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Abstract

Motivation: The transcriptomic data are being frequently used in the research of biomarker genes of different dis-
eases and biological states. The most common tasks there are the data harmonization and treatment outcome pre-
diction. Both of them can be addressed via the style transfer approach. Either technical factors or any biological
details about the samples which we would like to control (gender, biological state, treatment, etc.) can be used as
style components.

Results: The proposed style transfer solution is based on Conditional Variational Autoencoders, Y-Autoencoders
and adversarial feature decomposition. To quantitatively measure the quality of the style transfer, neural network
classifiers which predict the style and semantics after training on real expression were used. Comparison with sev-
eral existing style-transfer based approaches shows that proposed model has the highest style prediction accuracy
on all considered datasets while having comparable or the best semantics prediction accuracy.

Availability and implementation: https://github.com/NRshka/stvae-source.

Contact: antonec@yandex.ru

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The new era of modern life sciences has begun with the development
of high throughput nucleic acid sequencing methods—new gener-
ation sequencing (NGS) techniques. The amount of current genomic
and transcriptomic data is tremendous and grows exponentially.
The single-cell sequencing methods enabled even more detailed de-
scription of a transcriptomic landscape that allowed to decipher the
very complex nature of cellular subtypes, to analyze their develop-
mental patterns and ancestry (Saliba et al., 2014; Stark et al., 2019).

However, current NGS data are highly fragmented due to the
different sources of technical variation associated with particular
NGS platforms, sample acquisition and preparation procedures,
subsequent analysis steps and so on. The costs of transcriptomic
experiments are still high and thus the really big datasets comprising
thousands of samples are still rare. One of the most frequent tasks in
transcriptomic data analysis is the identification of potential bio-
marker genes for various diseases and conditions. In most cases, the
researchers operate with data comprising from tens to hundreds,

and, in rare cases, thousands of samples and the tens of thousands of
genes or individual transcripts. The extremely high dimensionality
and complex mutual interdependencies make it difficult to achieve
reproducibility in prospective studies. The problem is the insufficient
volume of any single training dataset, an excessively large number of
influencing factors and the lack of knowledge about the structure of
molecular genetic systems. Thus, there is an urgent need in methodo-
logical approaches capable to analyze heterogeneous and limited
datasets of high dimensionality, suffering from technical noise and
different kinds of batch effects. One of the available options is to
harmonize the quality control procedures and the data analysis pipe-
line to make the resulting gene (transcripts) expression values more
comparable. One of the best examples of this approach is DEE2—
Digital Expression Explorer 2 (DEE2) (Ziemann et al., 2019)—a re-
pository of uniformly processed RNA-Seq data obtained from NCBI
Short Read Archive. There are also other examples: ARCHS4, the
massive collection of uniformly processed murine and human public
transcriptomic datasets (Lachmann et al., 2018), recount2 (Collado-
Torres et al., 2017) and so on. However, the most important task in
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transcriptomic data harmonization is the correction of batch effects,
and in general, it remains unresolved.

Currently, it is widely accepted that gene expression profiles of
the living cells resulted from a complex mixture of different bio-
logical processes and technical parameters. At the moment, there
were several attempts to model this kind of data as combinations of
certain low-dimensional representations corresponding to various
biological pathways and conditions (Xu et al., 2019). In this work,
we test the hypothesis whether these attributes could be reasonably
and controllably changed in silico using the deep learning models.

We believe that both batch effect correction and treatment out-
come prediction tasks may be addressed with a style transfer ap-
proach. In the first case, we consider each batch as a style and
transfer all of the samples to the same style to eliminate batch dis-
crepancy. In the latter case, we consider ‘Treatment’ and ‘Non-
Treatment’ conditions as styles and transfer the style of the desired
samples from ‘Non-Treatment’ to ‘Treatment’ and vice versa. Please
note that, we use the term ‘batch’ here and further in the text in
purely biological sense, outside of the stochastic gradient descent al-
gorithm scope. For the latter, we use the word ‘minibatch’. In this
work, we applied adversarial decomposition methodology to disen-
tangle the sources of variation in single-cell RNA-Seq data to be
able to transfer its style. In our approach, we used no prior dimen-
sionality reduction as it makes strong assumptions about the data.
For example, PCA tries to maximize the variance in projected
dimensions and in case of heavy outliers and non-symmetric distri-
bution the result becomes unstable at least if one does not apply the
robust covariance estimates. Another common problem is that top
PCs often extract the technical variation. Besides, we assume it is un-
likely that biological states can be modeled by simple linear combi-
nations of some low-dimensional basis vectors since different sorts
of non-linear relations are common for gene regulation circuits, e.g.
logical XOR patterns, various feedback loops and conditional
dependencies and so on. Given the highly hierarchical modular or-
ganization of cellular regulatory pathways and the clonal nature of
the cells, deep neural network-based approaches seem to be the
most feasible for the tasks involving gene expression.

2 Background

In recent years, there have been plenty of studies applying deep
learning to gene expression data analysis. Speaking of architecture,
they can be roughly subdivided on GAN-based, autoencoder-based
and Bayesian deep learning-based. With respect to the tasks, those
models may serve for denoising, missed values imputation, dimen-
sionality reduction (and further analysis of obtained low-
dimensional embeddings), data harmonization and in silico treat-
ment outcome prediction. For example, an approach with deep gen-
erative modeling for scRNA-Seq data normalization and domain
adaptation was recently proposed in the study by Xu et al. (2019)
and Johansen and Quon (2019). Another approach to gene expres-
sion data modeling with autoencoders was presented in the study by
Gold et al. (2018)—the authors induced the sparsity of network
weights by connecting only the genes from the same functional
group to the same hidden neuron. This is a step toward interpret-
ability of autoencoder models. Way et al. (2018) and Grønbech
et al. (2018) successfully used variational autoencoders (VAE) as a
non-linear dimensionality reduction method for gene expression
data from different cancer subtypes and cell types, respectively. In
the study by Eraslan et al. (2019), the autoencoder with zero-
inflated negative binomial (ZINB) likelihood loss was effectively
used as a denoising tool on gene expression data. In the study by
Amodio et al. (2019), the sparse autoencoder-based approach was
proposed for clustering, imputation and embedding of the single-cell
transcriptomic data. In the study by Wang et al. (2018a), the VAE-
based model with additional layer accounted for zero-inflation was
proposed for the single-cell data imputation. The approaches with
style transfer involved are usually aimed to address the imputation
and embedding tasks. Originally, this type of transformation was
mostly applied to adopt the style of fine art paintings to generic
images (Gatys et al., 2015). A large group of image style transfer

frameworks uses the pretrained models to extract image descriptors
to build the transfer objective. Due to the absence of such pretrained
models for gene expression data, we made use of adversarial ap-
proach: separating the features into style and semantic groups using
the discriminator network. Learning the representations independ-
ent of domain with the help of discriminator using gradient reversal
layer was proposed in the study by Gatys et al. (2015). The adver-
sarial decomposition strategy was successfully applied to style trans-
fer of texts, for example, in this work (Romanov et al., 2018). In our
work, we also used cycle-consistency loss for style transfer, which
was proposed in the study by Zhu et al. (2017). The same technique
used in domain adaptation for image segmentation tasks can be
found in the study by Hoffman et al. (2017).

In gene expression analysis, the style transfer methods are still
not widespread and certain frameworks and models were developed
only recently and applied mostly for single-cell transcriptomic data.
In some of them, transfer is done by latent vector arithmetics, i.e. a
vector connecting the averaged latents of initial and target cell
groups is added to the initial latents and then the shifted latents are
decoded back to the original gene expression space. Such an ap-
proach with GAN-based latent space mapping was proposed in the
study by Ghahramani et al. (2018) and with VAE-based model in
the study by Lotfollahi et al. (2019a). Yet another GAN-based ap-
proach (Targonski et al., 2019) uses the adversarial attack technique
to perturb gene expression profiles to fool the pretrained category
classifier, which also may be considered as a style transfer. Another
autoencoder-based approach with shared decoder and one decoder
per style was implemented in recent work by Johansen et al. (2019).
Among the solutions based on Conditional Variational
Autoencoder, one should also mention the recent work by Lotfollahi
et al. (2019b) where the authors used maximum mean discrepancy
(MMD) loss to achieve better disentanglement of features related to
data style and semantics. Inspired by these results, we decided to
study if different components of gene expression data variance can
be disentangled using Convolutional Variational Autoencoder
(CVAE)-based techniques and adversarial decomposition and if ex-
pression with transferred style obtained via such disentangled repre-
sentation might be of interest from a biological point of view, e.g.
for in silico treatment outcome prediction, data augmentation with
semisynthetic samples and so on.

3 Materials and methods

3.1 Datasets
3.1.1 The murine cell atlas (scMCA)

This dataset comprising numerous murine single-cell gene expres-
sion profiles was produced with cost-effective high throughput
Microwell-seq platform (Han et al., 2018), that allowed to analyze
over 400 000 single cells from 51 mouse tissues and organs
extracted from several animals at varying physiological conditions.
The original scMCA data contains gene expression profiles for over
800 major murine cell types. The detailed annotation was provided
by the authors for over 200 000 single cells. A detailed description
of the data can be found in the original paper (Han et al., 2018) and
online. This dataset was selected due to the following major reasons:
(i) it contained the huge amount of data obtained with a consistent
methodology by the same research group thus presumably making
the technical dispersion less profound; (ii) since the samples belong
to different animals, distinct organs/tissues and physiological condi-
tions one could build a model to decompose these sources of
variation.

For building the models, we selected a subset of 45 497 samples
corresponding to single cells derived from murine mammary glands
of virgin and pregnant mice and also from involution state (24 395,
9737 b 11 365 samples, respectively). This subset was selected both
due to its volume and the ease of interpretation of distinctions be-
tween conditions. The samples from lactating animals were
excluded as they were clearly isolated (data not shown) and different
cellular types were barely distinguishable. We kept 20% of the data
(with keeping the same proportion of biological states) as a test set,
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and 15% of the remaining data was used for validation. The original
raw gene expression counts were used as inputs. About 15 987 genes
were considered. The gene expression tables used in our study can
be found in Supplementary Tables ST1. To reduce the cell type
labeling complexity, we decided to switch to more general cell types
categories, presuming that the expression patterns between the cells
of common origin should be more consistent than those of different
cellular types. The complete data annotation used in our experi-
ments is listed in Supplementary Table ST2. We considered the cel-
lular types as the element of data semantics. Among the major goals
was to control the preservation of related cell types under the style
transfer procedure. The original scMCA data can be found at:
https://doi.org/10.6084/m9.figshare.5435866.v7.

3.1.2 STARmap

The STARmap dataset was used for hyperparameters tuning and
comparative testing of our model against several other approaches
(see below). It contains the expression values for 166 genes in 3700
cells from three separate biological mouse samples of the medial pre-
frontal cortex (Wang et al., 2018,b). The annotated dataset was
taken from https://github.com/YosefLab/scVI-data/raw/master/
mpfc-starmap.loom from the authors of scVI framework (Lopez
et al., 2018). Loom is a specialized file format based on HDF5 suit-
able for large omics datasets, containing a main data matrix and
additional annotation layers. The loompy—a Python library for
working with Loom data can be found at: http://loompy.org.

3.1.3 Retina

The original dataset contains 27 499 cells and 13 166 genes from
two batches (Shekhar et al., 2016). This dataset was also used for
benchmarking. We used the cluster annotation from 15 cell types
and preprocessed and normalized gene expression counts provided
by scVI authors (Lopez et al., 2018). The annotated dataset can be
downloaded from https://github.com/YosefLab/scVI-data/raw/mas
ter/retina.loom.

3.1.4 PBMC

The data were originally extracted from SRP073767 dataset by
Zheng et al. (2017). It is the scRNA-Seq data from two batches of
PBMCs from a healthy donor (4000 and 8000 PBMCs, respectively).
The dataset was prepared as described in scVI paper (Lopez et al.,
2018); the annotated dataset contained 12 039 cells with 3346
genes. The dataset was used for benchmarking. The gene expression
data can be downloaded from https://github.com/YosefLab/scVI-
data/raw/master/gene_info.csv and the corresponding metadata—
from https://github.com/YosefLab/scVI-data/raw/master/pbmc_meta
data.pickle.

3.1.5 IFNb-treated PBMC

For biological validation we have also used the dataset containing
control and interferon-beta-stimulated PBMCs (GSE96583) ( Kang
et al., 2018). The data were taken from scGen examples (https://
github.com/theislab/scgen-reproducibility). The dataset was pro-
vided by the authors (Lotfollahi et al., 2019a) as normalized and
log-transformed. The data included 18 868 cells belonging to 8 cel-
lular types and 6998 genes in two conditions. The examples can be
found at their project repository: https://nbviewer.jupyter.org/
github/M0hammadL/scGen_notebooks/blob/master/notebooks/
scgen_kang.ipynb.

3.2 Deep learning model development
3.2.1 Autoencoder architecture

Our architecture is based on multiple autoencoder-related ideas. We
use Conditional Variational Autoencoder (Sohn et al., 2015) as a
backbone for our encoder–decoder architecture: one-hot encoding
of the category is fed to the decoder as well as latents. This kind of
architecture makes us able to perform style transfer: after encoding
of the initial expression, we can choose a target category before

decoding. To eliminate the information about the category which
represents our ‘style’ from the hidden variables, we place a discrim-
inator over the latent representation and train it adversarially with
the encoder. To further enforce the disentanglement between the
style and the remaining hidden variables, we adopt the training tech-
niques from Y-Autoencoder (Patacchiola et al., 2019) which
involves adding yet another head to the encoder which predicts the
category and minimizing a bunch of auxiliary loss functions along
with reconstruction loss. Additional hyperparameter aimed to
weight a contribution of Kullback–Leibler divergence with prior dis-
tribution to the total loss as in beta-VAE (Higgins et al., 2017) is
added. Given the input dimension, number of layers and bottleneck
size, we control the width of the ith layer with the following
formula:

wi ¼ N� ðN� hÞ � ði=nlayersÞa (1)

where N is an input dimension, h is a bottleneck size and a is a
hyperparameter which controls how fast the layers width shrinks
when moving from input to bottleneck.

We used non-linearities Mish (Misra, 2019) and (mini)batch nor-
malization in both encoder and decoder layers. The architecture scheme
is presented in Figure 1. Discriminator scheme is the following: Input-
FC(1024)-BatchNorm-LeakyReLU-FC(1024)-BatchNorm- LeakyReLU-
FC(N_batches), where abbreviation FC stands for fully connected
layers.

3.2.2 Autoencoder training

For the training of our autoencoder, we used the mean squared error
(MSE) as reconstruction loss function. Also, a cyclic consistency loss
was used: we obtain the encodings for a minibatch, make a random
style transfer, and then transfer the style back at the second
forward-pass through the autoencoder.

Reconstruction loss between the values obtained this way and
the initial expression is a cycle consistency loss. To enforce the hid-
den representation to contain no information about biological state,
we maximized Shannon entropy of discriminator predictions as gen-
erator loss. Discriminator was trained with a log-loss objective.
Auxiliary losses from Y-Autoencoders (Patacchiola et al., 2019)
were also minimized. Their coefficients were set equal to reduce the
dimensionality of hyperparameter search.

For regularization, we used the L1 weight penalty for autoen-
coder along with VAE-regularization. For adversarial training stabil-
ization, we have used the Gaussian instance noise (Mescheder,
2018) with variance 0.01 for discriminator. Also, gradient clipping
down to unite norm was used for autoencoder and discriminator
was used. To sum it up, the training of our model may be described
with pseudocode shown in Supplementary File SF1.

The weights for each term in the autoencoder along with number
of model layers and alpha hyperparameter were tuned with random

Fig. 1. The autoencoder architecture scheme
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search with roughly 350 iterations on the STARmap dataset. The
optimal hyperparameters were the following: cvae_beta ¼ 2e-5;
adv_weight ¼ 0.0000001; vae_lr¼0.001; num_epochs¼800;
n_layers ¼ 2; scale_alpha¼1.3; bottleneck_size¼30; form_consis-
tency_weight ¼ 0.2 and batch_size ¼ 128. To get a better under-
standing of these hyperparameters and their roles, please see
Supplementary File SF1 with pseudocode.

For downstream analysis of autoencoder outputs, we substituted
the predicted negative values with zero. Several experiments with
ReLU activation, which were used as the last layer to prevent the ap-
pearance of negative outputs, were conducted, but these led to poor
model convergence.

3.2.3 Metrics classifiers architecture and training

To quantitatively measure fidelity of the style transfer and semantics
preservation during this procedure, auxiliary neural network classi-
fiers were used. They are needed just to measure the performance of
the frameworks on the style transfer task and did not participate in
their learning whatsoever. Architecture scheme is Input-FC(512)-
BatchNorm-Mish-FC(256)-BatchNorm-Mish-FC(128)-BatchNorm-
Mish-FC(OUTPUT_SIZE). Both classifiers were trained with Adam
optimizer for 450 epochs with minibatch size 128. Learning rate
was set to 0.003 for cell type classifier and 0.00001 for the style clas-
sifier. These hyperparameters were hand-picked in a set of
experiments.

3.2.4 Other frameworks architecture and training

1. trVAE (Lotfollahi et al., 2019b). Implementation from https://

github.com/theislab/trvaep was used. The model contained two

hidden layers in both encoder and decoder with sizes of 128 and

32, respectively. Bottleneck layer size was set to 30 (as well as in

all other frameworks). Hyperparameter alpha was set to 0.0001.

The model was trained for 300 epochs with minibatch size of

512 with early stopping patience of 50 epochs.

2. scGEN (Lotfollahi et al., 2019a). Implementation from https://

github.com/theislab/scgen was used. Bottleneck was set to 30

neurons, all of the other hyperparameters used the default

setting.

3. scVI (Lopez et al., 2018). Implementation from https://github.

com/YosefLab/scVI was used. All the hyperparameters used the

default setting besides the number of latent variables, which was

set to 30.

4. CycleGAN (Zhu et al., 2017). Implementation from https://

github.com/junyanz/pytorch-CycleGAN-and-pix2pix was used.

Since this implementation was meant to be used for the image

data, we modified the autoencoder architecture to Input-

InstanceNorm-ReLU-FC(365)-InstanceNorm-ReLU-FC(30)-In-

stanceNorm-ReLU-FC(365)-InstanceNorm-ReLU-FC(OUTPUT_SIZE)

for all the datasets besides STARmap where the hidden layer had

94 neurons instead of 365 due to lower input dimensionality.

The discriminator scheme was modified to Input-InstanceNorm-

ReLU-FC(365)-InstanceNorm-ReLU-FC(1). Discriminator loss

function was set to binary cross entropy instead of MSE. All

other infrastructure and hyperparameters left unchanged.

3.2.5 Calibration procedure

Yet another, simple approach to validate the models is what we call
a calibration procedure. It is designed to control that keeping the
original sample style while passing the sample through the model
provides less deviation of expression than an arbitrary style transfer.
Namely, we take a sample, transfer its style in all possible ways and
check if L2-distance between the original and decoded expression
achieves the smallest value when the initial sample style is used. One
may think of it as a simple rule-based classifier.

3.3 Biological assessment and validation
3.3.1 MA-plots construction

Each point on the MA-plot is a gene. Sum of expression of each
gene was calculated across all samples belonging to the particular
cell type in the same state and 1.0 was added to avoid division by
zero problem. The abscissa is calculated as an average of log2-
transformed expression of a gene in two compared states. The ordin-
ate is the log2 transformation of the fold change of expression be-
tween two compared states.

3.3.2 Differential gene expression and gene set enrichment

analysis

With scMCA data, the differential gene expression analysis was per-
formed using RPM-normalized expression counts. The statistical
significance was assessed with Mann–Whitney test with multiple
testing P-value correction using FDR procedure. Several cellular
types were processed separately: (i) stromal/luminal/alveolar cells—
those functionally involved in mammary gland development and lac-
tation and (ii) dendritic cells—antigen presenting cells that were
expected to display less profound differences between virgin, preg-
nant and involution states. GO- and KEGG-enrichment analyses
were performed with the online resource ShinyGO (v0.60) (Ge
et al., 2018). The lists of murine genes, associated with certain GO-
categories were taken from Gene Ontology Browser at Mouse
Genome Informatic portal (Bult et al., 2019).

With IFNb-treated/control PBMC scRNA-Seq data, the differen-
tial gene expression analysis was performed with either Mann–
Whitney or Welch’s test with Bonferroni P-value adjustment. GO-
terms enrichment analysis was performed with Python package
goenrich (https://github.com/jdrudolph/goenrich). All the details can
be found in Jupyther notebooks at our project repository.

4 Results

Our research was aimed to disentangle the information about the
cell type and biological state in the low-dimensional representation
of gene expression data. Since gene expression data are more inter-
pretable and familiar to bioinformaticians and are also suitable for
downstream analysis pipelines than low-dimensional embeddings,
we paid more attention to evaluating the results of our model output
expression rather than latent representation. However, we also re-
port two metrics related to the latent representation, namely knn
purity and entropy of batch mixing (Xu et al., 2019).

The disentanglement can be also illustrated with the following
examples. Figures 2 and 3 depict the 2D projections of the testing
samples obtained with tSNE using either original gene expression
values or the recovered expression obtained with our model, respect-
ively. The samples are colored according to cell types (A) and to con-
dition (B). One can readily see the clusters corresponding to cell
types and to condition on both these plots. However, when similar
visualization was built using the extracted latent representations of
the samples as input (Fig. 4), there were no clusters corresponding to
different physiological states, but the clusterization of cell types was
still observed. We have additionally obtained the low-dimensional
projections of scMCA and GSE96583 with UMAP. The figures were
found to be more informative, and there were evident clusterizations
of scMCA data points even on latents. The corresponding
Supplementary Figures S1 and S2 can be found in Supplementary
File SF2.

4.1 Style transfer validation
We expect our model to be able to switch the gene expression within
the samples in a discrete set of categories (style) while keeping all
other properties preserved, e.g. changing the condition without
affecting the cell type. To quantitatively measure that, we use neural
network models which predict the style and the cell type after train-
ing on real gene expression sets. Ideally, these models should cor-
rectly predict the style the samples were transferred to and cell type
predictions should remain invariant despite the style transfer.
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Several autoencoder-based style transfer approaches along with our
model were evaluated this way with the same pretrained classifiers
on several datasets with the same train/validation/test splitting.
Results of the comparison are presented in Table 1.

It turns out that our model provides the highest style prediction
accuracy on all of the datasets while providing the highest cell-type
prediction accuracy on two datasets and the second highest accuracy
on the remaining ones. These results suggest that latent space arith-
metics are not sufficient to transfer the sample style.

4.2 Ablation study
We have conducted the ablation study on the mouse dataset to ana-
lyze what parts of the model have the biggest impact on the style
transfer fidelity. The parts were disabled by zeroing out the corre-
sponding weight in the loss function. The results may be found in
Table 2. The top row contains information about the loss weight
value when the corresponding part is enabled. They are set to the
hyperparameters found by random search on the STARmap dataset.

The table shows that the model benefits greatly in terms of style
prediction accuracy from Y-Autoencoder auxiliary losses, sum of
which we call the form consistency loss. VAE regularization is most-
ly responsible for cell-type prediction accuracy. Both classification
metrics are slightly improved by introducing the cycle consistency
loss. Since the adversarial loss was given very low coefficient after
the random search its impact is negligible.

4.3 Biological examination of gene expression changes

after encoding and decoding transformation using

scMCA data
The verification was performed using differential gene expression
analysis and gene set enrichment analysis with GO and KEGG cate-
gories. Differential gene expression analysis was performed using
RPM-normalized expression counts. The statistical significance was
assessed with Mann–Whitney test with multiple testing P-value cor-
rection using FDR procedure. Several cellular types were processed
separately: (i) stromal/luminal/alveolar cells—those functionally
involved in mammary gland development and lactation and (ii) den-
dritic cells—antigen presenting cells that were expected to display
less profound differences between virgin, pregnant and involution
states.

GO-enrichment analysis demonstrated that used data contained
relevant biological signals (Table 3). When stromal/luminal/alveolar
cells taken from mammary glands of pregnant mice were compared
against those of virgin mice, the top 100 upregulated differentially
expressed genes were found to be significantly enriched with epithe-
lium development, epithelial cell differentiation, mammary gland
development GO categories. The top 200 upregulated genes were
also found to be significantly associated with progesterone-mediated

Fig. 2. Visualization of original samples with tSNE. Raw expression values were

used, samples were colored according to cell types (A) and physiological state (B).

tSNE perplexity was set to 30

Fig. 3. Visualization of reconstructed samples with tSNE. Gene expression values

reconstructed with VAE model were used, samples were colored according to cell

types (A) and physiological state (B). tSNE perplexity was set to 30

Fig. 4. Visualization of the samples with tSNE using the learned latent representa-

tion. The latent variables of the testing samples were obtained with pretrained en-

coder. The samples were colored according to cell types (A) and physiological state

(B). tSNE perplexity was set to 30

Table 1. Comparison of several style transfer-based frameworks

with proposed model in terms of several performance metrics

using different testing datasets

scMCA Retina STARmap PBMC

stVAE

Cell type prediction accuracy 0.577 0.975 0.711 1.0

knn purity 0.46 0.69 0.244 1.0

Ebm 2.56 1.2 2.65 54.35

Class prediction 0.99 0.986 0.943 0.668

Calibration accuracy 0.92 0.94 0.598 0.83

MSE 0.014 0.108 0.32 0.587

trVAE

Cell type prediction accuracy 0.627 0.56 0.626 1

knn purity 0.34 0.18 0.315 1

Ebm 2.67 1.33 2.71 53.8

Class prediction 0.53 0.45 0.62 0.5

Calibration accuracy 0.71 0.34 0.648 1.0

MSE 0.0205 0.64 0.431 0.63

scVI

Accuracy on reconstruction – – – –

knn purity 1 1 1 1

Ebm 0.33 0.64 0.63 0.344

Style prediction accuracy 0.33 0.516 0.303 0.22

Calibration accuracy – – – –

MSE – – – –

scGen

Cell type prediction accuracy 0.676 0.96 0.63 1

knn purity 0.46 0.62 0.217 1

Ebm 2.57 0.48 2.7 54.38

Style prediction accuracy 0.33 0.5 0.33 0.08

Calibration accuracy 0.322 0.495 0.348 0.085

MSE 0.0157 0.193 0.308 0.37

CycleGAN

Accuracy on latents – – – –

Cell type prediction accuracy – 0.74 – 1.

knn purity – 0.53 – 1.

Ebm – 1.56 – 54.32

Style prediction accuracy – 0.79 – 0.5

Calibration accuracy – 0.69 – 0.8

MSE – 0.35 – 0.29

Classifiers on raw test expression

Cell type prediction accuracy 0.8 0.98 0.74 1.0

Style prediction accuracy 0.88 1.0 0.82 0.96
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oocyte maturation and prolactin signaling KEGG pathways. The
top 100 upregulated differentially expressed genes found with com-
parison of stromal/luminal/alveolar cells from mice with mammary
gland involution against those of pregnant animals were found to be
significantly enriched with GO categories related to apoptosis, stress
response and catabolism (Table 3). When similar analysis was per-
formed using dendritic cell samples, the top 100 differentially
expressed upregulated genes were found to be significantly enriched
with GO categories related to defense and immune responses, cyto-
kine production, dendritic cell differentiation and so on (data not
shown).

Besides the examination of original expression profiles, we also
made a comparison between the samples after the ‘style transfer’

procedure: when samples of pregnant mice were transformed into a
virgin or involution state, virgin—to pregnant or involution, involu-
tion—to pregnant or virgin. As an example, Figure 5 shows MA-
plots with comparison of Virgin versus Pregnant states of stromal
cells (shown with blue dots), and Virgin versus artificial Virgin state
created from Pregnant by style transfer (shown with orange). The
overlay of these MA-plots provides a clear illustration that gene ex-
pression of original Virgin state is closer to that of artificially
obtained Virgin than to original Pregnant samples.

However, the similar GO- and KEGG-enrichment analysis of
recovered gene expression and semisynthetic samples obtained with
style transfer was less straightforward since there were numerous
changes associated with basic GO categories. Thus, we decided to

Table 2. Comparison of several style transfer-based frameworks with our model with respect to different metrics on testing set

Value 0.2 2e-5 1e-7 0.2 Mouse dataset performance

Form consistency loss VAE loss Advers. Loss Cyclic loss Cell type prediction accuracy Style prediction accuracy MSE

1 OFF OFF OFF OFF 0.24 0.33 0.04

2 OFF OFF OFF ON 0.71 0.5 0.039

3 OFF OFF ON OFF 0.25 0.33 0.04

4 OFF OFF ON ON 0.31 0.373 0.0385

5 OFF ON OFF OFF 0.759 0.59 0.021

6 OFF ON OFF ON 0.776 0.599 0.0204

7 OFF ON ON OFF 0.759 0.59 0.021

8 OFF ON ON ON 0.773 0.594 0.0204

9 ON OFF OFF OFF 0.085 1 0.022

10 ON OFF OFF ON 0.092 1 0.0239

11 ON OFF ON OFF 0.292 0.999 0.027

12 ON OFF ON ON 0.483 1 0.0217

13 ON ON OFF OFF 0.388 1 0.0237

14 ON ON OFF ON 0.0765 1 0.024

15 ON ON ON OFF 0.43 0.99 0.225

16 ON ON ON ON 0.6 0.99 0.014

Table 3. GO-enrichment analysis of top 100 differentially expressed genes observed in stromal/luminal/alveolar cells in virgin versus preg-

nant and involution versus pregnant comparisons

Enrichment FDR Genes in list Total genes Functional category GO ID

GO-enrichment analysis of stromal/luminal/alveolar cells of top 100 genes found to be differentially expressed in samples of virgin and pregnant mice

4.1e-06 22 1117 Epithelium development GO:0060429

1.0e-05 16 621 Epithelial cell differentiation GO:0030855

4.0e-05 37 3437 Animal organ development GO:0048513

4.9e-04 24 1855 Tissue development GO:0009888

5.3e-04 12 503 Morphogenesis of an epithelium GO:0002009

5.3e-04 12 500 Gland development GO:0048732

1.8e-03 7 167 Mammary gland development GO:0030879

2.1e-03 10 404 Epithelial cell proliferation GO:0050673

2.6e-03 39 4627 System development GO:0048731

2.6e-03 2 2 Proximal/distal pattern formation involved in metanephric nephron development GO:0072272

GO-enrichment analysis of stromal/luminal/alveolar cells of top 100 genes found to be differentially expressed in samples of pregnant mice and animals

with mammary gland involution

2.2e-04 36 3522 Response to stress GO:0006950

2.2e-04 12 448 Response to oxidative stress GO:0006979

2.2e-04 27 2100 Cell death GO:0008219

2.2e-04 28 2378 Response to external stimulus GO:0009605

2.2e-04 25 1949 Programmed cell death GO:0012501

4.5e-04 24 1909 Apoptotic process GO:0006915

4.6e-04 22 1654 Positive regulation of molecular function GO:0044093

5.4e-04 26 2247 Catabolic process GO:0009056

5.9e-04 24 1985 Cellular catabolic process GO:0044248

6.5e-04 22 1728 Regulation of cell death GO:0010941

Note: The top 10 enriched categories are shown.
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compare the variation of gene expression associated with relevant
GO categories: mammary gland development (GO:0030879) and
positive regulation of apoptotic process (GO:0043065). The highest
variance in expression of genes involved in mammary gland develop-
ment was observed in samples from pregnant mice (Fig. 6). The
similar results were observed both in stromal and luminal cells (A)
and also with using all the cells (B). The recovered expression was
similar to original values, but the most interesting is that the style
transfer from Virgin state to Involution and Pregnancy and from
Involution to Virgin and Pregnancy resulted in biologically relevant
changes in gene expression (the two lower panels of Fig. 6A and B).

The similar analysis of genes involved in apoptosis regulation
revealed two different pictures (Fig. 7). When only stromal, luminal
and alveolar cells were considered the maximal variance was
observed in samples from pregnant mice, and the second-high values
were observed in samples from virgin mice (Fig. 7A, the top panels);
however, when all the cell types were considered the maximal vari-
ance was observed in samples from involuting mammary gland—as
it was expected (Fig. 7B, the top panels). However, the results of
style transfer (Fig. 7, the bottom panels) also demonstrate that the
variance in apoptosis-related genes is higher in Involution state. The
contradiction observed when only stromal, luminal and alveolar
cells were considered might be due to the striking differences in pro-
portions of various cell types. Thus, from here, we can propose the
additional advantage of style transfer procedure as it might be of
help in studying gene expression changes resulting from certain bio-
logical or technical traits using the same initial data and treating the
resulting samples as paired data.

4.4 Biological examination of gene expression changes

after encoding and decoding transformation using

IFNb-stimulated/unstimulated PBMCs scRNA-Seq data
The GSE96583 data were used to answer the question if style trans-
fer can lead to biologically interpretable changes in predicted gene
expression. The training subset was used to finetune the model and
then all the analysis was performed on a validation subset. This
dataset was also used to build the models with leave-one-group out
approach: each time the whole group of particular cell type and con-
dition was excluded from training. We have built four additional
models: trained without stimulated CD4þ T-cells, unstimulated
CD4þ T-cells, without either stimulated or unstimulated
FCGR3Aþ monocytes. The models were used for encoding/decod-
ing the original samples with and without the style transfer. The
obtained datasets were used for differential gene expression analysis.
The top 100 differentially expressed genes were analyzed for GO-
enrichment. The results are partially presented in Figure 8. In total,
66 pairwise comparisons were performed, the complete results can
be found in Supplementary Table ST5. The ‘birds-eye’ view of the
Supplementary Table ST5 is shown in Figure 8C. The yellow color
indicates the sample pairs whose conditions were different either ori-
ginally or after the style transfer. The four colored columns of the
table contain (i) the Jaccard index values characterizing the overlap
between top 100 differentially expressed genes found in current
samples with 87 genes found to be differentially expressed in origin-
al stimulated versus control cells comparison (O(S) versus O(C))—
chosen as etalon; (ii) the numbers of significantly enriched GO cate-
gories; (iii) the Jaccard index between the top 10 GO categories and
top 10 GOs found in O(S) versus O(C) comparison; and (iv) the
Jaccard index between the top 30 GO categories found in current
DEGs and top 30 GOs in O(S) versus O(C). The color changes from
red to blue, which corresponds to a change in value from low to
high. Generally, the most significantly enriched GO categories,
observed in S versus C comparisons, were associated with type I
interferon response, as it was expected. Usually, we saw no GO-
enrichment in top differentially expressed genes if conditions of
compared subsets were the same. Thus, the GO-enrichment analysis
demonstrated that gene expression data after the style transfer con-
tained relevant biological signals. The ‘expression changes’ resulting
from style transfer are further illustrated in Figure 9, where the ex-
pression values of genes, associated with type I interferon signaling
pathway (GO:0060337), are shown.

The genes activity patterns in either reconstructed or transferred
interferon-stimulated state resemble those observed in original data.
Similar plots obtained for genes involved into two non-relevant

Fig. 5. MA-plots comparing the gene expression in stromal cells from murine mam-

mary glands in original and transformed samples. The comparison of original sam-

ples is shown with blue; the comparison between the original virgin state and the

virgin state produced from pregnancy with style transfer is shown with orange color

Fig. 6. Variation in gene expression related to mammary gland development (GO:0030879) in stromal and luminal cells (A) and in all cells (B)
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biological processes—acetyl-CoA metabolic process (GO:0006084)
and amyloid-beta metabolic process (GO:0050435)—demonstrated
no alterations as compared to control. These figures (Supplementary
Figs S3 and S4) can be found in Supplementary File SF2.

Pearson’s correlation coefficient of top 150 differentially
expressed genes expression profiles between C->S transferred and

O(S) samples was equal to 0.98, between S->C transferred and
O(C) samples it was about 0.93 and for the sets with different condi-
tions, it was about 0.69–0.79. The higher conformity between the
top differentially expressed genes in samples with corresponding
states was illustrated with scatterplots in Supplementary Figure S5
in Supplementary File SF2.

Fig. 7. Variation in gene expression related to positive regulation of apoptotic process (GO:0043065) in stromal, luminal and alveolar cells (A) and in all cells (B)

Fig. 8. Results of GO-enrichment analysis of top 100 differentially expressed genes between different conditions. All the combinations of original and transfer conditions, mod-

els were tested—negative expression values were set to zero, then top 100 differentially expressed genes were selected using Welch’s test and analyzed for GO-terms enrich-

ment. (A) GO-terms enrichment of genes differentially expressed in O(C) and O(S) CD4þ T-cells—from the original data; (B) GO-terms enrichment of genes differentially

expressed in original unstimulated CD4þ T-cells—O(C)—and in T(S->C)—the interferon-treated CD4þ T-cells that were turned into unstimulated condition with our style-

transfer procedure. (C) A ‘birds-eye’ view of the table with results of all-to-all comparison in terms of differentially expressed genes overlap and GO-terms enrichment analysis.

The yellow color indicates comparisons of samples whose conditions were different either originally or after the style transfer. The four colored columns correspond to (i) the

Jaccard index between top 100 differentially expressed genes found in current samples combination and in O(S) versus O(C) (chosen as etalon); (ii) a number of significantly

enriched GO categories; (iii) the Jaccard index between top 10 GO categories (sorted according to enrichment significance) against the top 10 GOs found in O(S) versus O(C)

DEG comparison and (iv) the Jaccard index between top 30 GO categories and the top 30 GOs in O(S) versus O(C) comparison. The color varies from red to blue correspond-

ing to value changes from low to high. The original table can be found in Supplementary Table ST6
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Thus, we can conclude that style-transfer approach can efficient-
ly reconstruct gene expression changes associated with particular
stimuli. With control CD4þ T-cells transformation into interferon-
stimulated condition, we observed relevant changes in gene expres-
sion and GO-enrichment.

The semisynthetic samples became similar to original interferon-
stimulated cells. Switching the state of stimulated cells into untreat-
ed condition resulted in decreased expression of genes involved into
interferon response pathways. It is also of interest that the models
built with leave-one-group-out approach were found to be reason-
ably accurate. Similar findings were also observed with other cell
subsets (data not shown).

5 Discussion

Construction of information-rich, low-dimensional representations
of gene expression profiles remains a challenging task. Availability
of such representations is a gateway to successful data harmoniza-
tion, domain adaptation and deeper understanding of interconnec-
tions between the expressions of various genes. The proposed
framework allows to investigate gene expression profile shifts when
some specific, predefined categorical factor of variation changes.
The framework performs the dimensionality reduction of gene ex-
pression data in such a way that hidden variables are disentangled
into two separate domains where one subgroup is fully interpretable
and accounted for chosen, predefined factors of variation and an-
other, larger group of hidden variables is designed to contain no in-
formation about these factors. So that, we can controllably change

the factor(s) and see the impact on the gene expression level. This
leads us to several possibilities: either to harmonize the data using
the batch and style codes (either biological traits, e.g. some treat-
ment condition or cell type, or technical, e.g. sequencer model) as
factors of style and to perform the downstream analysis on the latent
variables (which also dramatically reduces the dimensionality) in-
stead of raw expression, or to transfer selected samples to a particu-
lar style trying to predict the effect of desired treatment/phenotype
combination in silico. Ability to obtain gene expression values of
(semi)synthetic samples makes it possible to analyze the predicted
changes using the well-accepted and interpretable bioinformatic
approaches, for example to check which genes became the most dif-
ferentially expressed when particular technical or biological traits
were changed with style transfer, which GO-categories or molecular
pathways were predicted to be affected the most and so on. The pro-
posed approach can help to solve different problems associated with
real transcriptomic data, e.g. to reduce the variance associated with
batch effects, to check the data for outliers, to reduce the data
dimensionality retaining relevant biological information.

Our future efforts on the framework will be mostly conducted
toward increasing the fidelity of generated samples and further
evaluation of our approach on different datasets and comparing its
performance with existing frameworks. Also, future research will in-
clude the induction of sparsity in both encoder and decoder weights
to figure out its effect on framework performance in terms of vari-
ation sources disentanglement and applicability of generated sam-
ples to downstream bioinformatic pipelines. Moreover, the sparse
weights promise some insights on what genes affect each other ex-
pression and affected by choice of the style.

Fig. 9. The original expression (decimal logarithm values) and the expression reconstructed from autoencoder after style-transfer in genes, associated with type I interferon sig-

naling pathway, in CD4þ T-cells. (A) The reconstructed gene expression in CD4þ T-cells after transformation from interferon-stimulated state into unstimulated (control)

state (S->C) and after the transformation from control to interferon-stimulated state (C->S); (B) the comparison of original gene expression in unstimulated CD4þ T-cells—

Original(C)—against the expression obtained with transformation from interferon-stimulated into control state; (C) the comparison of original gene expression in unstimu-

lated—Original(C)—against stimulated CD4þ T-cells—Original(S); (D) the original gene expression in unstimulated CD4þ T-cells—Original(C)—against the style transfer C-

>S obtained with the model trained without the original stimulated CD4þ T-cells gene expression data; (E) the transformations from control to stimulated state were done

using a model pretrained on the whole training GSE96583 dataset (tf stimulated) or with a model trained on a subset of the training samples without stimulated CD4þ T-cells

[tf stimulated wo CD4T(S)]; (F) the S->C and S->C transformations from a model trained without seeing the stimulated CD4þ T-cells expression data. The validation subset

of GSE96583 data was used
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