsequently, functional amyloids
were also discovered in humans, whereby the amyloid can be the active physiological
form [12,13] or the storage form of peptide hormones [14].

The parathyroid hormone, abbreviated PTH, is a human hormone secreted by the
parathyroid glands [15], with PTH-like peptides also known from other animals [16,17].
It is expressed as a 115 residue pre-pro-protein, whereby the first 25 amino acids at the
N-terminus (referred to PTH−31–−7) serve as a signaling peptide for the transport to the
endoplasmic reticulum and are removed by a signal peptidase [18]. The formed pro-peptide
is subsequently transferred to the Golgi apparatus and the N-terminal six amino acids
(referred to PTH−6–−1) are proteolytically removed [19]. Before mature PTH1–84 is released
into the blood, it is stored in secretory granules as amyloid fibrils [20]. The physiological role
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is well studied [21,22], being important in the maintenance of extracellular fluid calcium and
phosphorus homeostasis. The receptor is mainly activated through the first 34 N-terminal
amino acids [23], wherefore recombinant PTH1–84 and recombinant PTH1–34 are approved
drugs against osteoporosis, Natpara® and Forteo®, respectively. However, its fibrillization
has barely been investigated. Thus far, it is known that the amyloid fibrils of PTH1–84
are formed by the amino acid residues R25-L37, and the thermodynamic stability of the
fibrils is sufficiently low to dissociate after dilution [20]. Thus, control over the fibrillization
of amyloids and PTH specifically represents an important approach for controlling its
factual concentration for in vivo applications, placing modulators of fibrillization and thus
reversible fibrillization into the focus of pharmaceutically applicable proteins [24–27].

In the past decades, the photoinduced switching of protein functionalities has emerged
as an important concept to modulate protein function, often by modulations in binding
specificity between proteins and ligands. Thus, not only enzymes have been equipped with
photosensitive switches, but also larger protein complexes, involved in many physiological
or neurological functions [28]. To this end, artificial photoswitches are embedded into either
the main chain or side chains of polypeptides, in order to change their secondary structures
by photoinduced conformational changes of the photoswitches. Thereby, a plethora of
different photoswitches, such as those based on cis-trans-isomerization of azo-dyes [29,30]
stilbenes [31] and hemithioindigos [32,33], have been developed. Important for the proper
use of a specific photoswitch inside a polypeptide chain is not only the quest to retain
the initial (functional) secondary structure of the protein, but also to achieve a reasonably
stable conformation after photoswitching, so as to allow for sufficient time to exert the
desired effect. Many examples of such sufficiently stable and also reversible photoswitches
have been reported, allowing one to modulate several expects of protein function [34–39].
Here, we report on an approach to modulate the fibrillization of PTH, equipped with a
photoswitch at a specific position in the peptide sequence, in order to reversibly trigger its
aggregation/disaggregation (see Figure 1).
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Figure 1. (a) Primary sequence of PTH25–37 and the azobenzene-modified PTH25–37 (AzoPTH25–37,
azobenzene-moiety highlighted in red). (b) Cis-trans-isomerization of the incorporated 3,4′-AMPB
switch. (c) Equilibrium of the monomeric peptides PTH25–37 and AzoPTH25–37 in both forms and
their aggregates.

In view of the functional design of the modified PTH25–37, we sought to embed the
photoswitch into a region of the protein where aggregation is still possible, but only in a
specific (untriggered) conformation of the photoswitch, whereby fibrillization should be
inhibited after the conformational change. As a model system, we chose peptides derived
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from the PTH fibril core structure, including the amino acids 25R-37L (Figure 1a) [20], which
is able to form fibrils itself. In addition, we investigated the influence of both conformations
on the fibrillization of the unmodified peptide. As the photoswitch we chose a structural
motif from the class of azobenzenes, as they are well known for enabling reversible control
of peptide conformation [29,34,39–41]. Specifically we chose the azobenzene derivate
3-{[(4-aminomethyl)phenyl]diazenyl}benzoic acid (3,4′-AMPB; Figure 1b) [42], which is
known to introduce a significant geometric change. 3,4′-AMPB displays both: a high
photoisomerization yield and a sufficient thermodynamically stability of the cis-isomer [41].
If desired, the photoswitch can be reversed via irradiation at 405 nm, or thermally, with
a half-life time of more than 20 h in the dark. We hypothesized that the incorporation
of the azobenzene into the backbone would allow us to switch between the cis- and the
trans-conformation, whereby one of them is able to fibrillize and the other one is not.
Furthermore, azobenzenes in their cis-conformation are known to mimic β-hairpins, which
allowed us to investigate the hypothesis if the PTH fibrils possess a turn region like amyloid
fibrils from other peptides [43–45].

2. Materials and Methods
2.1. General

All technical solvents were distilled prior to use. Air- and moisture-sensitive reactions
were carried out in flame-dried glassware under atmospheric pressure of nitrogen. 2-(6-
Chloro-1-H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium hexafluorophosphate (HCTU), N-
methyl-morpholine (NMM), N,N-dicyclohexylcarbodiimide (DIC), N-Hydroxybenzotriazole
(HOBT), trifluoroacetic acid, 4-aminobenzylamine, and oxone® were purchased from Sigma
Aldrich (Taufkirchen, Germany). 9-Fluorenylmethyl-N-succinimidylcarbonat (Fmoc-OSu)
was received from Fluorochem. 3-Aminobenzoic acid was purchased from Merck (Darmstadt,
Germany). All these chemicals were used without further purification.

NMR spectra were recorded on a Varian Gemini 400 or 500 spectrometer (400 MHz or
500 MHz; Agilent Technologies, Waldbronn, Germany) at 27 ◦C in DMSO–d6 (99.8 Atom%D;
Chemotrade, Düsseldorf, Germany) or D2O (99.8 Atom%D; Sigma-Aldrich, Taufkirchen,
Germany). Chemical shifts are given in ppm and referred to the solvent residual signal
(DMSO–d6: δ = 2.50 ppm and δ = 39.5 ppm; D2O: δ = 4.79 ppm). The following abbreviations
were used for 1H- and 13C-NMR peaks’ assignment: s = singlet, d = doublet, t = triplet,
td = triplet of doublet, and m = multiplet. MestReNova (version 6.0.2–5475, Mestrelab
Research S.L., Santiago de Compostela, Spain) was used for data interpretation.

ESI-ToF mass spectrometry was performed on a Bruker Daltonics microTOF (Bruker
Corporation, Billerica, MA, USA). Samples were dissolved in HPLC-grade solvents (MeOH,
THF, or mixtures; Sigma Aldrich, Taufkirchen, Germany) at concentrations of 0.1 mg/mL
and measured via direct injection with a flow rate of 180 µL/h using the positive mode
with a capillary voltage of 4.5 kV. The spectra were analyzed with otofControl (version 3.4,
Bruker Daltonik, Bremen, Germany).

2.2. Organic Synthesis

Fmoc-protected 3,4′-AMPB was synthesized in two steps according to literature
procedures [42,46].

2.3. Peptide Synthesis and Purification

Solid-phase peptide synthesis was utilized on an automated peptide synthesizer
MultiPep RS (Intavis AG, Koeln, Germany) using standard Fmoc-chemistry and preloaded
resins. Standard coupling of all protected natural amino acids was performed as single
couplings in dimethylformamid (DMF) using 5 equivalents of amino acids, HCTU as
coupling reagents, and 10 equivalents of NMM as base for 1 h at room temperature. Special
building groups, such as Fmoc-3,4′-AMPB, were coupled with 3 equivalents using DIC
and HOBT in DMF/N-methyl-2-pyrrolidone (NMP) at room temperature and with gentle
shaking in the dark overnight.
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The N-terminal Fmoc-protecting group was removed by washing the resin with 20%
piperidine for 20 min. The final side chain deprotection and cleavage from the resin
employed a mixture of trifluoroacetic acid and water (90:10 Vol%) with gentle agitation for
2 h at room temperature.

The crude peptides were purified to >95% purity using preparative RP-HPLC (Gilson,
Limburg, Germany). For both analytical and preparative use, the mobile phase was a
mixture of water (eluent A) and acetonitrile (eluent B), respectively, each containing 0.1%
trifluoroacetic acid. Samples were eluted with a linear gradient from 5% B to 95% B in 15 min
for analytical runs and in 90 min for preparative runs on a semipreparative PLRP-S column
(300 × 25 mm, 8 µm; Agilent Technologies, Waldbronn, Germany). Finally, all peptides
were characterized by analytical HPLC Dionex Ultimate 3000 (Thermo Fisher Scientific,
Dreieich, Germany) using a PLRP-S column (150 × 4.6 mm, 3 µm; Agilent Technologies,
Waldbronn, Germany) and MALDI-MS (Bruker Microflex LT, Bremen, Germany), which
gave the expected [M+H]+ mass peaks.

2.4. Azobenzene Peptide Photoisomerization

Trans→ cis isomerization was performed by irradiating the dissolved peptide in a
1 cm quartz cuvette for 30 min with light of 340 nm wavelength using a 50 W mercury
lamp (VEB) and a 340 nm band pass filter (FB340-10, Thorlabs, Bergkirchen, Germany)
under stirring. For cis→ trans isomerization, the dissolved peptide was irradiated with
light of 405 nm wavelength using a 1.4 W LED (M405L4, Thorlabs, Bergkirchen, Germany)
for 30 min under stirring.

2.5. Aggregation Kinetics

ThT-monitored fibrillization assays of artificial peptides and mixtures with PTH25–37
were investigated by fluorescence intensity measurements using thioflavin T (ThT) as
fluorescent dye. Lyophilized peptides were dissolved in 50 mM Na2HPO4 buffer so-
lution with a pH value of 7.4 in a concentration of 2 mg/mL and kept on ice for the
next steps. The samples were centrifuged at 13,000× g rpm for 10 s and the concentra-
tions were determined with a JASCO V-660 absorbance spectrometer (JASCO, Pfungstadt,
Germany; PTH25–37 by absorbance at 205 nm and the molar extinction coefficient of
49,310 cm−1M−1; trans-AzoPTH25–37 by absorbance at 327 nm and the molar extinction
coefficient of 13,000 cm−1M−1). Cis-AzoPTH25–37 was produced as described before. The
solutions were centrifuged at 10,000 rpm for 1 h at 4 ◦C, the supernatant was transferred
to another tube. The protein solutions were mixed in the desired ration and diluted with
50 mM Na2HPO4 buffer (pH 7.4) to obtain final concentrations of 0/100 µM PTH25–37,
50 µM ThT, and 0/10/20/50/100 µM AzoPTH25–37. For each sample, a total volume of
480 µL was prepared and 3 × 150 µL were transferred to a medium binding 96-well plate
(Greiner Bio-One, Kremsmünster, Austria). The plate was sealed with a microplate cover.
The fluorescence intensity was monitored at 37 ◦C using a BMG FLUOStar Omega multi-
mode plate reader (BMG LABTECH, Ortenberg, Germany) using fluorescence excitation
and emission wavelengths at 460 nm and 485 nm, respectively. One measurement cycle of
5 min consisted of double-orbital shaking for 150 s and incubating for 150 s.

2.6. Transmission Electron Microscopy (TEM)

TEM images were taken with an electron microscope (EM 900; Zeiss, Oberkochen,
Germany) at 80 kV acceleration voltage. For preparation, 5 µL of the peptide solution were
added on Formvar/Cu grids (mesh 200). After 3 min of incubation, the grids were gently
cleaned with water for o1 min and then negatively stained using uranyl acetate (1%, w/v)
for 1 min.

2.7. Seeding Assay

The seeding assay follows the same procedure as the ThT-monitored fibrillization
assay for the determination of the aggregation kinetics. In addition, the final samples
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contained 20 µM of seeds from trans-AzoPTH25–37 fibrils. The seeds were prepared via
ultrasonification of a 100 µM mature trans-AzoPTH25–37 fibrils solution (Sonifier W-250 D,
Branson Ultraschall, Dietzenbach, Germany; 15 times, 1 s 10% amplitude, 1 s pause).

3. Results & Discussion
3.1. Chemistry

To investigate the fibrillization behavior of PTH25–37, the azobenzene switch was
incorporated directly into the peptide backbone. We selected the 3,4′-azobenzene motif
(Figure 1b) [42]. As it possesses suitable photochemical properties, e.g., an excellent half-life
time with a stability larger than 20 h and switching wavelengths >300 nm. These are easily
addressable by our photophysical equipment and also avoid eventual photodegradation.
The synthesis was conducted in two steps (Figure 2a): in the first step, we conducted the
Fmoc-protection of 2 [46], which in the second step reacts in a Mills reaction with an in
situ-generated nitroso compound 3 to obtain the Fmoc-protected 3,4′-AMPB 5 in an overall
yield of 68%.
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Figure 2. (a) Synthesis of Fmoc-protected trans-3,4′-AMPB 5. (b) Solid-phase peptide synthesis
strategy towards the peptide AzoPTH25–37.

The modified azobenzene switch 5, bearing the proper functionalities for Fmoc-
chemistry, was incorporated into the peptide backbone of PTH25–37 via solid-phase peptide
synthesis (Figure 2b). It replaces V31 in the artificial peptide AzoPTH25–37, due to its central
position along the peptide, expecting the largest impact on fibrillization after photoswitch-
ing. Furthermore, we probed the replacement of D30 or the insertion between D30 and
V31, which led to a greater loss of solubility in the fibrillization buffer (240 µM vs. 25 µM
vs. 60 µM; Table S1). Thus, several of the generated peptides displayed strongly reduced
solubility—an effect that is important for the subsequent investigations. All peptides were
obtained in yields of 10–19%, and high purities as proven by both HPLC and MALDI-ToF
measurements, in addition to 500 MHz NMR spectroscopy (Figures S1–S5 and S13–S15).

3.2. Photophysical Properties

We first studied the photophysical properties of the cis-trans-isomerization of AzoPTH25–37
(Figure 1b) by UV/Vis spectroscopy and HPLC analysis in pure water in order to minimize
effects of a potential self-assembly and to quantify the generated amounts of the respective
cis/trans-modified peptides before and after photoswitching. The UV/Vis spectra for the
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pure isomers (Figure S6) were separated from the spectra of trans-enriched AzoPTH25–37 in
the thermodynamically stable state after synthesis and in the cis-enriched photostationary
state (PSS, Figure 3) with Wolfram Mathematica 12.2. The trans-isomer displays an absorp-
tion maximum at 327 nm (ε = 13,000 cm−1M−1) and a second maximum at 427 nm, while
the cis-isomer possesses maxima at 288 nm and 433 nm. Both isomers display two isobestic
points at 278 nm and 388 nm. They represent in the thermodynamically stable state a
cis-trans ratio of 3:97. Under irradiation with UV light (340 nm), the cis-content could be
increased of up to 82% in the cis-enriched PSS. Visible light (405 nm) yields 76% of the trans-
isomer in the trans-enriched PSS via the back reaction. The difference of the trans-content
between the trans-enriched PSS at 405 nm and the thermodynamically stable state arises
from the overlapping of the n → π* transitions of both isomers at this wavelength [47].
The rate of thermal cis-to-trans isomerization of AzoPTH25–37 follows first-order kinetics,
and was determined by monitoring the increase of the π→ π* absorption band at 327 nm
(Figure S7) via time-dependent UV measurements. In the absence of light at 37 ◦C, cis-
AzoPTH25–37 isomerizes thermally with a rate constant of 3.53 × 10−6 s−1, corresponding
to a half-life time of 79 h.
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3.3. Aggregation Kinetics and TEM-Recordings

In order to determine the kinetics of fibril formation of both modified AzoPTH25–37
isomers a thioflavin T (ThT)-monitored fibrillization assay was conducted and compared
to PTH25–37. ThT is a benzothiazole compound that binds to the cross-β-sheet structure of
amyloid fibrils [48]. Causing a large red shift of fluorescence excitation of ThT, which in
turn enables the selective excitation of amyloid fibril-bound ThT and therefore the in situ
observation of fibril formation.

In a first attempt, the fibrillization kinetics for pure trans-AzoPTH25–37, cis-AzoPTH25–37,
and the PTH-derived peptide PTH25–37 were measured at 37 ◦C and the results are shown
in Figure 4. Two characteristic times were used to characterize the fibrillization (Figure 4,
Table 1): the lag time tlag corresponds to the time before an increase in the fluorescence
signal occurs; the characteristic time tchar indicates at which time 50% of the maximum
fluorescence was reached.
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Figure 4. ThT-monitored fibrillization assay of PTH25–37, cis-AzoPTH25–37, and trans-AzoPTH25–37

(average of triplets; T = 37 ◦C, buffer = 50 mM Na2HPO4, pH = 7.4): (black) PTH25–37 (100 µM), (red)
trans-AzoPTH25–37 (100 µM), and (blue) cis-AzoPTH25–37 (100 µM).

Table 1. Fibrillization parameters (tlag, tchar) of PTH25–37, cis-AzoPTH25–37, trans-AzoPTH25–37, and
mixtures thereof (T = 37 ◦C, buffer = 50 mM Na2HPO4, pH = 7.4).

Sample tlag [h] tchar [h]

PTH25–37 (100 µM) 7.2 10.9
cis-AzoPTH25–37 (100 µM) 34.4 42.4

cis-AzoPTH25–37:PTH25–37 (100 µM:100 µM) 27.9 35.7
cis-AzoPTH25–37:PTH25–37 (50 µM:100 µM) 16.3 21.2
cis-AzoPTH25–37:PTH25–37 (20 µM:100 µM) 10.1 14.5
cis-AzoPTH25–37:PTH25–37 (10 µM:100 µM) 6.9 7.9

trans-AzoPTH25–37 (100 µM) 1.6 2.1
trans-AzoPTH25–37:PTH25–37 (100 µM:100 µM) 3.0 4.8
trans-AzoPTH25–37:PTH25–37 (50 µM:100 µM) 8.0 8.6
trans-AzoPTH25–37:PTH25–37 (20 µM:100 µM) 8.7 9.7
trans-AzoPTH25–37:PTH25–37 (10 µM:100 µM) 7.5 8.9

The self-assembly of the trans-AzoPTH25–37 was accelerated compared to PTH25–37,
while cis-AzoPTH25–37 exhibited the opposite effect (Figure 4). The first increase of ThT
fluorescence was observable after >30 h. Furthermore, cis-AzoPTH25–37 shows a biphasic
fibrillization behavior, while trans-AzoPTH25–37 and PTH25–37 show monophasic fibrilliza-
tion. Compared to PTH25–37, the magnitude of the ThT fluorescence of both AzoPTH25–37
isomers was significant lower (Figure S9). This effect might arise from fluorescence quench-
ing via the azobenzene moiety. To test this hypothesis, the fluorescence lifetime of ThT
was measured either alone, in the presence of PTH25–37 fibrils, or in the presence of trans-
AzoPTH25–37 fibrils (Figure S8). As expected the lifetime is increased in the presence of
PTH25–37 fibrils compared to the control experiment, while it is decreased significantly in
the presence of trans-AzoPTH25–37, which further supports our concept. In addition, this
effect could be enhanced from a reduced binding affinity of ThT through a different peptide
conformation of the fibril.

The observations of the ThT-monitored fibrillization assay were supported by negative
stain transmission electron microscopy (TEM) after different time points (Figure 5). After
20 h, amyloid fibrils were only observable for PTH25–37 and trans-AzoPTH25–37 (Figure 5a,b),
while cis-AzoPTH25–37 formed amorphous aggregates (Figure 5e). Both peptides produced
straight fibrils, whereby the single fibrils of PTH25–37 were larger (>6 µm vs. <1.5 µm) and
tend to aggregate further. Interestingly, we found fibrils after 60 h for cis-AzoPTH25–37
(Figure 5g), which matched in the morphology those of trans-AzoPTH25–37 even if they were
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significantly shorter (<300 nm). This may result from the thermal cis-trans-isomerization,
as the cis-content decreases and is reduced to 48% after 60 h.
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In further experiments, we investigated the (catalytic) influence of the AzoPTH25–37
isomers on the fibrillization of PTH25–37 (Figure 6). We previously observed such catalytic
effects of β-turn modified amyloids (Aβ) on the fibrillization of the Alzheimer peptide
Aβ1–40 [49]. Thus 100 µM of PTH25–37 were fibrillized in the presence of various concen-
trations of the respective AzoPTH25–37 isomer (10/20/50/100 µM). Kinetic measurements
revealed that the fibrillization behavior of PTH25–37 was affected in the same way as the
pure AzoPTH25–37 isomers.
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Figure 6. (a) ThT-monitored fibrillization assay of PTH25–37 and mixtures with trans-AzoPTH25–37

(average of triplets; T = 37 ◦C, buffer = 50 mM Na2HPO4, pH = 7.4): (black) PTH25–37 (100 µM), (red)
trans-AzoPTH25–37 (100 µM), (green) trans-AzoPTH25–37:PTH25–37 (100 µM:100 µM), (dark yellow)
trans-AzoPTH25–37:PTH25–37 (50 µM:100 µM), (brown) trans-AzoPTH25–37:PTH25–37 (20 µM:100 µM),
and (orange) trans-AzoPTH25–37:PTH25–37 (10 µM:100 µM) (b) ThT-monitored fibrillization as-
say of PTH25–37 and mixtures with cis-AzoPTH25–37 at 37 ◦C: (black) PTH25–37 (100 µM),
(blue) cis-AzoPTH25–37 (100 µM), (purple) cis-AzoPTH25–37:PTH25–37 (100 µM:100 µM), (cyan) cis-
AzoPTH25–37:PTH25–37 (50 µM:100 µM), (olive) cis-AzoPTH25–37:PTH25–37 (20 µM:100 µM), and (light
blue) cis-AzoPTH25–37:PTH25–37 (10 µM:100 µM).
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While trans-AzoPTH25–37 accelerated the fibrillization and therefore reduced tlag
and tchar of the mixtures (Figure 6a), cis-AzoPTH25–37 inhibited the fibrillization and ex-
tended tlag and tchar (Figure 6b). Interestingly, the biphasic fibrillization behavior of cis-
AzoPTH25–37 was also observable for the cis-AzoPTH25–37:PTH25–37 (100 µM:100 µM) mix-
ture. These effects are reduced with decreasing concentration of the respective AzoPTH25–37
isomer. While the mixtures with trans-AzoPTH25–37 exhibited a concentration below 50 µM,
trans-AzoPTH25–37 had a higher tlag than pure PTH25–37. However, tchar was still shorter,
and the stationary phase of the fibrillization was reached earlier.

TEM images were recorded for the peptide mixtures after 20 h (Figure 7). In contrast
to the pure peptides, we could observe fibrils for all investigated ratios. Interestingly, the
fibrils formed by the mixtures exhibit a similar twisted morphology regardless of the used
AzoPTH25–37 isomer. Furthermore, the formation of larger aggregates like for the pure
PTH25–37 (Figure 5) were only observed for a ratio of 1:10, indicating that the AzoPTH25–37
inhibits the formation of larger fibril aggregates.
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Figure 7. TEM recordings of fibrils obtained from PTH25–37, cis-AzoPTH25–37, and trans-AzoPTH25–37 at
37 ◦C after 20 h (scale bar = 500 nm): (a) trans-AzoPTH25–37 (100 µM), (b) trans-AzoPTH25–37:PTH25–37

(100 µM:100 µM), (c) trans-AzoPTH25–37:PTH25–37 (10 µM:100 µM), (d) cis-AzoPTH25–37 (100 µM),
(e) cis-AzoPTH25–37:PTH25–37 (100 µM:100 µM), and (f) cis-AzoPTH25–37:PTH25–37 (10 µM:100 µM).

3.4. Seeding Experiments

To determine whether both isomers of AzoPTH25–37 are able to form fibrils or only the
trans-isomer, we investigated, if trans-AzoPTH25–37 fibrils were able to induce seeding [50].
A 100 µM solution of each isomer was treated with 20 µM of mature trans-AzoPTH25–37
fibrils, and the kinetics of the fibril formation were investigated via a ThT-monitored
fibrillization assay (Figure 8). While the fibrillization of the trans-isomer was accelerated
compared to the unseeded monomer, we were not able to observe fibrillization for the
cis-isomer. This indicates that the cis-isomer is unable to nucleate amyloid formation as
well as elongate preformed fibrils. The observed fibrils after 60 h for the cis-isomer are
presumably formed by the thermally isomerized trans-isomer.



Biomedicines 2022, 10, 1512 10 of 13

Biomedicines 2022, 10, x FOR PEER REVIEW 10 of 13 
 

3.3. Seeding Experiments 
To determine whether both isomers of AzoPTH25–37 are able to form fibrils or only the 

trans-isomer, we investigated, if trans-AzoPTH25–37 fibrils were able to induce seeding [50]. 
A 100 μM solution of each isomer was treated with 20 μM of mature trans-AzoPTH25–37 
fibrils, and the kinetics of the fibril formation were investigated via a ThT-monitored 
fibrillization assay (Figure 8). While the fibrillization of the trans-isomer was accelerated 
compared to the unseeded monomer, we were not able to observe fibrillization for the cis-
isomer. This indicates that the cis-isomer is unable to nucleate amyloid formation as well 
as elongate preformed fibrils. The observed fibrils after 60 h for the cis-isomer are 
presumably formed by the thermally isomerized trans-isomer. 

  
Figure 8. ThT-monitored fibrillization assay of cross-seeding studies with cis-AzoPTH25–37 and trans-
AzoPTH25–37 monomeric peptides and mature trans-AzoPTH25–37 fibrils as seeds (average of triplets; 
cmonomer = 100 μM, cseed = 20 μM, T = 37 °C, buffer 50 mM Na2HPO4, pH = 7.4): (black) trans-AzoPTH25–

37 with seeds, (red) trans-AzoPTH25–37 without seeds, and (blue) cis-AzoPTH25–37 with seeds. 

4. Conclusions 
We here report for the first time a photoswitchable fibrillizing PTH-derived peptide, 

which is able to modulate its fibrillization by embedding an azobenzene photoswitch in 
the middle of PTH25–37. PTH1–84 is a peptide hormone, which is stored as functional 
amyloids in secretory granules. Its physiological role is well studied, but it still lacks 
detailed information about its exact fibril structure. We used the 3,4′-AMPB photoswitch 
to investigate the fibril formation of the fibril core fragment of PTH1–84 by incorporating 
the azobenzene into the peptide backbone, yielding the modified PTH-derived peptide 
AzoPTH25–37. We could show that the trans-isomer is able to form fibrils, while the cis-
isomer induces a conformational change that inhibits fibril formation. Hypothetically, we 
can also conclude that there might not be a β-turn in the fibril structure of PTH1–84, as the 
cis-conformer would be reminiscent of such a structure, whereas the trans-conformer 
would not. Most importantly, we were able to show that the modified peptides can 
catalytically inhibit fibrillization of the PTH25–37, underscoring the importance of seeding 
during this fibrillization process, which in the future allows for a reversible triggering of 
the fibrillization by light as an external stimulus. Studies are in progress to investigate if 
the photocontrol is also possible with the photoswitch at other positions of the backbone 
and if we can also control the fibrillization of full-length PTH1–84 with ours or other 
modified peptides. This represents a novel strategy to control bioavailability of proteins, 
specifically of PTH peptides and other fibrillating peptides, where not only the 
concentration of the bioactive form can be controlled by an added photoswitchable 
peptide, but also the fibrillization as such, important to guide nerve cell regeneration and 
other directed growth processes in euraryotic cells. For a potential clinical perspective, we 
want to investigate the cytotoxicity of our peptides as well as the ability to influence the 

0 2 4 6 8 10 12 14 16 18 20

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz

ed
 fl

uo
re

sc
en

ce
 in

te
ns

ity

t / h

 trans-AzoPTH25–37 with seeds
 trans-AzoPTH25–37 without seeds
 cis-AzoPTH25–37 with seeds

Figure 8. ThT-monitored fibrillization assay of cross-seeding studies with cis-AzoPTH25–37 and
trans-AzoPTH25–37 monomeric peptides and mature trans-AzoPTH25–37 fibrils as seeds (average of
triplets; cmonomer = 100 µM, cseed = 20 µM, T = 37 ◦C, buffer 50 mM Na2HPO4, pH = 7.4): (black)
trans-AzoPTH25–37 with seeds, (red) trans-AzoPTH25–37 without seeds, and (blue) cis-AzoPTH25–37

with seeds.

4. Conclusions

We here report for the first time a photoswitchable fibrillizing PTH-derived peptide,
which is able to modulate its fibrillization by embedding an azobenzene photoswitch
in the middle of PTH25–37. PTH1–84 is a peptide hormone, which is stored as functional
amyloids in secretory granules. Its physiological role is well studied, but it still lacks
detailed information about its exact fibril structure. We used the 3,4′-AMPB photoswitch
to investigate the fibril formation of the fibril core fragment of PTH1–84 by incorporating
the azobenzene into the peptide backbone, yielding the modified PTH-derived peptide
AzoPTH25–37. We could show that the trans-isomer is able to form fibrils, while the cis-
isomer induces a conformational change that inhibits fibril formation. Hypothetically, we
can also conclude that there might not be a β-turn in the fibril structure of PTH1–84, as
the cis-conformer would be reminiscent of such a structure, whereas the trans-conformer
would not. Most importantly, we were able to show that the modified peptides can
catalytically inhibit fibrillization of the PTH25–37, underscoring the importance of seeding
during this fibrillization process, which in the future allows for a reversible triggering of
the fibrillization by light as an external stimulus. Studies are in progress to investigate if the
photocontrol is also possible with the photoswitch at other positions of the backbone and
if we can also control the fibrillization of full-length PTH1–84 with ours or other modified
peptides. This represents a novel strategy to control bioavailability of proteins, specifically
of PTH peptides and other fibrillating peptides, where not only the concentration of
the bioactive form can be controlled by an added photoswitchable peptide, but also the
fibrillization as such, important to guide nerve cell regeneration and other directed growth
processes in euraryotic cells. For a potential clinical perspective, we want to investigate
the cytotoxicity of our peptides as well as the ability to influence the fibrillization of larger
PTH-derived peptides (e.g., PTH1–34 and PTH1–84) in vitro and in vivo. As known from
other azobenzene containing drugs/prodrugs (e.g., Prontosil), the azobenzene moiety is
metabolized in liver tissue via azoreductases, yielding two aniline moieties or through
intestinal microbes [51,52]. This is potentially important for the photoswitching inside cells
by light, allowing them to tune the reversible fibrillization of other amyloidogenic peptides,
which important for regeneration of nerve cells, as reported earlier. Thus, peptide fibrils
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can seed potential harmful amyloidogenic peptides, which is known from recent work
quite prominently [53]. This is a strategy to trigger fiber-formation from the outside via
photochemical triggering—thus avoiding the toxic effects of the fibers outside the cells but
enabling triggered fibrillization inside the cell to exert the desired effects, allowing them to
promote the recovery of spinal cord injuries.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines10071512/s1, Figure S1: (A) HPLC-trace of AzoPTH25–37
(cis-isomer at 5.353, trans-isomer at 5.530). (B) MALDI-spectrum of AzoPTH25–37; Figure S2:
(A) HPLC-trace of SP1 (cis-isomer at 5.557, trans-isomer at 5.790). (B) MALDI-spectrum of SP1;
Figure S3: (A) HPLC-trace of SP2 (cis-isomer at 5.223, trans-isomer at 5.460). (B) MALDI-spectrum
of SP2; Figure S4: (A) HPLC-trace of SP3 (cis-isomer at 5.560, trans-isomer at 5.807). (B) MALDI-
spectrum of SP3; Figure S5: (A) HPLC-trace of SP4 (cis-isomer at 5.363, trans-isomer at 5.547).
(B) MALDI-spectrum of SP4; Figure S6: Separated UV/Vis-spectra of the pure isomers of AzoPTH25–37;
spectra were seperated with Wolfram Mathematica 12.2; Figure S7: (A) UV/Vis-spectra of trans-isomer,
cis-enriched PSS, and cis-enriched PSS sample after distinct time points in the dark. (B) logarithmic
application of the absorption change over time to determine rate constant k and half-life time t1/2;
Figure S8: Time-resolved fluorescence measurement (excitation wavelength = 460 nm, emission wave-
length = 480 nm) of unbound ThT (black), ThT bound to PTH25–37 fibrils (dark green), ThT bound to
trans-AzoPTH25–37 fibrils (light green); Figure S9: ThT monitored fibrillation assays (c = 100 µM,
37 ◦C, 50 mM Na2HPO4, pH 7.4). (A) PTH25–37, (B) trans-AzoPTH25–37, (C) cis-AzoPTH25–37;
Figure S10: ThT monitored fibrillization assays of mixtures of PTH25–37, trans-AzoPTH25–37, and cis-
AzoPTH25–37 (37 ◦C, 50 mM Na2HPO4, pH 7.4). (A) trans-AzoPTH25–37:PTH25–37 (100 µM:100 µM),
(B) cis-AzoPTH25–37:PTH25–37 (100 µM:100 µM), (C) trans-AzoPTH25–37:PTH25–37 (50 µM:100 µM),
(D) cis-AzoPTH25–37:PTH25–37 (50 µM:100 µM), (E) trans-AzoPTH25–37:PTH25–37 (20 µM:100 µM),
(F) cis-AzoPTH25–37:PTH25–37 (20 µM:100 µM), (G) trans-AzoPTH25–37:PTH25–37 (10 µM:100 µM),
(H) cis-AzoPTH25–37:PTH25–37 (10 µM:100 µM); Figure S11: 1H-NMR spectrum (top; 400 MHz,
DMSO-d6) and 13C-NMR spectrum (bottom; 100 MHz, DMSO-d6) of (9H-Fluoren-9-yl)methyl (4-
aminobenzyl)carbamate; Figure S12: 1H-NMR spectrum (top; 400 MHz, DMSO-d6) and 13C-NMR
spectrum (bottom; 100 MHz, DMSO-d6) of Fmoc-3,4′-AMPB (mixture of isomers); Figure S13:
1H-NMR spectra (500 MHz, D2O) of AzoPTH25–37 (top, trans-isomer) and SP1 (bottom, trans-isomer);
Figure S14: 1H-NMR spectra (500 MHz, D2O) of SP2 (top, trans-isomer) and SP3 (bottom, trans-
isomer); Figure S15: 1H-NMR spectrum (500 MHz, D2O) of SP4 (trans-isomer); Scheme S1: Synthesis
of Fmoc-protected 3,4′-AMPB 7. (a) Fmoc-ONSu, triethylamin, DMF/MeCN, 16 h, room temper-
ature. (b) Oxone®, DCM, water, 3 h, room temperature. (c) AcOH, DMSO, N2, 72 h, room temper-
ature; Table S1: Primary sequence and solubility in 50 mM Na2HPO4 buffer (pH 7.4) of peptides
AzoPTH25–37 and SP1–SP4.
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