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In clinical or epidemiological follow-up studies, methods based on time scale
indicators such as the restricted mean survival time (RMST) have been devel-
oped to some extent. Compared with traditional hazard rate indicator system
methods, the RMST is easier to interpret and does not require the proportional
hazard assumption. To date, regression models based on the RMST are indirect
or direct models of the RMST and baseline covariates. However, time-dependent
covariates are becoming increasingly common in follow-up studies. Based on
the inverse probability of censoring weighting (IPCW) method, we developed a
regression model of the RMST and time-dependent covariates. Through Monte
Carlo simulation, we verified the estimation performance of the regression
parameters of the proposed model. Compared with the time-dependent Cox
model and the fixed (baseline) covariate RMST model, the time-dependent
RMST model has a better prediction ability. Finally, an example of heart trans-
plantation was used to verify the above conclusions.
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1 INTRODUCTION

In clinical follow-up studies, the Cox model is generally used to analyze the relationship between survival outcomes
and covariates. The hazard ratio (HR) is a commonly used indicator to measure differences between groups. However,
the HR has the following limitations: the HR is a relative measure, whose explanation is not as intuitive as that of an
absolute effect. For clinicians, it is difficult to communicate the HR to patients.1 In addition, when the data do not meet
the proportional hazard assumption, the HR will depend on the follow-up duration, and reporting only an HR will lead
to incorrect conclusions.2 Therefore, some researchers have recommended the restricted mean survival time (RMST) as
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
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an alternative.3 Given a specified time point 𝜏, the RMST can be expressed as 𝜇(𝜏) = E[min(T, 𝜏)] (T is the survival time),
which indicates the average survival time or life expectancy of patients within [0, 𝜏].4 Considering censoring, it can be
estimated as the area under the survival curve to a specified time point 𝜏 .

5

Furthermore, considering the relationship between the RMST and covariates, there are currently indirect and direct
methods for modeling the RMST and baseline covariates. The main steps of the indirect method are to incorporate the
covariates by using different regression models based on hazard, estimate the corresponding regression coefficients, esti-
mate the cumulative baseline hazard, transform the subject-specific cumulative hazard, and then integrate it to obtain
the RMST. Authors, including Kerrison,6 Zucker,7 Chen,8 and Zhang,9 all use different regression models based on haz-
ards to indirectly estimate the RMST. However, this method is computationally intensive and cumbersome; it relies on
the proportional hazard assumption through the use of the Cox model, which, if untrue, can lead to bias.10 Hence, sev-
eral authors have suggested direct methods to model the RMST itself, which mainly include the ANCOVA-type method,
pseudo-observation type method, and inverse probability weight (IPW)-type method.4 Tian’s ANCOVA-type method11

constructed estimating equations for the RMST based on the inverse probability of censoring weighting (IPCW), and
the weight function was the inverse of the Kaplan–Meier estimator. Andersen’s pseudo-observation method12-14 modeled
the RMST directly based on pseudo-observations. Conner’s IPW method2 adjusted RMST estimators by integrating an
adjusted Kaplan–Meier estimator that was adjusted with IPW to obtain propensity scores.

The above regression models all model RMST and baseline covariates; however, in the current clinical follow-up study,
time-dependent covariates become increasingly common, and their values will change over time, which is different from
baseline covariates. For example, in a heart transplant follow-up trial,15 the endpoint of interest was the death of the
patient. As the follow-up time increases, doctors decide whether to perform a heart transplant based on the patient’s con-
dition, so the variable of heart transplantation is a time-dependent covariate. The patient’s prognosis level was determined
by whether heart transplantation was performed. The above regression model cannot handle time-dependent covariates
such as heart transplantation.

Therefore, this article incorporates time-dependent covariates into the model based on IPCW, directly modeling
RMST, fixed covariates, and time-dependent covariates. Then, we used two simulations to evaluate the performance of
the time-dependent covariate RMST (T-RMST) model: one concerns the performance of the estimator of the regression
coefficients in the T-RMST model, and the other concerns the predictive performance of the T-RMST model, which is
compared with the time-dependent covariate Cox (T-Cox) model and the fixed-covariate RMST (F-RMST) model. Finally,
we provide an illustration by analyzing a heart transplant example.

The structure of the article is as follows: In Section 2, we describe how to develop a T-RMST model. In Section 3, we
describe the two simulations used to evaluate the performance of the T-RMST. In Section 4, we provide an illustration by
analyzing a heart transplant example.

2 METHOD

Let T be the survival time for a typical subject; let C be the censoring time, which is independent of T. Therefore, the obser-
vation time is U = min(T,C), and the event indicator is denoted byΔ = I(T ≤ C), where I(⋅) is the indicator function. we
denote p-dimensional fixed covariate X and q-dimensional time-dependent covariate X(s). For subject i (i = 1,2,… ,n),
the observational data consist of {Ui,Δi,Xi,Xi(s)}, and the actual observed time-dependent covariate consists of the mea-
surements Xi(s) =

{
Xi

(
sij
)
, j = 1, 2, … ,ni

}
taken at time points sij, which indicates that subject i has ni time-dependent

covariate records.
For a restricted time point 𝜏, let Y = min(T, 𝜏) be the restricted survival time, Y may also be censored, but its expected

value 𝜇 is estimable, and let Y i be the corresponding Y for the ith subject. Let Xi (ti) be the last observed value of Xi(s);
that is, ti in Xi (ti) is the minimum value of the maximum observation time point of Xi(s) and 𝜏. If the ti value is equal
to the maximum observation time point, then X i(ti) is equal to the covariate value of the X i(s) at maximum observation
time point. If ti is equal to 𝜏, then Xi (ti) chooses to follow the last observation carried forward (LOCF) principle. We are
interested in the average survival time up to 𝜏 and will model this measure through the fixed covariate and time-dependent
covariate:

𝜇(𝜏) = E[Y |X,X(t)].
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Analogous to a generalized linear model (GLM), we assume a direct relationship between this RMST and the fixed
covariate and time-dependent covariate as follows:

g(𝜇(𝜏)) = 𝜶TX∗ + 𝜷TX(t), (1)

where g(⋅) is a link function, 𝜶 =
(
𝛼0, 𝛼1, … , 𝛼p

)
, 𝜷 =

(
𝛽1, 𝛽2, … , 𝛽q

)
, X∗ =

(
1,XT)T , and 𝛼0 indicates the intercept.

We now derive the estimating equation for the parameters of interest, 𝜶 and 𝜷. Let 𝜼 = (𝜶, 𝜷) and Zi (ti) =(
X∗i

T
,XT

i (ti)
)T

. In the absence of censoring, based on (1), 𝜼 can be estimated via the following estimating equation:

1
n

n∑

i=1
Zi (ti)

[
Yi − g−1 (

𝜼
TZi (ti)

)]
= 0. (2)

However, E
[
Zi (ti)

[
Yi − g−1 (

𝜼
TZi (ti)

)]]
≠ 0 in the presence of censoring, but we can show that the IPCW weighted expec-

tation E
[
Zl (ti)W C

i (Yi)
[
Yi − g−1 (

𝜼
TZi (ti)

)]]
has a mean of 0, where W C

i (Yi) = W X
i (Yi)W Z

i (Yi), W X
i (Yi) = exp

(
HX

i (Yi)
)

and W Z
i (Yi) = exp

(
HZ

i (Yi)
)
, and HX

i (Yi) and HZ
i (Yi) are the cumulative hazards of fixed covariates and time-dependent

covariates at time point Y i under the censored time distribution.16 The derivation of the IPCW weighted expectation is
presented in the Appendix A. Then, the estimated equation changes from (2) to:

1
n

n∑

i=1
Zi (ti) ̃𝛥iW C

i (Yi)
[
Yi − g−1 (

𝜼
TZi (ti)

)]
= 0, (3)

where ̃
𝛥i = I (Yi ≤ Ci).

In general, HX
i (Yi) and HZ

i (Yi) are rarely known in practice and therefore must be estimated from the observed data.
Therefore, based on the censoring time distribution, we use the Cox model and the T-Cox model to calculate HX

i (Yi) and
HZ

i (Yi), respectively, and we fit the corresponding models:

hX
i (s) = hX

0 (s) exp
(
𝜶

T
CXi

)
,

hZ
i (s) = hZ

0 (s) exp
(
𝜷

T
CXi(s)

)
.

Thus, we calculate the cumulative hazard by ĤX
i (Yi) = ∫

Yi
0
̂hX

i (u)du and ĤZ
i (Yi) = ∫

Yi
0
̂hZ

i (u)du. Plugging ĤX
i (Yi) and

ĤZ
i (Yi) into (3), we can obtain the following estimating equation:

1
n

n∑

i=1
Zi (ti) ̃𝛥iŴ C

i (Yi)
[
Yi − g−1 (

𝜼
TZi (ti)

)]
= 0, (4)

where Ŵ C
i (Yi) = Ŵ X

i (Yi) Ŵ Z
i (Yi), Ŵ X

i (Yi) = exp
(

ĤX
i (Yi)

)
, and Ŵ Z

i (Yi) = exp
(

ĤZ
i (Yi)

)
. 𝜼 can be estimated from esti-

mation Equation (4).
According to Tian11 and Zhong,10 we have

√
n(�̂�-𝜼) ∼ N

(
0,A−1BA−1); therefore, V̂(�̂�) = ̂A

−1
̂B̂A

−1
, where

̂A = E
[

Zi(ti)⊗2ġ−1
(
�̂�

TZi (ti)
)]

,

̂B = E
[
𝜺i(�̂�)⊗2]

,

𝜺i(�̂�) = Zi (ti) ̃𝛥iŴ C
i (Yi) [Yi − g−1(�̂�TZi (ti)].

a⊗2 = aaT for vector a, and ġ−1(⋅) is the derivative of g−1(). The asymptotic SE (ASE) can be estimated from ASE =√
1
n

diag(V̂(�̂�)).

Using the above model (1), one may estimate 𝜇(𝜏) by 𝜇(𝜏) = g−1
(
�̂�

T
̃X
∗
+ ̂𝜷

T
̃X(t)

)
, where X = ̃X, ̃X

∗
= c(1, ̃X),

and X(t) = ̃X(t). Let �̂� = (�̂�, ̂𝜷) and ̃Z(t) =
(
̃X
∗T
,
̃X

T
(t)
)T

; thus, the 95% confidence interval of 𝜇(𝜏) is 𝜇(𝜏) ±
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t0.025,vSE, where 𝜈 is the degree of freedom of the regression equation and SE can be estimated by the delta
method.

SE =
√

V̂ar
(

g−1
(
�̂�

T
̃X
∗
+ ̂𝜷

T
̃X(t)

))

=
√

V̂ar(g−1
(
�̂�

T
̃Z(t)

)

=

√√√√√√√

⎛
⎜
⎜
⎜
⎝

𝜕

(
g−1

(
�̂�

T
̃Z(t)

))

𝜕�̂�

⎞
⎟
⎟
⎟
⎠

T

V̂ar(�̂�)
⎛
⎜
⎜
⎜
⎝

𝜕

(
g−1

(
�̂�

T
̃Z(t)

))

𝜕�̂�

⎞
⎟
⎟
⎟
⎠

,

where

𝜕

(
g−1

(
�̂�

T
̃Z(t)

))

𝜕�̂�

=

(
𝜕

(
g−1(x)

)

𝜕x

)2

x=�̂�T
̃Z(t)

𝜕

(
�̂�

T
̃Z(t)

)

𝜕�̂�

=

(
𝜕

(
g−1(x)

)

𝜕x

)2

x=�̂�T
̃Z(t)

̃Z(t).

3 SIMULATION

3.1 Regression coefficients

3.1.1 Simulation design

We used Monte Carlo simulation to evaluate the regression coefficient estimation effect of the proposed T-RMST
model. The time-dependent covariate can be represented as X(t) = 0 for t < t0, while X(t) = 1 for t ≥ t0, where
t0 ∼ U(0, 4). Suppose that event times follow a Weibull distribution; therefore, we simulated the survival times
as

T =
⎧
⎪
⎨
⎪
⎩

(
− log(u)

𝜆 exp(𝛽′X)

)1∕𝜈
, − log(u) < 𝜆 exp

(
𝛽
′X
)

t𝜈0 ,
(
− log(u)−𝜆 exp(𝛽′X)t𝜈0+𝜆 exp(𝛽t) exp(𝛽′X)t𝜈0

𝜆 exp(𝛽t) exp(𝛽′X)

)1∕𝜈
, − log(u) ≥ 𝜆 exp

(
𝛽
′X
)

t𝜈0 ,

where u ∼ U(0, 1).17 Fixed covariates were sampled from a Bernoulli (0.5) distribution. The time-dependent covariate
regression coefficient (𝛽t) and fixed covariate regression coefficient (𝛽′) were both set to 0.1. We also set the shape (𝜆) and
scale (𝜈) parameters to 0.1 and 1.5, respectively. The censoring times were generated from an exponential distribution,
resulting in different censoring rates. The 𝜏 value is selected at the maximum event time point. The detailed steps are as
follows:

1. To mimic the population, we generated a dataset with N = 1 000 000 subjects under approximately zero censoring.18,19

The T-RMST model was fitted by the dataset, and the “true” regression coefficients (𝛽0, 𝛽1, 𝛽2) could be calculated by
the equation: g(𝜇(𝜏)) = 𝛽0 + 𝛽1X + 𝛽2X(t).

2. By changing the parameters of the exponential distribution (censoring distribution), the censoring rate of the
N = 1 000 000 real population is 15, 30 and 45%, drew n = 500 and n = 1000 samples from each dataset, fit the T-RMST
model, and calculated the corresponding regression coefficients and variances of the samples. We repeated the above
steps 10 000 times.

3. We compared the regression coefficients obtained from the sample with the “true” regression coefficients (𝛽0, 𝛽1, 𝛽2),
and we used the bias, mean square error (MSE), relative SE (Rel SE) and empirical coverage probabilities (CP) to
evaluate the regression coefficient estimation effect.20,21
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T A B L E 1 Performances of the estimators of the regression coefficients in T-RMST

n Cen (%) Coef True Bias MSE Rel SE CP

500 15 𝛽0 1.6439 −0.0015 0.1441 1.0100 0.9509

𝛽1 −0.1885 0.0038 0.2264 1.0185 0.9534

𝛽2 3.1630 0.0136 0.1684 1.0326 0.9552

30 𝛽0 1.6439 −0.0014 0.1690 1.0178 0.9532

𝛽1 −0.1885 0.0079 0.2798 1.0183 0.9502

𝛽2 3.1630 0.0042 0.1909 1.0889 0.9618

45 𝛽0 1.6439 −0.0005 0.2135 1.0029 0.9510

𝛽1 −0.1885 0.0271 0.3692 0.9991 0.9410

𝛽2 3.1630 −0.0661 0.2370 1.1560 0.9454

1000 15 𝛽0 1.6439 −0.0006 0.1000 1.0283 0.9583

𝛽1 −0.1885 0.0015 0.1598 1.0225 0.9541

𝛽2 3.1630 0.0152 0.1185 1.0433 0.9589

30 𝛽0 1.6439 −0.0007 0.1202 1.0199 0.9537

𝛽1 −0.1885 0.0066 0.2002 1.0213 0.9533

𝛽2 3.1630 0.0134 0.1336 1.1171 0.9677

45 𝛽0 1.6439 0.0031 0.1540 1.0195 0.9527

𝛽1 −0.1885 0.0198 0.2711 1.0113 0.9492

𝛽2 3.1630 −0.0376 0.1615 1.2346 0.9674

Abbreviations: Bias, E(̂𝛽) − 𝛽; Cen, the censoring rate; Coef, coefficient; CP, coverage probabilities, Pr
(
̂
𝛽low ≤ 𝛽 ≤ ̂

𝛽upp

)
; MSE, mean square error,

E
[(

̂
𝛽 − 𝛽

)2
]

; n, the sample size; Rel SE, average model SE/the empirical SE.

3.1.2 Simulation results

Table 1 shows the estimation effect of the regression coefficients for sample sizes n = 500 and n = 1000 under different
censoring rates. The bias of the regression coefficients calculated by the sample was small; most of the bias values were less
than 1%, and the maximum was not more than 7%. The MSE was also relatively small; most of the MSE values were below
20%, the maximum was approximately 37%, and they decreased with increasing sample size and decreasing censoring.
Additionally, the Rel SE was approximately equal to 1, and the CP was similarly very close to the nominal level, indicating
that the regression coefficients were well estimated.

3.2 Predictive performance

3.2.1 Simulation design

Similarly, Monte Carlo simulation was used to evaluate the predictive performance of the proposed T-RMST, T-Cox and
F-RMST11,22 models. We generated sample sizes of 500 and 1000, where the training set was 2/3 of the sample and the
test set contained the remaining samples. The same method of simulating the survival time was used as in Section 3.1.1.
The parameter settings were also the same as in Section 3.1.1. The censoring times were generated from an independent
exponential distribution, resulting in approximately 15, 30, and 45% censoring rates. The T-Cox, T-RMST, and F-RMST
models were compared under different sample sizes and censoring rates. All simulations were performed using 1000
iterations. The predictive performances of the different models were evaluated by Harrell’s C-index23 and the prediction
error.11,24 The C-index measures the probability of concordance between the predicted order and the observed order,
and the prediction error is the difference between the predicted value and the true value. A higher C-index and lower
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T A B L E 2 Prediction performances of T-Cox, T-RMST and F-RMST

T-Cox T-RMST F-RMST

n Cen (%) C-index PE C-index PE C-index PE

500 15 0.440 ∖ 0.669 0.985 0.506 2.036

30 0.441 ∖ 0.675 1.031 0.504 2.029

45 0.446 ∖ 0.679 1.066 0.505 2.012

1000 15 0.427 ∖ 0.672 0.983 0.510 2.025

30 0.425 ∖ 0.676 1.037 0.508 2.027

45 0.424 ∖ 0.680 1.087 0.507 2.015

Abbreviations: Cen, the censoring rate; n, the sample size; PE, prediction error.
Note: A higher C-index indicates a better-performing model; a lower prediction error indicates a better-performing model.

prediction error indicate a better-performing model, and the prediction effect of the model is evaluated by these two
indicators.

3.2.2 Simulation results

Table 2 shows the prediction effects of the T-Cox, T-RMST, and F-RMST models under different sample sizes and different
censoring rates. The results obtained with different sample sizes and censoring rates are basically consistent. The C-index
of the T-RMST model is higher than those of the T-Cox and F-RMST models. The prediction error of the T-RMST model
is lower than that of the F-RMST model. Combining these two indicators, it can be seen that the T-RMST model enjoys a
better prediction performance.

4 EXAMPLE

The data come from the Stanford Heart Transplant Center and include 103 patients. The outcome of this analysis was
overall survival, which was calculated in years from the time of diagnosis to death.15 Patients who were still alive at the
last follow-up were censored. Intermediate events such as heart transplant occurred during the follow-up period, the
longest of which was 4.93 years; in other words, during the follow-up period, the doctor decided whether to perform a
heart transplant based on the patient’s condition. The fixed covariates included age (which was divided into young people
(<45), middle-aged people (45–60), and elderly people (≥ 60) according to the World Health Organization (WHO) division
rules), the patient’s enrollment time (the time of enrolling in the project minus the study start time October 1, 1967) and
whether the patient had had undergone heart bypass surgery. Since one patient in the data died on the day of entry, to
enable the T-Cox model to handle such data, the survival time of this patient was increased to 0.5.25 Then, we applied the
T-Cox, T-RMST and F-RMST models to obtain the regression results.

The analysis results of the three models are shown in Table 3. The differences in RMST (RMSTd) of patients who were
younger than 45 and older than 60 were− 0.766 years (95% CI:−1.345,−0.187) and− 1.047 years (95% CI:−1.692,−0.402)
with the T-RMST and F-RMST models, respectively. However, the results of the T-Cox model showed that it was not
statistically significant for the prognosis of patients. When the enrollment time was longer than 1 year, the RMSTd values
were− 0.149 years (95% CI: −0.290, −0.008) and− 0.237 years (95% CI: −0.378, −0.095) with the T-RMST and F-RMST
models, respectively. However, the results of the T-Cox model showed that the HR was 0.855 (95% CI: 0.745, 0.980).
The patients who underwent heart bypass surgery survived 0.778 years (95% CI: 0.115, 1.441) and 1.189 years (95% CI:
0.409, 1.969) longer than those who did not according to the T-RMST and F-RMST models, respectively. However, the
results of the T-Cox model showed that it was not statistically significant for the prognosis of patients. In addition, for
the time-dependent covariate of heart transplantation, the T-RMST model showed that the RMSTd was 0.868 years (95%
CI: 0.407,1.328) and that the patients could live 0.868 years longer after transplantation, while the T-Cox model showed
that heart transplantation was not statistically significant. At the same time, the R2 values of T-Cox (discrete model),26
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T A B L E 3 The results of the T-Cox, T-RMST and F-RMST models in the example

T-Cox T-RMST F-RMST

Variable HR 95%CI P RMSTd 95%CI P RMSTd 95%CI P

Intercept 0.426 (−0.031,0.882) 0.068 1.770 (0.888,2.651) <0.001

Age Ref: age< 45 (years)

45–60 1.397 (0.851,2.290) 0.186 0.042 (−0.459, 0.544) 0.869 −0.277 (−0.985,0.432) 0.444

> = 60 1.881 (0.432,8.200) 0.400 −0.766 (−1.345,-0.187) 0.010 −1.047 (−1.692,-0.402) 0.001

Enrollment time 0.855 (0.745,0.980) 0.025 −0.149 (−0.290,-0.008) 0.038 −0.237 (−0.378,-0.095) 0.001

Bypass surgery Ref: No

Yes 0.515 (0.249,1.060) 0.073 0.778 (0.115,1.441) 0.021 1.189 (0.409,1.969) 0.003

Transplant 1.077 (0.590,1.960) 0.809 0.868 (0.407,1.328) <0.001

Abbreviations: Coef, coefficient; RMSTd, the difference in the restricted mean survival time.
Note: In the T-Cox model, HR = exp(Coef); In the T-RMST or F-RMST model, RMSTd = Coef.

T A B L E 4 C-indexes and prediction errors of the T-Cox, T-RMST and F-RMST models in the example

T-Cox T-RMST F-RMST

C-index 0.541 0.656 0.502

Prediction error ∖ 0.337 1.201

T-RMST and F-RMST were calculated. The larger the value of R2 is, the better the fitting effect of the model, and the
values were 0.075, 0.329, and 0.187.

We used the C-index and prediction error to evaluate the predictive performance of the model. First, the instance
dataset was divided into a training set and a test set, where the training set was a random sample of 2/3 of the data and
the test set contained the remaining samples. Then, three models that selected meaningful covariates were fitted to the
training set. Finally, the C-indexes of the three models were calculated as well as the prediction error of the T-RMST and
F-RMST models; the above steps were repeated 500 times to obtain the average C-index and prediction error. The results
are shown in Table 4. The C-indexes of T-Cox, T-RMST and F-RMST were 0.541, 0.656, and 0.502, respectively, and the
prediction errors of T-RMST and F-RMST were 0.337 and 1.201, respectively. The variability of the average of the C-index
and PE is presented in Supplementary File Figures S1 and S2.

Finally, the T-RMST model can predict the average survival time of the patient in the next 3.79 years (maximum event
time) according to the individual characteristics of the patient.27 For example, for a patient aged 40 years enrolled one
year previously who had received heart bypass surgery but not a heart transplant, the average survival time for the next
3.79 years was 1.055 years (95% CI: 0.238, 1.872). When the patient received a heart transplant, the average survival time
for the next 3.79 years was 1.923 years (95% CI: 0.985, 2.861).

5 DISCUSSION

Time-dependent covariates are becoming increasingly common in clinical follow-up studies. Therefore, this article devel-
oped the T-RMST regression model based on IPCW processing for time-dependent covariates. The IPCW weight is not
the inverse of the survival rate estimated by Kaplan–Meier analysis but the double inverse weight required and esti-
mated through the Cox model and the T-Cox model for fixed covariates and time-dependent covariates. Because there
are time-dependent covariates, the survival curve changes during follow-up, so it is biased to directly use the standard
Kaplan–Meier method to calculate the survival rate and then convert it into weights, which will overestimate the vari-
ance of the Kaplan–Meier distribution. The simulation results of the regression coefficients showed that under different
sample sizes and censorship rates, combined with the four indicators of bias, MSE, Rel SE, and CP, taking into account
time-dependent covariates, the regression coefficient estimation performance of the T-RMST model was better. The
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predictive performance simulation results showed that considering the C-index and prediction error of the two predictive
indicators together, the T-RMST had better predictive performance than the T-Cox and F-RMST models.

In the example of heart transplantation, combining the fitting effect indicators of R2 and predictive indicators of
C-index and prediction error, the T-RMST model had the best prognostic effect. Moreover, the T-RMST model and the
F-RMST model had the same results in dealing with fixed covariates, which were different from those of the T-Cox model.
According to a paper by Khush28 on heart transplantation, an increase in age will reduce the survival rate of heart trans-
plant patients, and receiving a heart transplant will increase the survival rate of patients and prolong the survival time.
This is consistent with the conclusions obtained by the T-RMST and the F-RMST models; thus, the reliability of the
conclusions of the T-RMST model is confirmed from a clinical perspective.

The T-RMST model also has some limitations. First, the IPCW weights may be unstable when there are serious tailing
scenarios of the observation time distribution. The existence of extreme values may lead to weights that are too large
or too small, leading to extreme values of the regression coefficients and their variances, resulting in the stability of the
predicted RMST values; however, the weights can be stabilized by setting an appropriate 𝜏 .

10 In addition, the T-RMST
model is not capable of processing endogenous time-dependent covariates, but the dynamic RMST model can do this.29

Also, the choice of 𝜏 requires careful consideration. A reasonable 𝜏 should be clinically motivated. In our study, the
T-RMST is supposed to be consistent with its contrastive model T-Cox. Considering that the T-Cox model potentially
selects the maximum event time point as its 𝜏 value, our study also selects the same time point as the T-RMST model’s 𝜏
value. Finally, the T-RMST model is mainly used for prognosis, the prediction is only auxiliary. The prediction of T-RMST
is similar to the T-Cox prediction, which retains several features of the static model, but updates the covariate values.30

In summary, the T-RMST model developed in this article is a regression model that takes into account time-dependent
covariates. Compared with T-Cox model, the T-RMST model does not need to satisfy the proportional hazards assumption,
so it can handle a wider range of data types. At the same time, RMSTd explains the nature of covariates on a time
scale. For example, for a patient who receives a heart transplant, it is easier for him or her to understand “how long I
can live” than “how much I have reduced the risk of death”, so this measure is easier to understand than HR. Com-
pared with the traditional fixed-covariate F-RMST model, the T-RMST model can better deal with time-dependent
covariates.
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APPENDIX A. THE PROOF OF IPCW WEIGHTED EXPECTATION

In order to prove E
{

Zi (ti) ̃𝛥iŴ C
i (Yi)

[
Yi − g−1

(
�̂�

TZi (ti)
)]}

has mean 0 at 𝜂 = 𝜂 (𝜂 is the true value of 𝜂), we first show
that the conditional expectation on Zi (ti) is unbiased.

E
{

Zi (ti) Δ̃iŴ C
i (Yi)

[
Yi − g−1

(
�̂�

TZi (ti)
)]

|Zi (ti)
}

= Zi (ti)E
{
Δ̃iŴ C

i (Yi) |Zi (ti)
}
− Zi (ti) g−1(�̂�TZi (ti)E

{
Δ̃iŴ C

i (Yi) |Zi (ti)
}

= Zi (ti)E
{

E
{
Δ̃iŴ C

i (Yi) |Ti

}
|Zi (ti)

}
− Zi (ti) g−1(�̂�TZi (ti)E

{
E
{
Δ̃iŴ C

i (Yi) |Ti

}
|Zi (ti)

}

= Zi (ti)E
{

E
{

I (Ci ≥ min (Ti, 𝜏))
P (Ci ≥ min (Ti, 𝜏))

min (Ti, 𝜏) |Ti

}
|Zi (ti)

}

− Zi (ti) g−1(�̂�TZi (ti)E
{

E
{

I (Ci ≥ min (Ti, 𝜏))
P (Ci ≥ min (Ti, 𝜏))

min (Ti, 𝜏) |Ti

}
|Zi (ti)

}

= Zi (ti)E {min (Ti, 𝜏) |Zi (ti)} − Zi (ti) g−1(�̂�TZi (ti)
= 0.

Then, averaging over the covariates Zi (ti), E
{

Zi (ti) ̃𝛥iŴ C
i (Yi)

[
Yi − g−1

(
�̂�

TZi (ti)
)]}

will be 0.
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