Behav Ecol Sociobiol (2016) 70:857-870
DOI 10.1007/500265-016-2108-0

@ CrossMark

ORIGINAL ARTICLE

Changes in vocal parameters with social context in humpback
whales: considering the effect of bystanders

Rebecca A. Dunlop’

Received: 21 September 2015 /Revised: 20 March 2016 /Accepted: 21 March 2016 /Published online: 2 April 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract

Many theories and communication models developed from
terrestrial studies focus on a simple dyadic exchange between
a sender and receiver. During social interactions, the “frequen-
cy code” hypothesis suggests that frequency characteristics of
vocal signals can simultaneously encode for static signaler
attributes (size or sex) and dynamic information, such as mo-
tivation or emotional state. However, the additional presence
of a bystander may result in a change of signaling behavior if
the costs and benefits associated with the presence of this
bystander are different from that of a simple dyad. In this
study, two common humpback whale social calls (“wops”
and “grumbles”) were tested for differences related to group
social behavior and the presence of bystanders. “Wop” param-
eters were stable with group social behavior, but were emitted
at lower (14 dB) levels in the presence of a nearby singing
whale compared to when a singing whale was not in the area.
“Grumbles” were emitted at lower (30-39 Hz) fundamental
frequencies in affiliative compared to non-affiliative groups
and, in the presence of a nearby singing whale, were also
emitted at lower (14 dB) levels. Vocal rates did not significant-
ly change. The results suggest that, in humpbacks, the fre-
quency in certain sound types relates to the social behavior
of the vocalizing group, implying a frequency code system.
The presence of a nearby audible bystander (a singing whale)
had no effect on this frequency code, but by reducing their
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acoustic level, the signal-to-noise ratio at the singer would
have been below 0, making it difficult for the singer to audibly
detect the group.

Significance statement

The frequency, duration, and amplitude parameters of hump-
back whale social vocalizations were tested between different
social contexts: group social behavior (affiliating versus non-
affiliating), the presence of a nearby singing whale, and the
presence of a nearby non-singing group. “Grumbles” (com-
monly heard low-frequency unmodulated sounds) frequencies
were lower in affiliating groups compared to non-affiliating
groups, suggesting a change in group motivation (such as
levels of aggression). “Wop” (another common sound type)
structure (frequency and duration) was similar in affiliating
and non-affiliating groups. In the presence of an audible by-
stander (a singing whale), both sound types were emitted at
similar rates, but much lower amplitudes (14 dB), vastly re-
ducing the detectability of these sounds by the singer. This
suggests that these groups were acoustically avoiding the
singing whale. They did not, however, acoustically respond
to the presence of a nearby non-singing group.

Keywords Frequency coding - Source level - Social group -
Signal design - Vocal communication

Introduction

Historically, theories and models developed from studies in
animal communication were based on a dyad of one sender
and one receiver (McGregor and Dabelsteen 1996). The un-
derlying assumption in these studies was that communication
was defined by the transmission of information by one indi-
vidual (the sender) to another individual (the receiver) who
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uses the information to influence its decisions or behavior
(Bradbury and Vehrencamp 1998). The “frequency code hy-
pothesis” suggests that certain features of a vocal signal can
encode static information on caller attributes such as size while
simultaneously encoding dynamic information such as motiva-
tion (Ohala 1984; for extensive review, see Taylor and Reby
2010). Static signaler information, such as size or sex, should
therefore be reflected in static signal components (Fitch 1997;
Reby et al. 1999; Reide and Fitch 1999; Reby and McComb
2003; Harris et al. 2006; Lemasson et al. 2009). Dynamic mo-
tivational information, relating to the social context of the sig-
naler, can also be encoded in certain flexible structural features
of'the sound (Poole et al. 1988; Fischer et al. 2002; Notman and
Rendell 2005; Suigiura 2007; Soltis et al. 2011). This static—
dynamic coding system has been shown to exist in various taxa.
By-product “static” components, such as formants, can indicate
the signaler’s body size, weight, or dominance rank (e.g., male
fallow deer, Dama dama: Vannoni and McElligott 2008;
Charlton and Reby 2011; baboons, Papio cynocephalus
ursinus: Fischer et al. 2004; and domestic dogs, Canis
familiaris: Taylor et al. 2011). Dynamic features of calls have
been found to encode motivational cues in species such as the
domestic piglet, Sus scrofa domestica (Linhart et al. 2015); the
African elephant, Loxodonta Africana (McComb et al. 2003;
Soltis et al. 2009); and spotted hyenas, Crocuta crocuta (Theis
et al. 2007). Levels of arousal, for example, may be encoded in
parameters such as call rate (e.g., red deer: Clutton-Brock and
Albon 1979), amplitude (e.g., the domestic piglet, S. scrofa
domestica: Linhart et al. 2015; the African elephant,
L. Africana: Soltis et al. 2011), and frequency (e.g., the domes-
tic horses, Equus caballus, Briefer et al. 2015; Geoffroy’s spider
monkeys, Ateles geoffroyi: Ordonez-Gomez et al. 2015).
Many previous studies have shown that vocal communica-
tion is not a simple dyadic exchange between a sender and
receiver, but is a communication network involving a potential
“audience” (for an extensive review, see Fichtel and Manser
2010). This “audience” may or may not be the intended recip-
ients of the signal. There are numerous examples of this in
various taxa ranging from Siamese fighting fish (Betta
spendens), who modify their dyadic display behavior depend-
ing on the sex of the audience (Doutrelant et al. 2001;
Dzieweczynski et al. 2005; Dzieweczynski and Walsh 2011),
to chimpanzees (Pan troglodytes; Townsend and Zuberbiihler
2009; Fedurek et al. 2013), which are thought to understand
third-party relationships, or “triadic awareness” (Slocombe and
Zuberbiihler 2007). “Private” signals are defined as being quiet
signals that attenuate over distance (Dabelsteen 2005) and there-
fore usually used for close-range communication between con-
specifics. Social calls that are used to mediate group affiliations
(Cheney et al. 1995; Fedurek et al. 2013) and promote group
cohesion (Palombit 1992; Holland et al. 1998; Dabelsteen 2005;
Riesch et al. 2008) fall into this category of vocal signaling.
Although vocal signals between a sender and receiver may be
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assumed to be “private,” within the signal range, information
from the signal may be available to other individuals not directly
involved in the group. The presence of these other receivers
(or “bystanders”) may result in a change of signaling behavior if
the costs and benefits associated with the presence of an audi-
ence are different from that within a simple dyad (Marler et al.
1986; McGregor and Peake 2000). These bystanders could be
considered to be “eavesdroppers” if unintended information is
passed on (McGregor et al. 1999; Dabelsteen 2005; Peake
2005). Studies in black-capped chickadees (Poecile
atricapillus), for example, found that males tended to eaves-
drop on vocal interactions outside their own territories
(Fitzsimmons et al. 2008) and then used the information gained
to modify their own behavior (Vignal et al. 2004).

Humpback whales are a particularly vocal large baleen
whale species in that they “sing” (Payne and McVay 1971)
as well as produce a large number of different non-song vocal
sounds (Dunlop et al. 2007). Humpback whale song is a male-
only signal (Darling et al. 1983; Glockner 1983; Baker 1994;
Darling and Bérubé 2001), defined as being long, complex,
repetitive, and highly stereotyped (Payne et al. 1983; Cato
1991) and produced at a high acoustic level, therefore audible
over tens of kilometers (Au et al. 2006). Non-song “‘social
vocalizations” in humpback whales are not clearly structured
like song as they have no serial patterning and are heard as
single sounds or in short bursts (Tyack 1983; Tyack and
Whitehead 1983; Silber 1986; Dunlop et al. 2007; Rekdahl
et al. 2015). Humpback whales utilize an extremely variable
catalogue of social vocalizations, from almost infra-sonic
“grumbles” to high-frequency “chirp”-like sounds (Dunlop
et al. 2007), and these sounds are used by both sexes and in
closer-range communication compared to song (Dunlop et al.
2008). Although earlier work assumed that these sounds were
produced only in aggressive and/or competitive social en-
counters (Tyack 1983; Tyack and Whitehead 1983; Baker
and Herman 1984; Silber 1986), later studies found that they
are used in various other social and behavioral contexts, such
as between a female and her calf or from single animals that
were not part of a group (Dunlop et al. 2008).

During migration, humpback whale social interactions are
characterized by frequent changes in group membership (af-
filiations). These social affiliations, to some extent, are medi-
ated by “social sounds” (Tyack 1983; Tyack and Whitehead
1983; Baker and Herman 1984; Silber 1986; Dunlop et al.
2008). Common social groups during migration and on breed-
ing grounds include lone singing males, “competitive” groups
(where a number of males are thought to be competing for
access to one female), female—calf pairs with or without a
male “escort” (Tyack and Whitehead 1983; Baker and
Herman 1984), and adult pairs, some of which are thought
to be males “consorting” with non-lactating females
(Herman and Antinoja 1977; Darling et al. 1983; Glockner
1983; Clapham et al. 1992; Clapham 1996). Singing whales
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are sometimes joined by other males (in which case they usu-
ally stop singing), or can stop singing and then join other
groups (Darling and Bérubé 2001). During the southward mi-
gration of the East Australian humpback whale population,
instances of singing males joining and continuing to sing
when escorting female—calf pairs (“singing escorts”) are often
seen (Noad 2002; Smith et al. 2008). This fluid social system
provides the opportunity to look for a context-driven dynamic
component in vocal coding within a large marine mammal
species during social affiliations. Given the variety in hump-
back whale social group structure, it is likely that attributes of
commonly heard non-song vocalizations (such as vocal rate,
parameters of the fundamental frequency, and/or the level at
which they are produced) change according to the social be-
havior of the vocalizing group. While these affiliations are
taking place, other groups and singing whales are present in
the area, forming a potential communication network. Male
singing whales (those not involved in the affiliation), if close
to the group, could be considered to be “bystanders” as they
would be audible to the group, but not involved in the affili-
ation. Other non-singing groups in the area may or may not be
audible to the group depending on how far away they are and
whether or not they are emitting audible sounds.

Using observational data, the effect of social behavior on
vocal rate, frequency, duration, and level was determined by
comparing vocalizations from non-affiliating groups to affili-
ating groups, taking into account the group social structure. In
addition, the presence of nearby singing whales (which would
have been audible to the vocalizing group) and other
nearby whales or groups of whales was considered to
determine whether the presence of bystanders changed
this group’s vocal behavior.

Methodology
Visual and acoustic data collection

The eastern Australian population of humpback whales mi-
grates annually along the eastern Australian coastline between
feeding areas in the Antarctic and breeding grounds inside the
Great Barrier Reef off central Queensland. During their south-
ward migration in particular, they pass close to shore in the
vicinity of Peregian Beach, 130 km north of Brisbane on the
east coast, where this study was conducted. Data were collect-
ed as part of the Humpback Whale Acoustic Research
Collaboration (HARC) project during the September/
October southward migrations in 2002, 2003, 2004, 2008,
and 2009. Additional data were collected as part of the
BRAHSS study (Behavioural Response of Australian
Humpback Whales to Seismic Surveys) in 2010 and 2011
from the same location.

Land-based observations (including the position, composi-
tion, and behaviors) of all migrating groups passing through
the study area were collected daily (7 am to 5 pm, weather
permitting) from an elevated survey point (73-m elevation). A
theodolite (Leica TM 1100) was used in conjunction with a
notebook computer running Cyclopes software (E. Kniest,
Univ. Newcastle, Australia) to track the groups in real time.
Each theodolite fix was time-stamped and the behavior of the
fixed whale (e.g., blow, breach, pectoral slap, tail slap, etc.),
group composition, direction of travel, and any other notes of
interest (e.g., splitting or joining of groups) were recorded
with each fix. Observers, using binoculars, made additional
notes. These observations were also recorded onto Cyclopes
in real time. Weather was noted hourly and observations in-
cluded sea state, wind speed and direction, cloud cover, glare
strength and position, swell height and direction, and rainfall.

Acoustic recordings were made from three to five hydro-
phone buoys moored in 1828 m of water and arranged in a
line or T-shaped array. Each hydrophone buoy consisted of a
surface buoy containing a custom-built pre-amplifier (+20-dB
gain) and 41B sonobuoy VHF radio transmitter. A High Tech
HTI-96-MIN hydrophone with built-in +40-dB pre-amplifier
was suspended approximately 1 m above each buoy’s mooring
and its cable ran up the anchor rope to the buoy where it was
connected to the pre-amplifier and transmitter. Buoys 1-3 were
approximately 750 m apart and were arranged in a line parallel
to, and 1.5 km from, the beach. Buoys 4 and 5 were moored
seaward from buoy 2 approximately 600 m apart, forming a
line perpendicular to that of buoys 1-3. Signals were received
onshore at a base station using a directional antenna and type
8101 four-channel sonobuoy receiver. This was connected to a
PC; acoustic data were recorded to hard disk via a series E
National Instruments Data Acquisition Card and recorded using
Ishmael acoustic tracking software (D. Mellinger, Oregon State
Univ.) usually at a sampling rate of 22 kHz.

Ishmael was also used to determine the location of sound
sources detected. This was achieved by cross-correlation of
the same sound arriving at the different hydrophones to deter-
mine differences in the arrival time of the sound at the buoys.
These differences, together with an accurate knowledge of the
positions of the hydrophones (surveyed accurately at the start
of each season using cross bearings from two theodolites at
known points on the beach), were then used to determine the
most likely location of the source (e.g., singing or vocalizing
whales). Small errors in determining the time of arrival differ-
ences can result in errors in the distance measurements to the
source (although the bearing is usually robust). However,
sound location accuracy was significantly improved by taking
the mean position of several estimates over a brief period and
by using more than three buoys (Noad et al. 2004).

Land-based and base station computers were linked in real
time using a wireless network. Usually, no more than six
groups were migrating through the study area at any one time
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and, unless interacting with each other (affiliating), were usu-
ally more than 1.5 km from each other. Therefore, theodolite
tracking from the land-based station paired with acoustic
tracking from the base station provided adequate accuracy of
position fixing to ensure that there was no ambiguity as to
which visually tracked group was vocalizing.

Measurement of social vocalizations

Non-song vocalizations were isolated from acoustic array re-
cordings when they were tracked acoustically to specific
groups. Vocalizations were initially subjectively classified into
different types based on aural and spectrographic characteris-
tics and then statistically classified using discriminant function
analysis (Dunlop et al. 2007) and again using a classification
tree (Rekdahl et al. 2013). “Grumbles” are low-frequency
(fundamentally generally below 80 Hz) sounds with little or
no frequency modulation lasting more than 0.5 s (Fig. 1).
“Wops” are audibly distinct, short, low-frequency (fundamen-
tally <60 Hz) upsweeps (Dunlop et al. 2007) and are the
predominant call in groups containing a female and a calf
(Dunlop et al. 2008; Fig. 1). These two sound types were the
most commonly heard and therefore selected as the two rep-
resentative sound types for the study.

Spectrograms of all selected vocalizations were produced
using Spectrogram 14 (R. Horn, Visualization Software) with

4096 point fast Fourier transforms (FFT) yielding 5.4-Hz fre-
quency resolution. A series of variables, listed in Table 1, were
measured from the spectrographic samples of each vocaliza-
tion. The variables measured included the vocalization dura-
tion, the frequency of the spectral peak (frequency which
contained the most energy), and properties of the fundamental
frequency. Measurements of the lowest frequency component
of the vocalization (the fundamental in harmonic sounds)
were: start and end frequencies, minimum and maximum fre-
quencies, ratio of start to end frequency (frequency trend ra-
tio), and ratio of the maximum to minimum frequency
(frequency range ratio; see Dunlop et al. 2007 for
further details). Ratios of frequencies were measured
rather than the differences since ratios better match
mammal perception of frequency differences
(Richardson et al. 1995). All frequency measurements
were initially made on a linear scale and then converted
to a logarithmic scale for analysis as these match the
perception of pitch in mammals (Richardson et al.
1995). The number of each sound type was counted
for the duration the group was audible. Recordings were
divided into 5-min time bins and the number of each
call type counted within each time bin to give a total
number of “wops” and “grumbles” per 5 min. The num-
ber of animals (non-singing adults, calfs, and singing
adults) was also noted for each time bin.

Fig. 1 Spectrograms (4096 point 0.6 kHz | @
FFT yielding 5.4-Hz frequency
resolution) of a “grumble” (a) and
“wop” (b) vocal sound =
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Table 1 Measurements, a
description of each measurement,
and a summary of the raw values

for each parameter (mean and
range) for “grumbles” and
“Wops”

Measurement Description Grumble parameters Wop parameters
(n=173) (n=160)
Duration (s) Vocalization length 1.6 (0.1-9.5) 0.8 (0.4-1.6)
Minimum frequency (Hz) Minimum frequency 43 (<30-112) 50 (<30-166)
Maximum frequency (Hz) Maximum frequency 50 (30-132) 78 (37-195)
Start frequency (Hz) Start frequency 48 (<30-112) 57 (<30-186)
End frequency (Hz) End frequency 48 (<30-112) 77 (37-195)
Peak frequency (Hz) Frequency of the 48 (30-151) 71 (37-166)
spectral peak

Frequency range (as ratio) Max freq/min freq 0.2 (0.9-2.5) 14 (1.0-3.2)
Frequency trend (as ratio) Start freq/end freq 1.1 (0.5-3.1) 0.9 (0.4-1.9)

Source level (dB re 1 pPaat 1 m)

Vocal amplitude 158 (128-183) 162 (126-183)

All frequency variables were measured on lowest frequency component Fy, apart from the peak frequency

Estimation of vocal level

The acoustic system was calibrated in situ by inserting white
noise and tones of various known levels into the system at the
output of the hydrophones and recording this on the hard disk.
Hydrophones and the complete systems were also calibrated
at the Woronora hydrophone calibration facility near Sydney.
This allowed measured recorded data to be converted to re-
ceived levels at the array in decibels e 1 pPa. The (noise-
corrected) received sound pressure level (RL) of each hump-
back whale social vocalization was measured in one third
octave frequency bands in the range of 40 Hz—2 kHz, within
which almost all of the energy of the vocal sounds was con-
fined. Broadband levels were calculated by summing the
mean square voltages in the one third octave bands and then
converting to decibels (by calculating 10 times log of the
sum). The noise level (NL) in the study area (measured as a
broadband level over 40 Hz—2 kHz) ranged from 89 to 105 dB
re 1 pPa depending on the wind speed (5-20 kn). Passing
recreational vessels temporarily (20-30 min) increased the
background noise depending on how far offshore they were,
though were rarely present when these recordings were made.
The median noise levels for this study site was 95 dB re 1 pPa,
where the wind speed was 12—15 kn and there were no audible
passing vessels in the area. Source level (SL) is defined as the
estimated radiated sound pressure level at a distance of 1 m
from the source and expressed as decibels e 1 puPa at 1 m
(Table 1). SLs were determined from the RLs by

SL =RL, TL(r)

where TL is the transmission loss as a function of distance
(r) between the vocalizing group and the hydrophone in me-
ters (calculated from each theodolite fix). The transmission
loss was determined from a series of measurements of the loss
using boats and a J11 underwater acoustic projector as sources
(see Dunlop et al. 2013 for details of the transmission loss

model). The transmission loss model also allowed the re-
ceived level of vocal sounds to be predicted at any location
in the study site depending on the distance from the source
(vocalizing whale) to the location (e.g., singing whale).
Received signal-to-noise ratios (SNRs) of the group’s vocal
sounds were then calculated at the closest singer to the group
by

SNR = predicted RL — NL

The composition and behavior of vocalizing groups

A group of humpback whales displayed coordinated surfacing
activity and maintained individual separations of no more than
100 m from each other. Humpback whale groups (subject
groups) in which “grumble” and/or “wop” sounds were heard
were selected for analysis. These were first categorized ac-
cording to their social behavior based on the land-based ob-
servations (observers would have been “blind” to the selection
of these subject groups; Table 2) as follows. Subject groups
were first divided into “non-affiliating” and “affiliating.”

Non-affiliating—the subject group did not join with other
groups or animals for at least 20 min before (as they came
within sight of the visual observation team), during (10—
30 min), and at least 20 min after vocal sounds were
recorded (they were usually out of sight of the visual
observation team after this time).

Affiliating—another animal or group of animals joined
the subject group while vocalizations were recorded.

The social structure of non-affiliating subject groups com-
prised either “single-adult” (known males, adults of unknown
sex, and adult females with a calf) or “multiple-adult” groups
(where there were at least two adults in the group including
“adult pairs” and adult females, with a calf being escorted by
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Table 2 Number of each
vocalizing group (with number of

sounds in parentheses) using
“grumbles” and/or “wop” in their
repertoire as they traversed the
study site

Grumbles (42 groups) Wops (34 groups)
Group social behavior
Single-adult non-interacting groups 7 (25) 9 (28)
Multiple-adult non-interacting groups 13 (60) 11 (58)
Singer-join 9 (36) 6 (26)
Non-singer-join 13 (52) 8 (48)
Nearest singer
Joined 9 (36) 6 (26)
Within 2.5 km 8 (34) 6 (30)
Between 2.5 and 5 km 8 (23) 7 (28)
Beyond 5 km 17 (80) 15 (76)
Nearest neighbor
Within 2.5 km 19 (87) 17 (72)
Between 2.5 and 5 km 6 (25) 6 (22)
Beyond 5 km 17 (61) 11 (66)

These vocalizing groups were categorized into four different social behaviors and then re-categorized according to
the distance of the nearest singing whale and nearest non-singing group

at least one other animal). Affiliating subject groups either
involved a “singer-join” (mostly female—calf pairs being
joined by a singing whale) or “non-singer-join” (mostly fe-
male—calf pairs being joined by a non-singing [probably] male
escort or group of escorts; Table 2). The time of the join was
noted as the time when the new animal or animals were sight-
ed within 100 m of the original group. Vocalizations were
included in the analysis up to 10 min preceding the sighted
join and up to 10 min after the sighted join to incorporate
sounds used during the interaction. As singers do not emit
social vocalizations while singing, all measured sounds from
“singer-join” groups came from the group being joined and
not the singer. In “non-singer-join” groups, most of the sounds
preceding the join were recorded from the group being joined
(rather than the joining animal or animals). However, as these
groups converged, it was not possible to separate sounds into
those from the group being joined (which usually did not
change course) and those from the animals joining the group
(who usually changed course to approach the group).

The distances of the nearest singing whale (from the
acoustic tracking) and the nearest non-singing whales or
groups of whales (from land-based observations) were
both measured at the time the vocal sounds were re-
corded from each subject group. Subject groups were
then categorized according to the presence of the
nearest singing animal (Table 2).

Joined—groups in which the singer eventually joined;
there was no other singer in the area.

Within 2.5 km—the singer came within 2.5 km of the
vocalizing group during the time vocal sounds were
heard, but never joined. The closest singer was about
1 km from the group.

@ Springer

Within 5 km—the singer came within 5 km from the vo-
calizing group, but never closer than 2.5 km.

Beyond 5 km—the closest singer was beyond 5 km from
the vocalizing group; usually there were no audible
singers in the area.

Subject groups were also categorized according to the dis-
tance of the nearest non-singing whale or group of whales
using the same distance criteria as above (within 2.5 km (the
closest being about 1.5 km), 2.5-5 km, beyond 5 km; Table 2).

Statistical analysis

All analyses were conducted using the statistical software
package “R” (R Development Core Team 2012). Measured
vocalization parameters (of which frequency measures were
logged) and vocal source levels were averaged for each ana-
lyzed group to give one independent measure per group. The
average number of each call type per group per 5 min was
used as a measure of vocal rate. However, as this was likely to
be influenced by the number of animals in the group, the
average number of each call type per non-singing adult per
5 min was used as a measure of individual vocal rate. It was
assumed that calfs and singing whales did not contribute to the
vocal rate of these sound types. Therefore, to obtain a measure
of individual vocal rate, the number of each call type within
each 5-min time bin was divided by the total number of non-
singing adults in the group and then averaged over the dura-
tion of the recording.

Each group was assigned one social behavior category (sin-
gle-adult, multiple-adult, singer-join, or non-singer-join), a
nearest singer category (joined, within 2. 5 km, 2.5-5 km,
and beyond 5 km), and a nearest neighbor category (within
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Table3  Results of linear models (“normal” or “Poisson”) testing the effect of group social behavior, nearest singer, and nearest non-singing group on

various vocal parameters of “grumbles” and “wops”

Sound type Group social behavior Nearest singer Nearest non-singer group
Maximum frequency Grumble F;36=8.82, p=0.001 F336=2.81,p=0.424 Fr37=148,p=1

Wop F330=038,p=1 F33,=1.07,p=1 Fr3,=0.63,p=1
Peak frequency Grumble F33,=5.44, p=0.024 F336=3.58,p=0.134 Fr37=0.73, p=1

Wop F330=038,p=1 F330=107,p=1 F,5,=0.63,p=1
Frequency trend Grumble F336=0.72,p=1 F336=0.86,p=1 F>37=4.66,p=0.176

Wop F530=1.70,p=0.189 F530=0.79, p=1 Fr31=0.72,p=1
Frequency range Grumble F336=0.84,p=1 F336=1.09,p=1 F,37=3.77,p=0.272

Wop F530=154,p=1 F530=134,p=1 F,31=2.55,p=0.752
Duration Grumble F534=4.66, p=0.037 F53,=136,p=1 F>37=090,p=1

Wop F330=2.18,p=0.936 F530=2.04,p=1 F,3,=0346,p=1
Source level Grumble F536=0.74,p=1 F53,=10.21, p=0.001 F,37=051,p=1

Wop F530=0.66,p=1 F537;=5.68, p=0.024 Fr37=122,p=1
Call rate (group) Grumble X*3.42=19.60, p=0.001 ap=128,p=1 X242=0.90, p=1

Wop X*334=4.06,p=1 X*334=17.31, p=0.504 X234=3.35,p=1
Call rate (individual) Grumble X’3.42=725,p=0.512 X3.42=4.64,p=1 X2.42=5.67, p=0.464

Wop X334=2.02,p=1 X’334=297,p=1 X*234=3.82,p=0.148

The p values were adjusted using a Bonferroni correction. Significant results are highlighted in bold

2.5 km, 2.5-5 km, and beyond 5 km). First, to test for differ-
ences in vocal parameters (frequency, duration, and source
level) with group social behavior, separate linear models
(“normal” or “Poisson” based on the distribution of the re-
sponse variable) were fit. The mean of each vocal parameter
per group (response variable) was tested using social structure
(single-adult, multiple-adult, singer-join, non-singer-join) as
the fixed effect (after checking for normality, unequal vari-
ance, and highly influential points and assuming indepen-
dence of the response variables). Secondly, to test for any
“audience effect” on each vocal parameter, the nearest singer
and nearest neighbor was separately included as the fixed
effect, with each vocal parameter as the dependent. The results
of each linear model are presented as F" values with associated
degrees of freedom and adjusted p values (using the “p.adjust”
function in “R” which adjusts a given set of p values using a
Bonferroni method). Significance was set at p <0.05 after the
correction was applied. Poisson models were compared to the
null model to test for significant (p <0.05) improvement using
a likelihood ratio test. Test results are presented as x* with
associated degrees of freedom and adjusted p values. Effect
sizes are presented as back-transformed values with 95 %
confidence intervals.

Finally, to test whether frequency coding (in “grumbles”)
still occurred in the presence of a singing whale, groups were
then divided into those in which there was a singing whale
within 5 km (16) and those in which there was no singing whale
within 5 km (17). Groups being joined by a singing whale were
eliminated from this analysis. These groups were also divided

into those that were affiliating (groups being joined by non-
singing whale(s), 14) and those that were not affiliating (19).
Both the presence of a singer and group behavior were included
as an interaction effect, with “grumble” maximum frequency
and source level as the two dependent variables.

Results

The acoustic parameters for each sound type are summarized
in Table 1. Each group produced between 2 and 12 “grum-
bles” (with a mean of 5 per group) and between 3 and 21
“wops” (with a mean of 6 per group).

The effect of group social behavior

As “grumbles” were low-frequency, unmodulated sounds
(Fig. 1), frequency parameters such as minimum, maximum,
start, end frequency, and peak of the fundamental were highly
correlated with each other; therefore, only the maximum fre-
quency and peak frequency were analyzed (minimum fre-
quency was excluded as it sometimes corresponded to the
noise level and was difficult to measure). The source level
and general structure of “grumbles” (the frequency trend
and range) were not found to be significantly dependent on
group social behavior (Table 3). Neither were the fundamental
frequency parameters, including level of “wops” (Table 3).
However, groups that were joined by a singing whale (of
which the majority were female—calf pairs) vocalized at
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significantly lower maximum and peak frequencies (Table 3
and Fig. 2a) compared to single-adult non-affiliating groups.
“Grumble” maximum and peak frequencies were lower by an
average of 39 Hz (95 % CI=22-56 Hz) and 33 Hz (95 %
CI=13-54 Hz), respectively, in these “singer-join” groups.
Groups being joined by a non-singing whale or group of
whales also emitted “grumbles” at lower frequencies (by
30 Hz, 95 % CI=14-46 Hz), as did groups containing multi-
ple adults (by 22 Hz, 95 % CI=6-39 Hz; Fig. 2a). Groups
joined by non-singing whale(s) and multiple-adult groups also
emitted significantly shorter “grumbles” (Table 3 and Fig. 2b)
compared to single-adult groups. “Grumbles” produced by
groups joined by a non-singing whale(s) were shorter by 2 s
(95 % CI=1-4 s); a similar difference was found in multiple-
adult groups (of 2 s, 95 % CI=0.5-3 s).

Group “wop” rate (per 5 min) and individual “wop” rate
(per 5 min) did not significantly change with group social
behavior (Table 3). Group “grumble” rate, however, was sig-
nificantly (Table 3) greater in multiple-adult groups and
groups being joined by a non-singing whale. As individual
“grumble” rate was not found to be significantly different
(Table 3), the increase in group “grumble” rate was likely
due to the increase in the number of vocalizing animals rather
than an increase in individual “grumble” rate.

@ Springer

The effect of nearest singer and nearest non-singing group

The distance of the nearest singing whale and the dis-
tance of the nearest group had no significant effect on
“grumble” (or “wop” frequency and duration parameters
as well as group and individual vocal rates; Table 3).
However, both “grumble” and “wop” source levels were
significantly lower (by 14 dB, 95 % CI=5-22 dB) in
groups which had a singing whale within 2.5 km com-
pared to when there was no singer within 5 km (Table 3
and Fig. 3a, b). Groups also emitted “grumbles” at low-
er levels (by 9 dB, 95 % CI=2-17 dB) when there was
a singing whale between 2.5 and 5 km compared to
when there was no singer within 5 km (Fig. 3a). The
distance of the nearest non-singing group, however, had
no significant effect on “grumble” or “wop” source
levels (Table 3).

Groups in which there was a singing whale beyond 5 km
vocalized at about 163 dB re 1 pPa at 1 m compared to only
149 dB re 1 pyPa at 1 m in groups where there was a singing
whale close by. Using the transmission loss model, the re-
ceived SNRs at various distances from the source were pre-
dicted assuming a group SL of 163 dB re 1 pPa at 1 m, and
again assuming a group SL of 149 dB re 1 yPa at 1 m, with a
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the received SNR of “grumbles” was —10 dB in median noise
(witha SL of 149 dB re 1 pPa at 1 m) compared to 5 dB with a
SL of 163 dB re 1 uPaat 1 m. This reduction in SL is therefore
likely to reduce the ability of a singing whale to audibly detect
avocalizing group at this distance (Fig. 4). The SLs of “wops”
was 164 dB re 1 pPa at 1 m when the nearest singer was
beyond 5 km, decreasing to 150 dB re 1 pPa at 1 m with a
close-by singer. Therefore, received SNRs of “wops” would
also have been close to —10 dB at this distance in the presence
of a close-by singer.

The effect of singer presence on “grumble” parameters
in affiliating groups

Affiliating groups, whether or not a singer was present, vocal-
ized at significantly (/3 ,7=4.24, p=0.014) lower maximum
frequencies (by 25 Hz, 95 % CI=2-47 Hz) compared to non-
affiliating groups, suggesting that affiliating groups still emit-
ted “grumbles” at a lower frequency even in the presence of a
singing whale (Fig. 5a). Although “grumble” source levels
were significantly lower (F5,7=3.58, p=0.026) in groups
when a singer was within 5 km (Fig. 5b), source levels were
not significantly different between affiliating and non-
affiliating groups, even in the presence of a singing whale
(p=0.600).

The results show that context-specific differences in vocal
parameters may exist in humpback whales and that these dif-
ferences were related to the sound type, the group social be-
havior (whether or not they were involved in an affiliation),
and the presence of a nearby singing whale. The frequency
and duration parameters of “wops” were static in that they did
not vary depending on group social behavior. In addition, the
general structure of “grumbles” (denoted by the frequency
range and frequency trend) was also found to be static.
However, the frequency and duration of “grumbles” were
found to be flexible and related to the social context of the
vocalizing group, implying that these particular vocal sounds
fit the frequency code hypothesis (as defined by Ohala 1984).
Groups that were involved in an affiliation emitted “grum-
bles” at lower frequencies and, when comprising more than
one adult, emitted “grumbles” of shorter duration. Although
this difference in frequency was still evident in the presence of
a nearby singing whale (an audible bystander), both sound
types were emitted at much (14 dB) lower amplitudes (but at
similar rates). This change in vocal amplitude likely resulted
in the singing whale being unable, or less likely, to detect the
group (since the received SNR of the group’s vocalizations
would have been —10 dB at the singer) and could be a mech-
anism to reduce social eavesdropping by the singer. Nearby
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groups of whales that were not singing had no effect on group
vocal level. Therefore, in humpback whale social communi-
cation, the presence of an audible bystander (Marler et al.
1986), rather than a non-singing group, has a significant effect
on group vocal behavior in terms of the level at which the
signal is produced.

This reduction in vocal amplitude suggests that these
groups are acoustically “avoiding” a known (audible) male
in the area, an example of vocal crypsis. Vocal rate did not
change in the presence of a singer, implying that signals were
still being emitted at the same rate, but at lower levels.
Therefore, in this “triadic setting” (Zuberbiihler 2008), it
seems that the bystander (the singing whale) was an

untargeted receiver (a bystander). In this study, all recorded
groups in which there was a singer close by were comprised a
lactating female that would have just given birth to a calf, plus
one or more adults. The social structure of these groups would
have been either a single male “escorting” the female or
groups of males joining and competing for the position of
primary escort to the one female (Tyack and Whitehead
1983; Baker and Herman 1984; Brown and Corkeron 1995;
Clapham et al. 1992; Clapham 1996, 2000). Since female—calf
groups are known to commonly use “wops” and (less com-
monly) “grumbles” (Dunlop et al. 2008), and both sound
types have been recorded from acoustically tagged females
(unpublished data from this study site), it is likely, in this
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study, that the female within the group produced at least some
of the measured sounds. One reason for the observed vocal
crypsis could be that females are avoiding unwanted attention
from singing males, which could be for a number of reasons.
Although postpartum estrous in female humpbacks is possi-
ble, it is not common (Chittleborough 1958), so these lactating
females may not be in estrous and therefore would be unre-
ceptive to males. In addition, recent studies have hypothesized
that females with a calf incur energetic costs when being
escorted by multiple males (Cartwright and Sullivan 2009;
Craig et al. 2014). Further, during aggressive interactions
(such as those that occur when females are escorted by a
number of males), calves may be injured or separated from
their mothers (Baker and Herman 1984; Smultea 1994), in-
dicating another potential cost of joining males. On
Hawaiian breeding grounds, female—calf pairs are more like-
ly (compared to females without calves) to be “chased” or
“harassed” by males and have been found to avoid playback
of sounds from competitive groups (Jones 2010). There is
therefore a growing body of evidence that lactating female
humpback whales are attempting to avoid male harassment.
Lowering the amplitude, but not the rate, of their vocal
sounds in the presence of a known male may be one way
to do so. There is little research on the call flexibility of
females in the presence of bystander males (Townsend and
Zuberbiihler 2009), though female chimpanzees are known
to strategically change their calls according to the social
ranking of the female audience (Townsend et al. 2008).
Further, in many communication network studies, the audi-
ence is also a targeted receiver (e.g., Slocombe and
Zuberbiihler 2007; Fedurek et al. 2013). The social setting
highlighted in this study would provide opportunities to spe-
cifically test the effects of an unintended male audience on
female vocal activity, such as calls between her and her calf
(the intended receiver).

Within the vocalizing group, however, males may also
have been producing these sounds (as the acoustic tracking
in this study was not accurate enough to localize sounds to a
specific group member). The calling rate of “grumbles” was
greater in larger groups (which contained one female but
greater numbers of non-singing adult males), implying that
adult males also emitted these sound types. In terrestrial sys-
tems, providing cues to other males in the area can be costly as
it encourages competition and can result in reduced mating
success (Balsby and Dabelsteen 2005; Stoltz and Andrade
2010). In other words, males within the group may also be
acoustically avoiding a known male in the area. Male—female
signaling behavior has been found to change in the presence
of an audience in various species of fish (e.g., Doutrelant et al.
2001; Makowicz et al. 2010; Dzieweczynsk et al. 2011; Auld
etal. 2015), birds (e.g., Vignal et al. 2004), and primates (e.g.,
Overduin-De Vries et al. 2012; Roberts and Roberts 2015).
Hence, in humpback whales, the reduction in vocal amplitude

(be it from the female or males in the group) may be to dis-
courage more males (singing whales) from joining, resulting
in fewer aggressive interactions between competing males and
less within-group competition between males. Interestingly,
there was no such effect with the presence of a nearby non-
singing whale or group of whales (which may not have been
detectable to the group if not vocalizing). The reduction in
vocal amplitude found in this study seems to only occur in
the presence of bystanders that are audible to the group, i.e.,
singing bystanders. Whether or not the nearest non-singing
groups were audible to the study groups (i.e., producing audi-
ble social sounds) was an unknown factor in the study. Further
studies should therefore determine whether there is in fact a
“cost” to group members of additional males joining and if
this “cost” is reduced by acoustically avoiding known
(singing) males in the area.

The dataset in this study also included vocalizing female—
calf pairs that had already been joined by a singing male,
suggesting that not all females were avoiding singing whales
or that their avoidance strategy was not always successful. In
these groups, the analyzed sounds would have come from the
female or calf (singers do not emit social sounds while sing-
ing). Given that calves tend to make short-duration (<0.5 s)
sounds that are either pulsed, amplitude-modulated, or, if fre-
quency-modulated, tend to be above 500 Hz (Zoidis et al.
2008), it is likely that most of the sounds were from the female
in the group. Interestingly, these escorted female—calf groups
vocalized at similar levels to groups in which there was no
singing whale in the area, illustrating that the observed lower-
ing in vocal amplitude was in response to a close-by singer
(that did not become part of the group) rather than to a singer
which was already part of the group. Associations between
males and females at this study site are common, probably
due to males prospecting for mating opportunities (Mobley
and Herman 1985; Clapham 1996), implying that at least
some of the females would be receptive some of the time.
Currently, it is not possible in humpback whales to determine
if the physiological state of the female (i.e. whether or not she
is in estrous) plays a role in the different vocal behaviors
observed, but relating physiological state to vocal behavior
may help to further understand the observed variation in vocal
amplitude with social context.

In addition, this study has provided evidence that one of the
most common vocal signals of humpback whales, “grumbles,
” has a static-dynamic component and therefore is likely to
contain flexible information such as motivation. “Wops” were
not found to be structurally flexible, at least during group
affiliations, indicating that these sounds may have evolved
to encode specific static information related to their function.
In terrestrial systems, low-frequency unmodulated sounds of-
ten code for signaler size (Fitch 1997; Vannoni and McElligott
2008; Taylor and Reby 2010) and harsh low-frequency sounds
signify aggression (Morton 1977; Reichert and Gerhardt
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2013; Ordoniez-Gomez et al. 2015). Low-frequency
“rumbles” in elephants are used for contact calling, herd as-
sembly, social interactions, and aggressive interactions (Nair
et al. 2009), as well as advertising individual identity, repro-
ductive state, emotional state (Soltis 2010), and social role
within a group (Soltis et al. 2009). In humpback whales,
“grumbles” are more commonly heard in the multiple-adult
groups described above, many of which contain competitive
males (Dunlop et al. 2008). “Wops,” on the other hand, are
more common in female—calf pairs and female—calf pairs be-
ing escorted by a male (Dunlop et al. 2008) compared to
other group compositions. In keeping with terrestrial
communication systems, perhaps the lower-frequency
“grumbles” signify levels of aggression or indicate dif-
fering social roles within the group, whereas “wops”
reflect a static signaler trait such as sex and/or location.
In the Hawaiian breeding grounds, female—calf pairs can
be subjected to aggressive advances from males (defined
as “herding,” “chasing,” and “blocking”; Jones 2010),
suggesting that inter-sex conflicts, as well as intra-sex
conflicts (between competitive males), are a common
occurrence in humpback whale breeding behavior. At
this stage, the function, or functions, of “grumbles”
and “wops” in humpback whales remains speculative,
as does the reason for the differences (or lack of differ-
ences) in frequency during social affiliations. What is
clear from this study is that, in certain social situations
in humpback whales, it may not just be the type of
sound being used that provides the important informa-
tion, but also the frequency and/or amplitude at which it
is produced.

The results of this study highlight the complex communi-
cation networks in marine mammals (Janik 2005).
Specifically, this study has shown that within the communica-
tion system of humpback whales, socially driven dynamic
vocal frequency coding exists. This coding system is similar
in some ways to a typical terrestrial system in that some fea-
tures, such as frequency, change with social context, while
other structural features do not. Few studies have determined
the effects of an untargeted bystander on signaler behavior
(Zuberbiihler 2008). In humpback whales, it seems that
changes in frequency between affiliating and non-affiliating
groups still occurred in the presence of an audible bystander;
in other words, the coding system remained. However, al-
though the presence of this bystander had no effect on the rate
of production of these vocal sounds, sounds were emitted at
substantially lower acoustic levels. This reduced signal level
implies that humpback whales are suppressing their vocaliza-
tions to acoustically “avoid” nearby males. The function of
these sounds, as well as the reasons behind the observed dif-
ferences in vocal parameter, remains, at this stage, speculative
and the hypotheses laid out in this discussion are by no means
exhaustive. However, the results provide a basis to carry out
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more targeted research on the function of these sounds in
humpback whales and the potential costs to the signaler of
eavesdropping by other conspecifics.
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