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Metabolite Profiling of 
Preneoplastic and Neoplastic 
Lesions of Oral Cavity Tissue 
Samples Revealed a Biomarker 
Pattern
Syed Ghulam Musharraf1,2, Najia Shahid2, Syed Muhammad Ali Naqvi3, Mahwish Saleem1, 
Amna Jabbar Siddiqui2 & Anwar Ali3

Oral cancer is a major health challenge in the Indian subcontinent and a dreadful form of cancers 
worldwide. The current study is focused on the identification of distinguished metabolites of oral cancer 
tissue samples in comparison with precancerous and control tissue samples using gas chromatography 
coupled with triple quadrupole tandem mass spectrometry and chemometric analyses. Metabolites 
obtained were identified through National Institute of Standards and Technology (NIST) mass spectral 
(Wiley registry) library. Mass Profiler Professional (MPP) software was used for the alignment and for all 
the statistical analysis. 31 compounds out of 735 found distinguishing among oral cancer, precancerous 
and control group samples using p-value ≤ 0.05. Partial Least Square Discriminant Analysis (PLSDA) 
model was generated using statistically significant metabolites gave an overall accuracy of 90.2%. 
Down-regulated amino acid levels appear to be the result of enhanced energy metabolism or up-
regulation of the appropriate biosynthetic pathways, and required cell proliferation in cancer tissues. 
These results suggest that tissue metabolic profiles have great potential in detecting oral cancer and 
may aid in understanding its underlying mechanisms.

Oral cancer is a continuing global challenge ranking sixth most common malignant tumor worldwide1. IARC 
(International Agency for Research on Cancer) in a latest report on oral cancer presented a higher annual 
incidence of over 300,000 diagnosed cases, and the annual mortality of 145,000 death around the world2. 
GLOBOCAN 2012 present the most critical incidence of oral cancer by WHO South-East Asia region (SEARO) 
in India, Pakistan, Bangladesh, Sri Lanka and Taiwan3. In Pakistan it is the second commonest as per recent 
records of an established and well maintained cancer registry of Shaukat Khanum Memorial Cancer Hospital4.

More than 90% of oral cancers are oral squamous cell carcinoma (OSCC) which originates from pre-existing 
potentially malignant disorders or more often from normal appearing oral mucosal lining. Potentially malignant 
disorders such as oral sub mucous fibrosis (OSF) and oral leukoplakia (OLK) are early indicators of damage to 
oral mucosa with a transformation of 2–12% to frank malignancies5,6. Prevalence of OSF can be predominantly 
seen in South East Asia, more common in India and Pakistan, due to the chronic use of betel nuts and its products 
which cause mutagenic and genetotoxic effects. Malignant transformation rate of OSF was found to be in the 
range of 7–13% in a recent study, and has one of the highest rates amongst potentially malignant oral lesions and 
conditions7,8.

This is a globally accepted fact that early detection of cancer greatly increases the chances for successful treat-
ment. Unfortunately a critical issue in the lack of prognostic improvement in oral cancer is the fact that a sig-
nificant proportion of oral cancers initially are asymptomatic lesions and is not diagnosed or treated until they 
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reach an advanced stage5. Visual detection of premalignant oral conditions and lesions has remained problematic 
throughout the world. They are highly heterogeneous lesions and not easily detected by naked eyes, resulted a 
high proportion of advanced stage OSCC with frequent relapse reported in recent years, showed a poor survival 
rate of patients with this devastating disease9.

It has been strongly proposed that development of effective clinical diagnostic aids and discovery of reliable 
biomarkers can allow early detection of OSCC or relapse which promise a definitive diagnosis of cancerous and 
precancerous oral lesions10,11. Metabolomic studies of various cancers tissue/plasma samples are not only helping 
in identifying therapeutic targets but also helping to detect diseases at a very early stage. Recently, a large scale 
study called European FP7 META cancer consortium project has utilized metabolomic approach to grade breast 
tumors12. However, and surprisingly, limited studies on metabolic profiling of oral cancers tissues have been con-
ducted to date13,14. The current study proposed a tissue-based metabolomics profiling of potentially malignant 
oral disorders i.e. OSF and OSCC tissue specimens and its comparison with healthy control tissue samples which 
can initiate discovery of clinically useful metabolomics biomarkers used as a prognostic tool for early detection 
of oral cancer.

Methods
Sample Collection. Samples were collected from Dr. Ishrat-ul-Ebad Institute of Oral health Sciences, DOW 
University of Health Sciences, Karachi, Pakistan. Written informed content was obtained from all the subjects 
prior to biopsies according to the formatted consent forms and the study was approved from the Institutional 
Review Board of Dow University of Health Sciences, Karachi and Independent Ethic Committee (IEC), ICCBS, 
Karachi as well. Sample collection was carried out in accordance with relevant guidelines and regulations. 
4–6 mm punch biopsies of total 51 samples were taken for the study, 15 samples of potentially malignant disorder 
of oral cavity that is of oral sub-mucous fibrosis (OSF), 21 of diagnosed OSCC patients and 15 from the healthy 
individuals (subject characteristics are shown in Supplementary Table 1). In control group, normal tissue punch 
biopsies have been taken during surgical extraction of lower third molar teeth. The oral mucosal punch is a rapid, 
simple, safe and inexpensive technique for obtaining a representative sample of most oral zones. All patients had 
not received any kind of therapy before sample collection and it was also taken into consideration that they were 
not in remission or relapse stage. All tissues were snap-freezed in liquid nitrogen immediately after surgery and 
preserved at − 80 °C till sample preparation.

Chemicals and Reagents. All solvents were of analytical grade. Methanol, choloroform and pyridine were 
purchased from Tedia (Tedia way, Fairfield, USA), while myristic-d27 acid was purchased from Sigma-Aldrich  
(St. Louis, MO, USA, respectively). BSTFA (N,O-Bis-(trimethylsilyl) trifluoroacetamide) and methoxylamine 
hydrochloric were purchased from Acros Organic (New Jersey, USA). Deionized water (Milli-Q) was used 
throughout the study (Millipore, Billerica, MA, USA).

Sample Preparation. 10 mg of tissue sample were transferred into 1.5 mL Eppendorf tube and homogenized 
for 2–3 minutes in 1000 μ L of solvent mixture (MeOH:H2O:CHCl3 =  5:2:2). Then, 20 μ L of myristic acid (2 mg/mL)  
as an internal standard was added and mixed well. The mixture was subsequently shaken at 1200 rpm at 4 °C for 
2 hrs, then centrifuged at 14000 rpm for 5 minutes at 4 °C resultant clear supernatant was collected and dried in 
vacuum.

The dried extract of all the samples were derivatized subsequently by adding 80 μ L methoxylamine hydrochlo-
ride in pyridine (15 μ g/μ L), vortexed and left for 1 hr at 30 °C. Then 80 μ L BSTFA was added with 1% TCMS and 
placed at 35 °C for 1 hr to form trimethylsilyl (TMS) derivatives. The derivatized samples were centrifuged and 
analyzed within 24 hours.

GC-MS Analyses. Derivatized samples were analyzed on a 7890 A gas chromatograph (Agilent technologies, 
USA) equipped with an Agilent Technology GC sampler 120 (PAL LHX-AG12) auto sampler and coupled to an 
Agilent 7000 Triple Quad system (Agilent technologies, USA). An HP-5MS 30 m–250 mm (i.d.) fused-silica cap-
illary column (Agilent J&W Scientific, Folsom, CA, USA), chemically bonded with a 5% diphenyl 95% dimeth-
ylpolysiloxane cross-linked stationary phase (0.25 mm film thickness) was used. Helium was used as the carrier 
gas at 1.0 mL/min and the sample was injected in splitless mode. The injector and source temperatures were 
250 °C. The oven temperature was initially maintained at 40 °C, and was then increased at 10 °C min to 300 °C 
and retained at 300 °C for 9 min. In post run, temperature was further increased to 305 °C, for remaining 1 min. 
Retention time was locked to myristic-d27 acid at 15.167 min. Electron ionization (EI) is used as an ionization 
source. Data processing was performed using the Agilent Mass Hunter Qualitative Analysis (version B.04.00). 
Putative identification of low molecular weight metabolites were established by comparing the mass spectra of the 
peaks with those available in the NIST mass spectral (Wiley registry NIST 11) library. The identification of peaks 
was based on 70% similarity index. All the GC-MS spectra were exported as.cef format, and uploaded on MPP 
for peak alignment, normalization, significance testing, fold change and multivariate analysis for both identified 
and unidentified compounds.

Chemometric Analyses. All the available data points within full scan mode from m/z 50 to 650 and reten-
tion time window 6.5 to 35 minutes were used to filter the data using minimum absolute abundance of 5,000 
counts. Alignment parameter was set as retention time tolerance 0.05, match factor 0.3 and delta MZ 0.2. The 
identified and unidentified peaks were then aligned and normalized to unit scale. A total of 735 entities were 
found in the entire samples after alignment. The entities obtained were filtered by frequency, p-value, fold change 
and CV. The one way ANOVA and Tukey’s honest significance difference (HSD) post Hoc test were applied to 
identify which entities were responsible for significant differences in the three groups. Different models were also 
generated for the significantly different metabolites.
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Results
Significance Testing and Fold Change. Thirty one out of 735 entities among the three groups (control, 
pre-cancer and oral cancer) were significantly differentiated after applying filtration using frequency (appeared 
in more than 50% of samples in at least one group of samples), p-value <  0.05 and fold change > 1.5 (Table 1). 
However ninteen out of thirty one entities were putatively identified (level 2 of Metabolomics Standard Initiative 
for the identification) by comparing the mass spectra of the peaks with those available in the NIST mass spectral 
library (Wiley registry NIST 11) at ≥ 70% similarity index, while the remaining were not identified at this simi-
larity index. IUPAC International Chemical Identifier (InChI) for all the differentially expressed and identified 
metabolites is provided in Supplementary Table 2.

Tukey’s honest significance difference (HSD) post Hoc test was then applied to identify which entities were 
responsible for significant differences in the three groups (Table 2). It was found that twenty four metabolites were 
responsible for the differences among oral cancer and control group out of which fifteen were identified. Similarly, 
eighteen entities were distinctively expressed among pre-cancer and control. However maximum similarity was 
found among oral cancer and pre-cancer with eighteen entities common, eleven of them were identified.

S. No. (a) Compounds or (b) Base peak (m/z)
Retention 

Time (min) p (Corr)
Log FC (Oral 

Cancer vs Control)
Log FC (Pre 

Cancer vs Control)
Log FC (Pre Cancer 

vs Oral Cancer)

1. (6E)-2,6-Dimethyl-2,6-octadienea 10.699 1.03 ×  10−04 1.062668 − 0.28537 − 1.3480332

2. 2-Methyl-4-keto-pentan-2-ola 6.422 3.32 ×  10−03 0.724624 1.22061 0.49598637

3. 3-Heptanola 6.450 3.32 ×  10−03 − 0.74727 − 1.21632 − 0.46905234

4. 4-Hydroxybenzaldehydea 11.100 3.18 ×  10−04 0.924649 − 0.39752 − 1.3221662

5. Alaninea 7.314 5.02 ×  10−03 − 1.04076 − 0.81737 0.22338897

6. cis-p-Menthan-3-onea 8.139 6.43 ×  10−04 0.514114 − 0.79117 − 1.3052865

7. Ethylene Glycola 8.199 3.35 ×  10−03 − 1.12252 − 0.5831 0.5394201

8. Geraniol Formtea 10.071 2.05 ×  10−03 0.726486 − 0.43886 − 1.165349

9. Glutamic acida 14.196 2.54 ×  10−03 − 0.90651 − 0.129154 1.0356688

10. Glutaminea 15.899 3.79 ×  10−03 − 1.08571 − 0.44992 0.6357883

11. Glycinea 7.500 1.69 ×  10−03 − 1.22106 − 0.69551 0.52554303

12. Lysinea 17.438 3.83 ×  10−03 − 1.09429 − 0.57469 0.51960033

13. Melibiosea 24.133 6.43 ×  10−04 − 1.10813 − 1.29065 − 0.18252334

14. Norleucinea 9.699 4.01 ×  10−03 − 1.00534 − 0.97022 0.035111338

15. Prolinea 10.100 3.83 ×  10−03 − 1.09033 − 0.54376 0.5465712

16. Serinea 10.899 3.35 ×  10−03 − 1.05951 − 0.28753 0.77197886

17. Stearic acida 20.298 2.38 ×  10−03 0.24771 − 0.90751 − 1.1552157

18. Threoninea 11.300 2.45 ×  10−03 − 1.12508 − 0.37226 0.75282097

19. Ureaa 9.211 3.83 ×  10−03 − 0.98554 − 0.14505 0.8404852

20. 73b 6.000 6.89 ×  10−03 − 0.94928 − 0.91998 0.029298544

21. 73b 6.900 6.43 ×  10−04 − 1.30969 − 0.82124 0.48845243

22. 73b 7.100 1.20 ×  10−03 − 0.53524 − 1.34792 − 0.8126821

23. 73b 8.245 4.25 ×  10−04 − 1.34824 − 0.95951 0.38872778

24. 73b 8.399 6.43 ×  10−03 − 1.01674 − 0.41896 0.5977822

25. 73b 9.399 3.57 ×  10−03 − 0.4036 − 1.18666 − 0.78305763

26. 73b 10.399 6.86 ×  10−06 − 0.16779 − 1.58506 − 1.4172763

27. 73b 10.600 9.41 ×  10−04 − 0.79637 0.435748 1.2321197

28. 73b 11.199 2.79 ×  10−03 − 1.11279 − 0.92984 0.1829573

29. 73b 14.799 2.45 ×  10−03 − 1.01745 − 0.07408 0.94337636

30. 84b 7.590 1.03 ×  10−04 − 1.44077 − 1.117 0.32377183

31. 147b 8.699 3.56 ×  10−05 − 1.48922 − 1.24458 0.24464041

Table 1.  List of differentiative metabolites (31 entities) among oral cancer, pre-cancer and control groups 
at p < 0.05 and fold change >1.5. FC =  fold change. aIdentified metabolites. bUnidentified metabolites.

Group Name Pre Cancer Oral Cancer Control

Pre Cancer 31 15 18

Oral Cancer 18 31 24

Control 15 9 31

Table 2.  Matrix produced after Tukey’s honest significance difference (HSD) post Hoc test: number of 
entities responsible for significant differences between groups shown in upper half matrix while non-
significant entities are in lower half matrix.



www.nature.com/scientificreports/

4Scientific RepoRts | 6:38985 | DOI: 10.1038/srep38985

Clustering. Initially an unsupervised cluster analysis based on all metabolome data was performed using 
k-means clustering method with 500 iterations (Supplementary Figure 1). It showed no proper clustering; how-
ever color changes from healthy control to disease can be visualized. Hence for clear view, hierarchical clustering 
was performed by applying Pearson’s Center-Absolute, complete linkage to produce a dendrogram for clustering 
of sample groups using normalized intensities of thirty one significant metabolites (Fig. 1). The length of the verti-
cal lines in the dendrogram is a measure of dissimilarity, while shorter lines demonstrate close relationship of the 
groups. This approach clustered the three groups into two levels. The two groups, i.e. oral cancer and pre-cancer 
clustered together in class I with dissimilarity level of only 0.238. In class II oral cancer, pre-cancer and control 
group were at dissimilarity level of 0.995. These dissimilarity levels showing that pre-cancer and oral cancer 
groups have close relationship while control group is the most dissimilar from other groups A heat map using all 
samples with normalized intensities of thirty one significant metabolites are shown in Supplementary Figure 2. 
From this figure it is clearly showing that control group profile is significantly different from the other two as the 
significantly differentiated metabolites (mostly amino acids) are comparatively higher in control group. This heat 
map was clustered and a dendrogram was produced by applying a hierarchical clustering algorithm (Pearson’s 
centered- absolute distance metric, Complete Linkage) using individual normalized intensities of thirty one sig-
nificance metabolites (Supplementary Figure 3). This figure also showed maximum clustering of pre-cancerous 
and cancerous samples together.

Discrimination Analysis. An outlier behavior and prediction model of healthy versus disease group was 
built by multivariate data analysis that includes all analyzed samples on the basis of 31 metabolites. The principle 
component analysis (PCA) was carried out which revealed a vibrant and noteworthy difference between the 
non-averaged control samples and oral cancer samples. The PCA scores are shown in Fig. 2 in which each sample 
is denoted by a single point. The sample points of pre cancer and oral cancer was more scattered when compared 
to control, this could be due to the variation in the subtypes of the disease.

Samples were classified into discrete classes also by supervised Partial Least Square Discriminant Analysis 
(PLSDA). Two parts of the input data were randomly assigned to the training set and remaining into the testing 
set. Auto-scaling was applied which involves subtracting the variable mean from each variable (data column) and 
dividing each by its standard deviation. This process was repeated ten times each time using a different part for 
testing thus using each row, once in training and testing, generating a Confusion Matrix, which gives accuracy of 
prediction of each class. PLS-DA score plot is shown in Fig. 3 exposing a clear separation trend between the three 
groups of our experiment. Sensitivity of the constructed model was calculated from the proportion of cancer-
ous and precancerous samples that were predicted correctly and referred as true positives, while specificity was 
determined from the proportion of healthy control samples which were correctly predicted and these are stated 
as true negatives. Sensitivity and specificity of our built model was found to be 85.7% was 93.3%, respectively, 

Figure 1. Comparison of three groups i.e., controls, pre cancer, oral cancer patients using normalized 
intensities of thirty one significance metabolites. The dendrogram was produced by applying a hierarchical 
clustering algorithm (Pearson’s centered- absolute distance metric, Complete Linkage).
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while the overall accuracy of the model was 90.2% as mentioned in Supplementary Table 3. Receiver Operating 
Characteristics (ROC) curve was also produced for PLS-DA (Supplementary Figure 4).

Pathway Analysis. MetaboAnalyst 3.0 (www.metaboanalyst.ca/) was used to identify metabolic pathways 
which were disturbed in diseased samples as compared to control using differentiated and identified metabolites. 
The summaries of pathway analysis created on the basis of hypergeometric test and relative-betweens centrality 
in pathway topology analysis by this program using differentiated metabolites are shown in Fig. 4. The list of 
discriminating identified pathways is provided in Table 3 and Supplementary Table 4. Total twenty four pathways 
were found to be deregulated with the highest impact of 0.42 of glycine, serine and threonine metabolic pathway. 
Majority of the identified pathways involved amino acids as a key metabolite in pathway.

Discussion
Cell metabolic pathway consists of a network of proteins, interacting genes and metabolite reactions which are 
controlled by intricate regulatory structures. In cancer cell, deregulation in these networks results in uncontrolled 
growth and proliferation15,16, these metabolic alterations are the hallmark of cancer17.

Among 19 identified metabolites, 9 are amino acids that are: glycine, threonine, glutamine, lysine, proline, 
alanine, glutamic acid, nor leucine and serine. In the presented study, all of nine amino acids have shown very 
characteristic pattern of gradual decrease in relative concentration as going from healthy control tissues to 
pre-neoplastic lesion to oral cancer one (Fig. 5). Our results are comparable with the previous findings in which 
alanine, valine, lycine, glycine, threonine and glutamine level significantly decreased in other types of tumors 
like oral, breast, pancreatic and colorectal cancers18–20. In another study of amino acid quantification in OSF 
plasma samples in comparison with healthy showed reduction in the assay levels of histidine, threonine, arginine, 
tyrosine, isoleucine and leucine in OSF plasma21. However, the value for valine, phenylalanine and lysine was 
increased. Conversely this pattern is not common to other studies related to head and neck cancer; in which can-
cer tissues showed higher relative concentration of amino acids as compared to healthy tissues12,22. This anomaly 
suggests that for rapid cell proliferation, a secondary metabolic pathway for glucose generation is adopted which 
consumes glucogenic amino acids as the disease progress. In addition to this, it can also be suggested that amino 
acids are in continuous usage for cell proliferation which results in higher concentration at the time of supply and 
lower concentration after their consumption in new tumor cells production.

Figure 2. Three dimensional PCA score plot for all samples using thirty one identified and unidentified 
differentiative peaks. 

Figure 3. PLSDA score scatter plot discriminating among controls and oral cancer patients based on the 
thirty one significantly differentiate metabolite profiling data. The red, blue and brown squares indicate 
control, oral cancer and pre cancer patients, respectively.

http://www.metaboanalyst.ca/
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Cancer cells exhibit increase rate of nutrient consumption and rerouting of metabolic processes to maintain 
these substrate pools to favor de novo biosynthesis. Alteration in these metabolic pathways can be therapeutic tar-
gets for cancer research23. The decreased amino acid levels appear to be the result of enhanced energy metabolism 
or up-regulation of the related biosynthetic pathways, which are required in cell proliferation of cancer tissues. 
Serine and glycine are major sources of methyl groups for the one carbon pool required for a variety of biosyn-
thetic pathways and/or DNA methylation that tumor cells use24. Glycine, an important intermediate in the folate 
metabolism, is especially altered in colon cancer25. Glutamine is the most abundant amino acid in plasma but in 
cancer patients its abundance is low as tumor cells use it for to generate energy and biosynthetic purposes26. It is 

Figure 4. Summary of pathway analysis of metabolites found dysregulated in cancer patients as compared 
to healthy controls (the annotations are based on serial number given to each pathway in Table 3 and 
Supplementary Table 4).

Sr.# Pathway Name

Total Compound 
Present in 
Pathway Hits Raw p −log (p) Holm p FDR Impact

1. Aminoacyl-tRNA biosynthesis 75 6 1.08E-06 13.737 8.65E-05 8.65E-05 0.11268

2. Cyanoamino acid metabolism 16 3 6.62E-05 9.6221 0.00523 0.00265 0

3. Glycine, serine and threonine 
metabolism 48 3 0.0018508 6.2922 0.14436 0.04935 0.42039

Table 3.  List of significant dysregulated pathways in cancer and pre-cancerous patients in comparison to 
healthy controls with threshold of <0.05 FDR.

Figure 5. Bar graph showing normalized intensities of differentiated nine amino acids in control, pre-
cancerous and oral cancer tissue samples (error bars are standard deviations in biological replicates). 
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a nitrogen donor to tumor cells, also contributes the survival of proliferating cells by maintaining mitochondrial 
membrane integrity, provides TCA cycle intermediates and suppresses oxidative stress by restoring glutathione 
to its reduced form27. Tumor cells consume large amounts of glutamine. Its metabolism can allow cells to meet 
both the anaplerotic and NADPH demands of growth28. Studies revealed rapid but partial glutamine oxidation 
and secretion of glutamine-derived carbon as lactate, establishing glutamine as an energy source in tumor cells29, 
considered a hallmark of tumor cell metabolism. Ultimately, recent advances in amino acid metabolism have 
revealed that targeting amino acid metabolic enzymes in cancer therapy is a promising strategy for the develop-
ment of novel therapeutic agents. There are currently several drugs in clinical trials that specifically target amino 
acid metabolic pathways in tumor cells24.

Apart from amino acids, cancer cells also require fatty acids for the synthesis of membranes as well as for the 
generation of lipid signaling molecules to trigger cell proliferation leading to malignancy. Consistent with our 
results i.e., up-regulation of stearic acid in oral cancer tissue, several metabolites of the lipid metabolism pathways 
are detected at an elevated level in cancer cells in previous studies30.

Except amino acids and two alcohols, all metabolites were decreased in pre cancerous stage as compared to 
oral cancer. Interestingly, all significantly expressed metabolites were decreased in concentration level in pre-
cancerous tissues except one branched keto-alcohol as compared to control. These up- and down-regulations 
of metabolites may be due to involvement of metabolites in different metabolic pathways at the same time. For 
instance, TCA cycle is key metabolic pathway that unifies carbohydrate, fat, and protein metabolism. Similarly, 
during reduced supply of sugars, a complementary pathway for the production of glucose may be regulated at the 
cost of glucogenic amino acids and lipids. As in this study, a fatty acid, stearic acid, is found to be down regulated 
in precancerous and up-regulated in cancer stage. The catabolic product of free fatty acid enters into the kreb’s 
cycle and the intermediates of this cycle further generate few non-essential amino acids like glutamic acid in our 
study. However, high level of fatty acid in oral cancer may be due to demand of rapid cell proliferation.

Conclusion
Our study has shown that a GC-MS-based metabolite profiling and extensive chemometric analysis of tissue is 
able to identify biomarker metabolites which can significantly differentiate oral cancer from the control groups. 
Identification of unknown metabolites with high resolution can increase human metabolome and ultimately help 
in early diagnostic biomarker identification of oral cancer. In this study, oral cancer and pre-cancerous sample 
showed a decreased level of amino acids compared to control. Such measurements propose that modulation of 
amino acid metabolism may represent new potential and novel strategy for the treatment of premalignant and 
malignant oral lesions. However, further studies are needed to elucidate the potential of these profiles in the 
pathogenesis of OSF and OSCC; and its implications in the malignant transformation potential of such condition.
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