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Temperature induced modulation 
of resonant Raman scattering 
in bilayer 2H‑MoS2
Mukul Bhatnagar1*, Tomasz Woźniak2, Łucja Kipczak1, Natalia Zawadzka1, 
Katarzyna Olkowska‑Pucko1, Magdalena Grzeszczyk1, Jan Pawłowski1, Kenji Watanabe3, 
Takashi Taniguchi4, Adam Babiński1 & Maciej R. Molas1*

The temperature evolution of the resonant Raman scattering from high-quality bilayer 2H-MoS2 
encapsulated in hexagonal BN flakes is presented. The observed resonant Raman scattering spectrum 
as initiated by the laser energy of 1.96 eV, close to the A excitonic resonance, shows rich and distinct 
vibrational features that are otherwise not observed in non-resonant scattering. The appearance of 1st 
and 2nd order phonon modes is unambiguously observed in a broad range of temperatures from 5 to 
320 K. The spectrum includes the Raman-active modes, i.e. E 2

1g
(Ŵ ) and A 1g(Ŵ ) along with their Davydov-

split counterparts, i.e. E 1u(Ŵ ) and B 1u(Ŵ ). The temperature evolution of the Raman scattering spectrum 
brings forward key observations, as the integrated intensity profiles of different phonon modes show 
diverse trends. The Raman-active A 1g(Ŵ ) mode, which dominates the Raman scattering spectrum at 
T = 5 K quenches with increasing temperature. Surprisingly, at room temperature the B 1u(Ŵ ) mode, 
which is infrared-active in the bilayer, is substantially stronger than its nominally Raman-active A 1g(Ŵ ) 
counterpart.

Two-dimensional (2D) semiconducting transition metal dichalcogenides (S-TMDs) have attracted significant 
attention in the last decade due to the thickness dependent electronic band structure that allows for at-will 
manipulation of optical and opto-electronic properties.1–5 Novel configurations employing monolayers and 
van der Waals (vdW) heterostructures6–8 have emerged as promising platforms for the development of cutting-
edge technology spanning across a broad spectrum that include but is not limited to quantum information 
processing9,10 spintronics11,12, nanophotonics13–15 and twistronics.16,17 From the perspective to study lattice 
dynamics, non-invasive Raman scattering (RS) spectroscopy has emerged as a pivotal tool to uncover the phys-
ics of vibrational and electronic properties of 2D S-TMDs.18–24 In particular, the RS spectrum of the bilayer (BL) 
MoS2 , which is one of the simplest prototypes of a multilayer van der Waals structure, uncovers several intriguing 
features.25–34 The RS spectrum becomes especially rich under resonant excitation conditions. The resonant RS 
was extensively used to study the characteristics of phonon modes in MoS2 . The corresponding RS spectrum 
comprises in particular double resonance Raman bands, second-order scattering features and Davydov-split 
pairs.35–39 The application of electric field40,41 or a variation of temperature42–44 become key factors to modulate 
the electron–phonon coupling within the active 2D layer. The latter studies, however, usually do not employ tem-
peratures below those of liquid nitrogen. To our knowledge, there are no reports on the temperature-dependent 
resonant RS for BL 2H-MoS2 at temperature down to T = 5 K. To fill the gap, we report on the effects observed 
through temperature-dependent resonant RS in high-quality BL 2H-MoS2 encapsulated in hexagonal BN (hBN) 
flakes. It well known in the literature that hBN encapsulation of MoS2 bilayers results in a substantial increase 
in their quality, manifested in e.g., observation of interlayer excitons, see Refs.34,45,46 The evolution of the exciton 
emission energy on temperature as obtained through photoluminescence (PL) measurements allowed us to 
extract the relative energy difference between the dominant A exciton and the excitation source. This facilitates 
studies of the effect of the energy difference on the RS spectrum. The phonon dispersion, calculated using Density 
Functional Theory (DFT) reveals the presence of both the Raman- and infrared-active modes that corroborate 
well with the experiment. We demonstrate a temperature-dependent tuning of the integrated intensity profile 
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of the lattice vibrations. The interplay between the intensity of the Raman-active out-of-plane A 1g mode and its 
Davydov-split B 1u counterpart is observed. Surprisingly, the temperature-activated quenching of the A 1g mode 
with respect to the B 1u mode results in the intensity crossover at 220 K. The observed results also point to the 
diverse trends for scattering from different phonon modes from the same points in the Brillouin zone (BZ).

Results and discussion
It has been well established in the literature that the RS in thin S-TMD layers can be significantly enhanced due 
to an electron–phonon coupling in the vicinity of excitonic resonances, particularly the so-called A exciton.39,47–49 
In order to study the effect of resonant conditions on the RS in the MoS2 BL, the temperature evolution of the PL 
spectra is measured in a broad range of temperature from T = 5 K –320 K. Note that the Raman measurements 
were carried out on the flat regions of the investigated sample (bubble-free and wrinkles free), see Fig. S1 in the 
Supplementary Information (SI) for optical and atomic force microscope (AFM) images. The PL spectra meas-
ured at selected temperatures are shown in Fig. 1(a), while the full set of the measured PL spectra is presented 
in Fig. S2a of the SI. The low temperature (T = 5 K) PL spectrum comprises three distinct emission lines. They 
are ascribed to the negatively charged (X− ), neutral (XA ), and interlayer excitons (IL) formed in the vicinity of 
the A exciton.34,50–52 It can be seen that the temperature increase from 5 to 300 K leads to the red shift of their 
emission energies, accompanied by the reduction in the corresponding intensities. In particular, the X A line 
remains dominant of all three resonances up to 300 K, while the X − and IL lines can be resolved only up to about 
100 K and 230 K, respectively. It is interesting to note that the IL emission energy shifts across the excitation 
energy (1.96 eV) used for resonant excitation of RS. To study the effect of temperature on resonant excitation, 
we analyse the temperature evolution of the relative energy, E L−XA

 , defined as the difference between the energy 
of the resonant excitation (1.96 eV) and of the X A line. Fig. S2a in the SI shows the temperature dependence of 
the X A energy that has been extracted from the PL measurements accompanied by its fitting using the Varshni 
equation.53

The group theory formalism reveals rich information on crystal symmetry that can be decoded by studying 
lattice vibrational modes in 2D materials.54,55 The crystal structure for BL belongs to the space group P 3 m1, #
164 (point group D 33d)44,56 and the normal modes of lattice vibrations at the Ŵ point can be expressed by the fol-
lowing irreducible representations: 3A1g + 3Eg + 3A2u + 3Eu . The normal modes in BL correspond to those of the 
bulk 2H-MoS2 , although the point groups in both cases are different. The main rotation axis is sixfold in bulk 
and not threefold as in BL.54 As a result, restricting to optical modes, the normal modes of lattice vibrations at 
the Ŵ point in bulk can be expressed by the following irreducible representation57: 2B2g(A1g)+A2u(A2u ) +E1u(Eu

)+A1g(A1g ) +B1u(A2u )+ E 1g(Eg)+E2u(Eu ) +2E2g(Eg ). The corresponding notation for the BL symmetry is shown 
in parentheses. For example, one of the results of the connection between the BL and the bulk is the brightening 
of bulk-inactive Raman modes in the BL limit previously observed e.g. in thin layers of 2H-MoTe258. Therefore, 
in the following we will refer to the observed Raman modes using the bulk-related representations, as is usually 
done in the literature.

The non-resonant and resonant RS spectra measured on BL MoS2 at T = 5 K are shown in Fig. 1(b). The 
increased intensity of phonon scattering at non-standard energies in resonant RS and its complexity compared 

Figure 1.   Photoluminescence and Raman spectra of BL MoS2flake. (a) Temperature evolution of PL spectra 
obtained under the 2.41 eV laser excitation. The black dashed lines denote the energies of the X − , X A , and 
IL lines. The vertical red dashed line corresponds to the energy of the 1.96 eV (resonant excitation). (b) 
High resolution Raman spectra under non-resonant (2.41 eV) and resonant (1.96 eV) excitation of BL MoS2 
measured at T = 5 K. The main Raman-active modes, i.e. the in-plane E 12g(Ŵ ) and the out-of-plane A 1g(Ŵ ), are 
marked in blue. Their Davydov-split, infrared-active counterparts, i.e. E 1u(Ŵ ) and B 1u(Ŵ ) are marked in orange. 
The vertical dashed lines denote the energetic positions of the modes.
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to non-resonant RS can be related to the proximity of the excitation energy (1.96 eV) to the energy of the A 
exciton, as was reported earlier.47,54 At T = 5 K, the resonant excitation energy (1.96 eV) is larger by about 34 meV 
than the X A energy, which corresponds to E L−XA

 of about 276 cm−1 . Consequently, the resonant RS spectrum is 
superimposed over a background due to the X A emission, which is not present for the non-resonant case. The 
temperature dependence of the observed RS modes will be discussed in the following section.

The calculated phonon dispersion for 2H-MoS2 BL is presented in Fig. 2(a), while the density of phonon states 
with division into sulfur and molybdenum contributions are shown in Fig. S3 of the SI. The phonon modes at 
the Ŵ point of the BZ marked with blue represent Raman active modes, while infrared active lattice vibrations 
are denoted by orange color. The phonon dispersion is used to investigate in detail the Raman peaks observed 
in the RS spectra measured as a function of temperature. Fig. 2(b) presents the RS spectra at selected tempera-
tures under resonant excitation of 1.96 eV. Let us focus first on the low-temperature (T = 5 K) RS spectrum. 
The assignment of most of the Raman peaks, denoted by blue and orange colors, is clear and can be made in 
reference to the literature.37,39,59,60 The spectrum includes the aforementioned peaks related to both the Raman-
active modes, i.e. E 12g(Ŵ ) and A 1g(Ŵ ), as well as their infrared-active counterparts, E 1u(Ŵ ) and B 1u(Ŵ ). The energy 
difference between the two out-of-plane modes A 1g(Ŵ ) and B 1u(Ŵ ) is approximately 3 cm−1 , corresponding well 
to the Davydov splitting of the modes reported earlier38,39, which supports its attribution. The observation of 
the infrared-active peaks in the RS spectrum is ascribed to the resonant conditions of the laser excitation. The 
A 1g(M)-LA(M) mode at 180 cm−1 is only observed at temperature higher than 100 K, which corresponds to its 
differential character.37 As can be appreciated in Fig. 2(a), there are no zone-center modes in the energy range 
below 280 cm−1 except for the low-energy shear and breathing modes. This points out to the zone-edge TA or 
ZA acoustic phonons most likely around the K point of the BZ as a possible origin of the mode observed at 
191 cm−1.39 Similarly, the mode at 231 cm−1 is most likely related to the LA mode at the M and/or K points of the 
BZ. The presence of the zone-edge modes in the RS spectrum is usually related to the disorder in the structure, 
which leads to the phonon localization and the breaking of Raman momentum conservation in the scattering 
process.61 However, their temperature-induced quenching suggests a more complicated process involving the 
modification of the electron–phonon coupling, which modifies momentum conservation in the resonant RS. 
The inspection of the phonon dispersion (see Fig. 2(a)) also allows us to propose the attribution of the mode 
at 290  cm−1 to the E 2u/E1g zone-centre modes. The calculations also allow us to propose the assignment of the 
TA+ZA mode at 397 cm−1 and the TA+LA mode at 429 cm−1 . The 2LA branch observed at 462 cm−1 is coupled 
with E 1g(M)+TA(M) at 470 cm−1.37,44,60 In the frequency range of 570 cm−1 to 650 cm−1 , the series of Raman-
active modes due to two-phonon scattering processes can be distinguished: A 2u(M)+TA(M) at 577 cm−1 , E 12g

Figure 2.   Phonon dispersion and resonant Raman spectrum at different temperature. (a) The calculated 
phonon dispersion for BL MoS2 . The infrared- and Raman-active modes at the Ŵ point of the BZ are marked 
in orange and blue, respectively. (b) The temperature evolution of the RS spectra measured under resonant 
condition of excitation (1.96 eV). The phonon modes reported in the literature are marked correspondingly in 
blue and orange for Raman- and infrared-active vibrations, while the labels of peaks assigned in this work are 
in red. High resolution Raman spectra at T = 5 K, T = 250 K, and T = 320 K revealing Davydov splitting of the 
in-plane and out-of-plane modes are shown in the inset.
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(M)+LA(M) at 604 cm−1 , A 1g(M)+LA(M) at 640 cm−1 , and E 1g(M) + 2TA(M) at 650 cm−1 , which is consistent 
with previous reports.37,44,60 The temperature-dependent Raman spectrum under non-resonant conditions is com-
posed only of the two characteristic A 1g and E 12g modes throughout the measured energy range (see Fig. S4a of 
the SI), while Fig. S4b presents the variation in the intensity of these two modes with the change in temperature.

To gain further insight into the temperature evolution of the observed phonon modes, we performed a 
detailed analysis of their integrated intensity profiles. The specific peaks were fitted with Gaussian functions 
combined with a linear function to take into account the variation in the background intensity. The obtained 
intensity profiles of 9 peaks are presented in Fig. 3 as a function of temperature (bottom axis) and relative E L−XA

 
energy (top axis). The conversion of the relative energy (eV) into cm−1 further facilitates to understand the role 
of exciton influence on to the vibration energy of the observed Raman modes. The profiles are grouped into 
three panels according to the observed temperature evolution. Let us focus on the temperature dependence of 
the intensity of the LA mode, shown in Fig. 3(a). Its intensity reveals a quick exponential decay of about 2 orders 
of magnitude in the temperature range from 5 K to 320 K (note logarithmic scale of the vertical axis). A similar 
exponential decay is observed for the A 1g(Ŵ ) mode with a decrease of about 2 orders of magnitude from 5 K to 
320 K. The analogous temperature evolution was reported for the A ′1 mode in monolayer MoS2.62 The temperature 
evolution of the infrared B 1u(Ŵ ) counterpart warrants attention as it displays a unique temperature dependence. 
A decrease in the intensity of the B 1u(Ŵ ) mode is observed up to about 150 K, which is followed by an almost 
constant intensity at higher temperatures. Surprisingly, the A 1g(Ŵ ) intensity is of about 5 times larger as compared 
to the B 1u(Ŵ ) one at T = 5 K, then both intensities are almost equal at T = 220 K, ending with about 3 times smaller 
intensity of A 1g(Ŵ ) mode as compared to the B 1u(Ŵ ) one. One can conclude that at low temperature the main 
contribution for that Davydov pair originates from the Raman-active A 1g(Ŵ ) peak, while at room temperature 
the corresponding RS peak is dominated by the infrared-active B 1u(Ŵ ) mode. The latter effect is different from 
the room temperature results on the flakes deposited on SiO2/Si substrates, as the B 1u(Ŵ ) is hardly observed in 
the RS spectra for BLs at room temperature.37,59 This intensity switching between the A 1g(Ŵ ) and B 1u(Ŵ ) intensi-
ties is similar to the observation made from electric-field dependent RS in BL 2H-MoS2.41 It was observed that 
the applied electric field provided enhanced electronic transitions from the dark Q valley to the bright K valley 
in the BZ due to breaking of crystal symmetry. This was because there is a strong delocalisation of the electron 
population in the conduction band at the high symmetry Q valley in both the layers and on application of an 
electric field, the formation of intralayer and interlayer excitons is facilitated by modifying the exciton population 
that leads to changes in the electron–phonon coupling. In our case, similarly, the strength of the electron–phonon 
coupling is modified by the variation of the temperature, which is discussed in the following.

In order to understand the effect of temperature on the phonon intensities, we investigate the intensity profiles 
of 6 other phonon modes, see Fig. 3(b)and (c). The temperature evolutions of the intensity profiles of TA+LA, 
2LA, and E 1g + TA peaks are very similar (see Fig. 3(b)). For the TA+LA mode, we observe a small increase in its 
intensity to about 150 K, which is followed by a quick exponential decay of almost 20 times in the temperature 
range from 150 K to 320 K. In the case of the 2LA and E 1g+TA modes, their intensities are almost constant to 
around 150 K and then they experience an analogous quick exponential decrease of about 15–20 times with 

Figure 3.   Integrated intensity profile of lattice vibrations extracted from temperature dependent resonant 
Raman scattering. (a) The intensity of the sum of the LA-related peak (red) accompanied with the Davydov-split 
pair of the infrared-active B 1u(Ŵ ) (orange) and Raman-active A 1g(Ŵ ) (blue) modes as a function of temperature 
(bottom axis) and of relative E L−XA

 energy (top axis). The inset shows the corresponding B 1u(Ŵ ) and A 1g(Ŵ ) 
lattice vibrations that are in colors matched to the intensity curves for the direction of atomic displacements. The 
corresponding intensity profiles for TA+LA, 2LA, and E 1g+TA are shown in panel (b), while for A 22u+TA, E 12g
+LA and E 1g+2TA in panel (c). Note the logarithmic scale of the vertical axis.
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increasing temperature to 320 K. It should be noted that T = 150 K corresponds to a relative energy of about 
430 cm−1 , which is reasonably close to the energy of the TA+LA mode (429 cm−1 ), while 2LA and E 1g+TA are at 
about 462 cm−1 and 470 cm−1 , respectively. In our opinion, the similarity of the TA+LA energy and the relative 
energy of the 150 K is coincidental. We also analyse the intensity evolution of the A 2u+TA, E 12g+LA and E 1g+2TA 
peaks as a function of temperature, shown in Fig. 3(c). The intensities of those three lines follow the same pattern. 
An increase in their intensities is observed up to about 180 K, which is followed by exponential decay at higher 
temperatures. The temperature 180 K, corresponding to the relative energy of about 500 cm−1 , does not match 
the energies of the three peaks analyzed, which are in the range from 550 cm−1 to 650 cm−1 . This suggests that 
the effect of temperature on the resonant conditions of RS is more complex compared to the results of the RS 
excitation technique, where the laser energy is tuned in reference to the excitonic emission.48,49,63,64

Summarising, the observed temperature effect on the intensity of the phonon modes is complicated and 
cannot be understood in terms of simple incoming or outgoing resonance conditions of the RS.65 In the pre-
sented experiment, the strength of the electron–phonon coupling is not only affected by the adjustment of the 
relative energy between the excitation and the emission (EL−XA

 ). The variation in the temperature also alters the 
linewidth of the X A line, which is observed to broaden with increasing temperature, and hence the X A lifetime 
is changed.66,67 The broadening of the A exciton line at higher temperatures results from the occupation by both 
electron and hole states characterised by larger k-vectors away from the K valleys. As reported in Ref.68 for thin 
MoTe2 layers, the contributions to the Raman susceptibility from different BZ regions (individual k points) are 
added with particular signs (plus or minus). Consequently, the strength of the electron–phonon coupling can 
be significantly modified as a function of temperature. This allows us to perform a quantitative analysis of the 
observed temperature dependent evolution of the phonon intensities but without direct attribution of resonant 
conditions of Raman scattering.

Conclusion
Temperature dependent resonant Raman spectroscopy for BL 2H-MoS2 has been performed. It has been clearly 
observed that temperature plays a significant role in altering the band structure of the material, ultimately leading 
to a unique vibrational response from the active 2D layer, where different phonon modes at the Ŵ and M points 
of the BZ are sensitive to temperature in an independent manner. The unambiguous switching of the intensity 
strength from A 1g(Ŵ ) at 5 K to B 1u(Ŵ ) at 300 K points to the fact that, in addition to the application of electric 
field, temperature is a crucial parameter to tune the resonance of the phonon modes in 2D materials. We also 
note the effect of the flake environment on the Raman scattering. We believe that our work will motivate further 
investigation from both an experimental and theoretical perspective on exciton-phonon coupling in S-TMD 
under resonant conditions of excitation.

Methods
Bilayer MoS2 encapsulated in hBN flakes was fabricated by a two-stage PDMS-based mechanical exfoliation of 
the bulk 2H-MoS2 crystal. An unoxidised silicon wafer was used as a substrate. To ensure the best quality, the 
substrate was annealed at 200 ◦ C and kept on a hot plate until the first non-deterministic transfer of hBN flakes. 
Subsequent layers were transferred deterministically to reduce inhomogeneity between each layer. The complete 
structure was annealed at 160 ◦ C for 1.5 h to ensure the best layer-to-layer and layer-to-substrate adhesion and 
to eliminate air pockets at the interfaces between the constituent layers.

A high resolution image of the sample was taken at 100 × magnification using a Huvitz HRM-300 optical 
microscope. AFM experiments were conducted using Dimension Icon (Bruker Corporation, Billerica, MA, 
USA) with ScanAsyst connected to Nanoscope VI controller. The images were collected in ScanAsyst mode 
using SCANASYST-AIR probes (Bruker Corporation) across an area of 5 µm × 5 µ m. with nominal spring 
constant of 0.4 N/m and a resonance frequency of 70 kHz. AFM topography images were recorded in air at the 
temperature of 23± 1 ◦C.

The PL and RS measurements were performed using � = 632.8 nm (1.96 eV) and � = 514.5 nm (2.41 eV) 
radiations from He–Ne and diode lasers, respectively. The laser beam, cleaned through Bragg filters in excita-
tion, was focused through a 50 × long-working-distance objective with a 0.55 numerical aperture producing a 
spot of about 1 µ m diameter. The signal was collected via the same microscope objective, sent through a 1 m 
monochromator, and then detected by using a liquid nitrogen-cooled charge-coupled device (CCD) camera. 
The temperature-dependent PL and Raman measurements were performed by placing the sample on a cold 
finger in a continuous flow cryostat mounted on x–y motorised positioners. The temperature was varied from 5 
to 320 K in steps of 10 K with the signal collected from the sample after the stabilisation of the temperature. The 
excitation power focused on the sample was kept fixed at 300 µ W during all measurements to obtain a strong 
signal and avoid local heating.

DFT calculations were conducted in Vienna Ab initio Simulation Package69 with Projector Augmented Wave 
method70. Perdew–Burke–Ernzerhof parametrization71 of general gradients approximation to the exchange-
correlation functional was used. The plane waves basis cutoff energy was set to 500 eV and a 12 × 12 × 1 Ŵ-cen-
tered Monkhorst-Pack k-grid sampling was applied. The geometric structure was optimized with 10−5 eV/Åand 
0.01 kbar criteria for the interatomic forces and stress tensor components, respectively. Grimme’s D3 correction 
was applied to describe the interlayer vdW interactions72. The phonon band structure of BL MoS2 was calculated 
within Parliński–Li–Kawazoe method73, as implemented in Phonopy software74. The 3 × 3 × 1 supercells were 
found sufficient to converge the interatomic force constants within the harmonic approximation.
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Data availability
The datasets obtained during the experiments and analysed for the current study are available from the cor-
responding authors on reasonable request.
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