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ABSTRACT: The degradation of methylene blue and rhodamine B dyes using potassium hexatitanate nanoparticles (KTNPs) and
potassium hexatitanate nanotubes (KTNTs) synthesized via a hydrothermal method as efficient photocatalysts under UV light
irradiation was investigated. The kinetics of degradation was determined for the two different catalysts−−KTNPs and KTNTs−−by
monitoring the optical absorption of the dyes. The as-synthesized KTNPs were found to be spherical in shape with an average
particle size of ∼36 ± 1.7 nm, whereas the KTNTs evidenced a tubular hollow structure with ∼7 nm internal diameter and ∼12 nm
external diameter, as perused by structural and morphological studies. The larger surface area of KTNTs showed a greater impact on
the photodegradation of dyes manifesting their high potential as compared to KTNPs under UV irradiation, and the reusability
studies showed more than 90% (KTNTs) and 80% (KTNPs) degradation of the dyes even after the fourth cycle elucidating their
stability.

1. INTRODUCTION

Water pollution has always been a major concern in the field of
research in providing solutions to reduce its toxicological impact
on human health and the environment. Synthetic dyes,1−4

paints,5 leather,6 paper pulp,7 printing,8 fabric materials−−
textiles,9 cosmetics,10 and so on11,12 are considered as the major
sources of water pollution. The use of synthetic dyes is
inexorable due to their wide range of applications owing to
the fact that synthetic dyes are toxic, poorly biodegradable, and
have hazardous characteristics causing the groundwater to
pollute indelibly, further leading to health complications in
humans and contamination of other water bodies.13−15 The new
insight toward restraining the plight is degradation of these
synthetic dyes in a much efficient way, considering the factors
such as low cost, more reliability, and biodegradability, with high
stability and reusability.16,17 Many researchers have emerged
with their interests and have successfully reported a few
techniques in this regard such as conventional coagulation,18

chemical precipitation,19 reduction,20 adsorption,21 ion ex-
change,22 electrolysis,23 impregnation,24 reverse osmosis,25 and
photocatalytic degradation.26−29 Considerably, adsorption and
photocatalytic degradation are the most commonly used

techniques by the researchers as rejoinders for the plight of
water contamination, treating them as efficient, economic, and
ecofriendly approaches. Methylene blue (MB) and rhodamine B
(Rh B) dyes are commonly considered to mimic the wastewater,
and many metal-oxide nanoparticles such as ZnO, TiO2, SnO2,
Fe2O3, MgO, V2O5, and so on are generally employed as efficient
sources in photocatalyst applications.30−32

Nanomaterials with one-dimensional structures such as
nanotubes, nanoribbons, nanorods, nanowires, and nanobelts
have gained prominence in the fields of photocatalysis,33,34

photovoltaic cells,35 lithium-ion batteries,36 and supercapaci-
tors.37 The nanoparticles and nanotubes of potassium titanate
are employed in the current research, and their study on
photocatalytic applications is carried out owing to their high
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stability, low cost, and nontoxic nature. The synthesis of
potassium titanate with a different morphology is reported by
many researchers using various synthesis techniques such as
calcination,38 molten salt method,39 anodizationmethod,40 sol−
gel method,41,42 and hydrothermal method.40 We have
employed the hydrothermal method for the synthesis of
potassium hexatitanate nanotubes (KTNTs) and potassium
hexatitanate nanoparticles (KTNPs); the hydrothermal method
has the ability to synthesize large crystals with high quality, less
impurities, and potential control over their composition and
hence considered as one of the most promising tools for
processing nanohybrids and nanocomposites.43 Potassium
hexatitanate is one among the novel materials and has fascinated
the attention of researchers due to its high strength, thermal
durability, stiffness, and aspect ratio characteristics.44 This
fibrous material is relatively economical and has been used in a
wide range of applications and fields such as reinforcement
materials for plastics, heat-insulating paints, friction modifiers
for automotive brakes, and precision filters.45,46 The chemical
structure of potassium hexatitanate nanotubes (K2Ti6O13)
implies that the octahedral TiO6 shares an edge at one level in
a linear group of three, leading to the formation of a rectangular
tunnel structure, as depicted in Figure 1.

2. MATERIALS AND METHODS

2.1. Chemicals. Titanium(IV) isopropoxide (97%), KOH
(99.8%), NaOH (99.8%), H2SO4 (98%), ethanol (99%), and
TiO2 powder of anatase phase were procured from Sigma-
Aldrich. MB dye (purity > 98%) and Rh B dye were purchased
from Alfa Aesar and SD fine chemicals, respectively. All the

chemicals were of analytical grade and used without any further
purification. Deionized (DI) water used throughout the
experiment was from Millipore Milli-Q Systems.

2.2. Synthesis of Potassium Titanate Nanotubes/
Nanoparticles. The synthesis procedure for both nanotubes
and nanoparticles follows the same process flow as explained,
omitting the reaction time (Figure 2). An aqueous solution of 10
MKOHwas prepared by dissolving 14 g of potassium hydroxide
flakes (precursor) in 25 mL of DI water under continuous
stirring for 15 min using a magnetic stirrer. TiO2 powder (0.8 g)
was further added to the resultant solution under constant
stirring for 30 min (800 rpm). The obtained solution was
sonicated for 10min andwas then transferred to a 60mLTeflon-
lined stainless-steel autoclave and heated at 180 °C for 24 h (for
nanotubes) and 180 °C for 12 h (for nanoparticles), maintaining
the autoclave pressure (1 MPa). During the process, potassium
hydroxide flakes react with TiO2 powder, leading to the
formation of potassium hexatitanate with water molecules (eq
1). The resultant product was thoroughly washed in ethanol,
followed by DI water several times to obtain neutral pH, and
further, the product was dried in a hot air oven for 10 h at 60 °C.
Finally, the KTNTs/KTNPs so obtained were fine grinded using
an agate mortar for 30 min, and the nanotube formation was
confirmed by characterization, as discussed in further sections.

+ → +2KOH 6TiO K Ti O H O2 2 6 13 2 (1)

2.3. Characterization Techniques. The as-synthesized
KTNTs/KTNPs were characterized using various analytical
techniques, which highlight the crystal structure, functionality,
size, shape, and morphology. Powder X-ray diffraction (XRD)
was performed on a Rigaku Ultima IV diffractometer using Cu
Kα radiation (λ = 0.15406 nm) in the 2θ range to overview the
characteristic peak. Similarly, the size, shape, and morphology
were evidenced using scanning electron microscopy (SEM)
(Vega 3 Tescan) and transmission electron microscopy (TEM)
(JEOL/JEM 2100). BET surface area analysis was performed on
a BELSORP-mini II instrument. The functional groups and
absorption spectra of the as-synthesized KTNTs/KTNPs were
recorded using Fourier-transform infrared (FTIR) spectroscopy
analysis (PerkinElmer Lambda 2) and UV−vis spectroscopy
(PerkinElmer Lambda 750), respectively.

3. RESULTS AND DISCUSSION
3.1. Crystallographic Analysis. The XRD patterns of the

as-synthesized KTNPs and KTNTs recorded reveal the
monoclinic phase structure of K2Ti6O13 with the c2/m space
group, having the lattice parameters a = 15.5 Å, b = 3.82 Å, c =
9.1 Å, and β = 99.5°, which is in good agreement with the JCPDS
card number 74-0275 (Figure 3). The XRD patterns were
recorded in the 2θ range of 10−70°, exploring the prominent
peaks occurring along the (200), (2̅01), (002), (203), (310),
(112), (402), (403), (4̅04), (602), (020), (022), (223), and
(7̅15) crystallographic planes, corresponding to the 2θ values of
11.34, 13.6, 19.52, 29.02, 29.7, 31.7, 32.72, 34.5, 42.3, 43.04,
47.6, 51.4, 57.2, and 67.3°. The data along with d-spacing and hkl
planes are listed in Table 1. Similarly, the XRD patterns of the as-
synthesized KTNPs and KTNTs after the photocatalytic
degradation are recorded (for details, see Supporting
Information Figure S2). The absence of unwanted peaks
indicates the purity of the as-synthesized KTNTs/KTNPs,
and their size was determined by Scherrer’s formula, D = 0.9λ/
βcosθ, whereD corresponds to the crystalline size, λ is the X-ray
wavelength, β is the full width at half-maximum of the diffraction

Figure 1. Crystal structure of potassium titanate (K2Ti6O13) nano-
tubes.
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peak, and θ is Bragg’s diffraction angle. The average crystallite
size of KTNPs was found to be∼32 nm and that of KTNTs was
∼12 nm.

3.2. Elemental Composition and Morphological
Analysis. The elemental composition of KTNPs and KTNTs
was studied using energy-dispersive X-ray spectroscopy
(EDAX), as depicted in Figure 4a,d, respectively. It is evident
from the EDAX images and elemental data (inset) that the as-
synthesized KTNPs and KTNTs are in the purest form without
any additives due to the hydrothermal synthesis. The obtained
KTNPs were in spherical shape, with an average particle size of
∼36 ± 1.7 nm (for details, see Supporting Information Figure
S1), and the SEM image of KTNTs clearly indicates the tubular
structure formation from several dozens to hundreds of
nanometers. Detailed studies on nanotubes were performed
using TEM, which further confirmed the KTNTs with ∼7 nm
internal diameter and ∼12 nm external diameter, as detailed in
Figure 4g. We believe that the KTNT tubular formation is
similar to that of earlier research reported which says that the
formation of a 1D structure involves the dissolution of the 3D
structure of TiO2 by breaking the Ti−O−Ti bonds and
rearranging the TiO6 octahedra into 2D nanosheets further, so
that the sheets could scroll or fold into a nanotubular
morphology.47

3.3. Absorption/Transmittance Spectrum Analysis.
The as-synthesized KTNPs and KTNTs were further studied
by FTIR transmittance spectra analysis, which exhibited major
peaks at 3465.3, 1640.4, 720.2, 500.1, and 464.6 cm−1 (Figure
5a). The peak at 500.1 cm−1 was from the crystal lattice vibration
of TiO6 octahedra and the peak at 1640.4 cm−1 was from the
hydroxyl group, indicating the bendingmode of water molecules
adsorbed on the surface of KTNPs and KTNTs. The appearance
of a broad peak at 3465.3 cm−1 corresponds to the O−H stretch
of the surface hydroxyl groups on KTNPs and KTNTs. The
typical FTIR absorption bands of potassium hexatitanate
nanotubes were observed at 464.6 and 720.2 cm−1 due to Ti−
O stretching and O−Ti−O bending vibrations of TiO6
octahedra.48 The as-synthesized KTNPs and KTNTs were
further characterized by UV−vis diffuse reflectance spectrosco-
py (Figure 5b) to analyze the optical response property.49 The
absorption spectra of the as-synthesized KTNPs and KTNTs
were found around 330 nm, and the derived data were further

Figure 2. Schematic representation of the synthesis process flow of potassium titanate nanotubes.

Figure 3. Intensity vs 2θ profile obtained for KTNTs/KTNPs revealing
the monoclinic phase structure of K2Ti6O13 with the c2/m space group.

Table 1. Data Derived from the XRD Patterns Recorded for
KTNTs/KTNPs

sl. no. peak positions (2θ) in deg crystallographic planes (hkl) d (Å)

1 11.34 (200) 7.79
2 13.6 (2̅01) 6.506
3 19.52 (002) 4.547
4 29.02 (203) 3.077
5 29.7 (310) 3.009
6 31.7 (112) 2.818
7 32.72 (402) 2.711
8 34.5 (403) 2.643
9 42.3 (4̅04) 2.133
10 43.04 (602) 2.102
11 47.6 (020) 1.91
12 51.4 (022) 1.813
13 57.2 (223) 1.612
14 67.3 (7̅15) 1.39
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used to calculate the optical band gap (Eg) from Tauc’s

relation.50 A plot of (αhν)2 vs photon energy (eV) shows an

intermediate linear region, and the extrapolation of the linear

part can be used to calculate Eg from the intersection with the

photon energy axis. The resultant Eg values for KTNPs and

KTNTs calculated were found to be 3.29 and 3.45 eV,

respectively.

3.4. Photodegradation Studies. The photocatalytic
activity of the as-synthesized KTNPs and KTNTs was studied
on MB and Rh B under UV irradiation (Figure 6). Initially,
about 30 mg of catalysts was weighed and added into the dye
solutions (MB and Rh B separately) of 10 ppm concentration;
the mixtures were further stirred under dark conditions for 30
min to achieve the adsorption−desorption equilibrium before
being exposed to UV irradiation (room temperature). The

Figure 4. EDAX profile: (a,d) as-synthesized KTNPs and KTNTs with elemental analysis (inset), respectively. SEM images: (b,c) as-synthesized
KTNPs and KTNTs, respectively. TEM images: (e) d-spacing of the (200) crystallographic planes of the monoclinic structure of KTNTs and (f) as-
synthesized KTNTs with magnifications of 2 and 10 nm, respectively.

Figure 5. (a) FTIR transmittance spectra and (b) band gap determination from the UV−vis absorption spectra (inset) of the as-synthesized KTNPs
and KTNTs.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c02087
ACS Omega 2021, 6, 7248−7256

7251

https://pubs.acs.org/doi/10.1021/acsomega.0c02087?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02087?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02087?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02087?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02087?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02087?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02087?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c02087?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c02087?ref=pdf


changes in the concentration of the dye solution were
continuously monitored using a UV−vis spectrophotometer at
664 nm corresponding to the λmax value of MB and 550 nm
corresponding to the λmax value of Rh B solutions by
withdrawing samples for every 15 min interval and analyzed.
Photocatalytic study was conducted after the adsorption−
desorption equilibrium (dark condition) which was achieved
using UV light irradiation. The removal of MB and Rh B dyes
and the pseudo-first-order rate constants were calculated using
eqs 2 and 3, respectively

=
−

×
C C

C
percentage of removal of dyes 100%t0

0 (2)

= − = −i
k
jjjjj

y
{
zzzzz

C
C

kt kln , rate constant (min )
t

0 1

(3)

where Ct and C0 are the concentrations of MB and Rh B dyes at
time (t, 0), respectively.
The energy band gaps of valence band (EVB) and conduction

band (ECB) were calculated by using the equation51

χ= − +E E E1/2VB KTNTs/KTNPs o g (4)

= −E E ECB VB g (5)

The predictable mechanism52 from the results obtained for
the photocatalytic degradation of MB and Rh B dyes by
K2Ti6O13 nanostructures under UV irradiation can be elucidated
as follows:

ν+ → +− +hK Ti O K Ti O (e h )2 6 13 2 6 13 (CB) (VB) (6)

+ →− • −O e O2 2 (7)

+ → ++ − +H O h OH H2 (8)

+ →− + •OH h OH (9)

+ →• + •O H HO2 2 (10)

ν+ → •hdye dye (11)

+ → +• −dye K Ti O dye K Ti O e2 6 13 2 6 13 (CB) (12)

+ → +− −K Ti O e O K Ti O O2 6 13 (CB) 2 2 6 13 2 (13)

+ + → +− • − +K Ti O e O 2H K Ti O H O2 6 13 (CB) 2 2 6 13 2 2

(14)

+ → + +− • −K Ti O e H O K Ti O OH OH2 6 13 (CB) 2 2 2 6 13

(15)

+ →• • − +dye O / O /h degradation products2 2 (VB) (16)

The percentage of degradation for MB dye under UV
irradiation on the catalysts KTNPs and KTNTs was 79.23%
(105 min) and 82.06% (90 min), whereas it was found to be
77.54% (120 min) and 79.2% (105 min) for Rh B dye,
respectively. The high degradation percentage of dyes denotes
the high efficiency of the catalysts to produce photo-excited
charges (e− and h+), which can be ascribed to the larger surface
area and smaller particle size of the catalysts (Figure 9). The
KTNTs have a higher degradation percentage, proving to be
high-efficiency catalysts as compared to KTNPs (Figure 7).

3.5. Trapping Experiments. The proposed photocatalytic
degradationmechanism is assessed by the active species by using
quenchers such as acetic acid, and methanol for •OH and h+

radicals under UV light; the radical scavenging experiments for
MB and Rh D dye degradation over KTNPs and KTNTs were
performed (Figure 8a,b).
The rate of degradation of dyes wasmore when acetic acid was

added and less with methanol addition (Figure 8b). Methanol
acts as an h+ ion quencher, so the reaction proceeds faster in the
presence of h+ ions than •OH.

3.6. BET Surface Area Analysis. The BET specific surface
areas of KTNPs and KTNTs are calculated as 9.6 and 20 m2 g−1,
respectively (Figure 9). One-dimensional KTNTs have a larger
surface area compared to zero-dimensional KTNPs which have a
larger surface area and smaller particle size. This exhibits the
more active sites, and hence KTNTs have a higher photo-
catalytic degradation property than the KTNPs.

3.7. Reusability Study. The reusability study on the as-
synthesized KTNPs and KTNTs was carried out to determine
the efficiency of the catalyst by exposing the catalysts for a
number of runs and calculating the degradation percentage.
During the fourth cycle, the catalyst removed approximately
90% of the KTNTs (Figure 10b) and 80% of KTNPs. The
photodegradation efficiency of the KTNTs was further
improved after cleaning with ethanol, followed by DI water
ultrasonically, whereas that of KTNPs remains the same.

Figure 6. Schematic representation of the photocatalytic activity of KTNTs/KTNPs.
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Furthermore, the photocatalytic efficiency exhibited no major
loss even after four cycles, and only a slight decrease in
photodegradation efficiency was observed over a time period,

indicating the better relative stability of the as-synthesized
KTNTs, and during the process, the catalyst was not photo-
corroded, highlighting the fair corrosion resistance property.

Figure 7. (a,d) Percentage degradation vs time (min); (b,c,e,f) absorbance vs wavelength (nm); (g,h) photocatalytic activity plot ofC/C0 vs irradiation
time (min); and (i,j) rate constant of the photocatalytic activity.
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The stability of the photocatalysts KTNPs and KTNTs was
further confirmed after the photocatalytic degradation by UV−
vis DRS (for details, see Supporting Information Figure S3b).

4. CONCLUSIONS
The kinetics of degradation was studied on hydrothermally
synthesized KTNPs and KTNTs by tracking the optical
absorption of the dyes (MB and Rh B). The as-synthesized
KTNPs exhibited a spherical shape with an average particle size
of ∼36 ± 1.7 nm, whereas KTNTs revealed a tubular hollow

structure with ∼7 nm internal diameter and ∼12 nm external
diameter, as perused by the structural and morphological
studies. The photodegradation study under UV irradiation
confirms the higher efficiency of KTNTs as compared to KTNPs
for both dyes owing to the fact that the large surface area and
smaller particle size have a greater impact toward the
photocatalytic activity. In addition, the reusability test on the
catalysts elucidates that the KTNTs (90%) can be easily
recovered with greater consistency even after the fourth cycle
(MB and Rh B) and reused as compared to KTNPs (80%).

Figure 8. Trapping experiment plot (a). Concentration C/C0 vs time (min) (b). Percentage degradation of dye vs scavengers.

Figure 9. BET surface area plots: relative pressure P/P0 vs P/Va(P0 − P) of (a) KTNPs and (b) KTNTs.

Figure 10. Plot of percentage degradation vs number of reusability runs of (a) KTNPs and (b) KTNTs.
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Factors such as enhanced photocatalytic activity, greater
photoabsorption efficiency, and reusability of KTNTs are
promising in fostering catalytic reinforcement and their use in
novel optic materials.
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