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Intelligent service care robots have increasingly been developed in mission-critical sectors such as healthcare 
systems, transportation, manufacturing, and environmental applications. The major drawbacks include the open-
source Internet of Things (IoT) platform vulnerabilities, node failures, computational latency, and small memory 
capacity in IoT sensing nodes. This article provides reliable predictive analytics with the optimisation of data 
transmission characteristics in StreamRobot. Software-defined reliable optimisation design is applied in the 
system architecture. For the IoT implementation, the edge system model formulation is presented with a focus on 
edge cluster log-normality distribution, reliability, and equilibrium stability considerations. A real-world scenario 
for accurate data streams generation from in-built TelosB sensing nodes is converged at a sink-analytic dashboard. 
Two-phase configurations, namely off-taker and on-demand, link-state protocols are mapped for deterministic 
data stream offloading. An orphan reconnection trigger mechanism is used for reliable node-to-sink resilient data 
transmissions. Data collection is achieved, using component-based programming in the experimental testbed. 
Measurement parameters are derived with TelosB IoT nodes. Reliability validations on remote monitoring and 
prediction processes are studied considering neural constrained software-defined networking (SDN) intelligence. 
An OpenFlow-SDN construct is deployed to offload traffic from the edge to the fog layer. At the core, fog 
detection-to-cloud predictive machine learning (FD-CPML) is used to predict real-time data streams. Prediction 
accuracy is validated with decision tree, logistic regression, and the proposed FD-CPML. The data streams latency 
gave 40.00%, 33.33%, and 26.67%, respectively. Similarly, linear predictive scalability behaviour on the network 
plane gave 30.12%, 33.73%, and 36.15% respectively. The results show satisfactory responses in terms of reliable 
communication and intelligent monitoring of node failures.
1. Introduction

The term ‘intelligent service-care robots’ (ISCRs) or ‘StreamRobots’ 
refers to a purposeful machine with a built-in intuitive capacity to 
gather information streams from both external and internal environ-
ments, while using reliability optimisations (e.g., domain knowledge) 
to carefully deliver service tasks. In context, TelosB nodes refer to low-
powered open-source modules that support experiments with universal 
serial bus programming, IEEE 802.15, an integrated radio antenna, as 
well as a low-power scaled processor running on TinyOS 1.1. This is 
useful in robotic computing (RC) which is one of the most well-known 
methods of bringing a synergistic interaction of robots with challenging 
work environments. Despite its usefulness in task provisioning, little 
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effort has been committed to its physical parameter optimisation for 
reliable data transmission in StreamRobots.

Within manufacturing/Industry 4.0, transportation, energy systems, 
and health care delivery, among others, service robots may use well-
calibrated parameters based on RC to solve complex problems [1]. For 
instance, ISCR was massively applied to combat the COVID-19 pan-
demic, e.g., by taking care of elderly and sick people [2]. These ISCRs 
are directly engaging human users to solve complex problems. This is 
because interactions that foster human-friendly relationships with ISCR 
are encouraged for complex services [3]. In this case, StreamRobots in-
corporate social-cognitive features of humans and can be deployed in 
complex environments such as hospitals and open places [4]. Specifi-
cally, there are major concerns in IoT sensor-powered robots for pre-
https://doi.org/10.1016/j.heliyon.2022.e09634
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Fig. 1. a-b. StreamRobot deployment at the University of Calabar Teaching Hos-
pital, Nigeria (Source: Author’s design prototype version 1.0). a) StreamRobot 
at the Accident and Emergency Unit. b) End-user interaction with the Stream-
Robot.

dictive vital signal scanning (PVSS), especially for infected people [5]: 
These are reliable signal transmission (RST) and resource conservation.

Considering the former: RST in the robots requires smart optimi-
sation. The reason is that ISRs drive the democratisation of complex 
processes that advance robots to provide human support and assistance. 
Second, resource conservation is a key issue due to prolonged outdoor 
exposure, even in StreamRobots. As such, a reliable IoT service robot for 
the COVID-19 PVSSS must have the predictive capability to detect vul-
nerabilities and absorb parametric deviations with high accuracy. Such 
robots should be able to assist healthcare experts in offering treatments 
to patients in isolation. In this case, a probability distribution that offers 
a continuous randomised variable could be used for efficient parameter 
determination in a service robot.

In both cases, the adaptation of artificial intelligence (AI) into 
robotics will handle complex issues in mission-critical applications. For 
example, the use of ISCRs in many sectors lowers production costs (i.e., 
operation expenditure and OPEX) while increasing output productivity. 
Monotonous and repetitive tasks make ISCR ideal since AI seamlessly 
replaces human agents, thereby yielding improved outcomes. Accord-
ing to the International Federation of Robotics (IFR), production au-
tomation is increasing globally. There are 74 robotic units per 10,000 
employees and this is the recent average of global robot density in 
the manufacturing industries. Given the daily improvements in applica-
tion and capabilities, critical sectors such as healthcare are constantly 
leveraging robots for various computational tasks. This is found in com-
plex surgeries, clinical training, medicine dispensing, and personal care, 
among others.

Therefore, using ISCRs fused with computational SDN procedures, 
makes it possible to achieve functions such as identifying infected pa-
tients, disinfecting, cleaning up, and even delivering drugs to patients 
under treatment [6]. In most cases, the use of transactional analytics 
helps in getting quick results, especially the vitals. As such, explicit 
sensing operations and physical signal characterisation of sensor nodes 
can assist in deriving coarse-grained solutions in dynamic TelosB based 
applications [7]. This leads to reliable datasets for analytics within in-
door and outdoor deployments. For lightweight computation, software-
defined methods can be used to process vital parameters from IoTs.

In a current work, shown in Fig. 1a-b, the StreamRobot was designed 
and deployed at the Accident and Emergency Unit of the University of 
Calabar teaching hospital in Nigeria. The system had an AI health vita-
signal monitoring system and combines computer vision (CV) with in-
frared scanning to determine patients’ forehead temperature and other 
vitals via wireless signalling. It was deployed to combat the COVID-19 
pandemic and provide support for frontline health workers. The opti-
misation of the data transmission characteristics in the StreamRobot, 
using the software-defined technique, is the major focus of this article.

As part of the design requirements, data gathering is achieved with 
IoT integrations. However, to use these nodes, its energy metrics for 
transmission, forwarding, and reception of data streams through wire-
less links need reliability optimisation. In this case, scheduling algo-
rithms such as semi-dynamic and dynamic schemes can be implemented 
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in the TinyOS environment, housing TelosB nodes. Such an example can 
be found in environmental cyber-physical systems [8]. Once deployed, 
energy management operations must be satisfied to ensure continuous 
data-streaming into the cloud sink. This means that with reliability in-
fusion in IoT-based autonomous robots, mission-critical services can 
achieve significant control within its deployment context.

For StreamRobots, node reliable connectivity is very important, 
since any delay or node failure can dislodge the system from receiving 
processed data. Additionally, disconnections can lead to the malfunc-
tioning of the sensing communication network. This is unacceptable in 
such a mission-critical environment. Most works have attempted to fix 
this concern using node redundant schemes. In this case, new nodes 
are introduced where existing StreamRobot-nodes have failed. This ap-
pears to be counter-productive, especially in the COVID-19 era where 
service robots need minimal human intervention. As such, this may not 
be viable.

Another sensor optimisation scheme focussed on a wireless sensor 
network (WSN) relocation for connection restoration [9]. This is be-
cause WSN is still commonly used in hazardous terrains such as battle-
fields, power plants, dense forests, and similar areas. The restoration of 
the network in these areas is very difficult. Therefore, network restora-
tion can be possible when the traffic is localised.

Ultimately, connectivity and coverage in IoT service network (ISNs) 
are critical when considering the overall network lifetime within out-
door and indoor environments. As observed in IoT sensor nodes, battery 
power, CPU execution, and connection resources are limited. Therefore, 
a huge number may be needed to effectively meet demands in selected 
domains and improve data gathering with reliability. During the de-
ployment of ISNs, a neighbourhood connection is established so that 
these nodes can execute tasks (i.e., transmit and forward data streams) 
to the uplink sinks.

However, the reliability of sensor nodes is a major factor in the ser-
vice robot. Besides, link outage, which affects data stream propagation, 
is always unacceptable.

Therefore, this article presents a reliability model for StreamRobots 
(for IoT-TelosB sensor nodes) that uses link-state-on-demand charac-
terisation infusion (LS-ODCI) to perform data stream uploads in two 
phases, namely off-taker (OT) and on-demand link-state (ODLS). The 
former generates data traffic while the latter has the cluster head ag-
gregator whose role is to move data stream into the analytics server 
via software-defined controller interfaces. The entire baseline IoT node 
that generates data traffic, forms the OT and has a neighbourhood list 
(NL) or lookup table (LUT) for node identifiers (IDs). The ODLS has the 
cluster head aggregator whose role is to move data stream into the ana-
lytics server. The ODLS node is a very sensitive and dynamic node with 
expandable compute, storage, and power resources. The OT and ODLS 
are fully heterogeneous (i.e., some have more capabilities concerning 
computing resources and power drain) for data stream transmission or 
reception. At all times, the ODLS monitors the broadcasts from OTs 
and sets an energy equilibrium using congestion or beacon feedback 
notification. Failure nodes are detected by the ODLS as the aggrega-
tor’s head and corrected by the orphan reconnection trigger mechanism 
(ORTM). Such failures may be due to localisation impairments at the 
node level. Through its recycle monitoring, it offers a lower overhead 
and extended lifespan via optimal battery/energy utilisation. Finally, 
the various reliability algorithms are introduced for StreamRobot func-
tionality. The considered metrics include a link quality indicator (LQI), 
a received signal strength indicator (RSSI), battery life, and through-
put.

The main contribution of this article is highlighted as follows:

i. To propose a StreamRobot edge plane system architecture for 
data acquisition that integrates edge analytics with the IoT TelosB 
nodes. Further, the work aims to reduce the memory-overhead due 
to the storage constraints in IoT devices.
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ii. To propose log-normality probability distribution for StreamRobots 
with interface IoT WSN.

iii. To create a resource-conservative algorithm that is coverage-aware 
with a connectivity convergence scheme. This makes use of a dy-
namic transmission for baseline service nodes, while removing fail-
ures in complex deployments.

iv. To resolve boundary problems using the reliability orphan-node 
relive algorithm.

v. To show an optimisation reliability protocol termed SDN-intelli-
gence, for StreamRobot IoT data transmission. The scheme executes 
data and control layers to save the orphan nodes while ensuring 
that the forwarding layer uses its engine to process the received 
broadcasts. In this case, every received signal is pushed to the 
sink-SDN node for topological database build-up for reliable route 
selection.

vi. To demonstrate the proof-of-concept with the OpenFlow SDN-IoT 
hardware prototype and machine learning validations.

The novelty of the proposed work is found in the StreamRobot reli-
ability optimisation for multi-connectivity among its sensor nodes. The 
schemes are based on the advantages of AI and SDN. The log normality 
theory promotes system stability, leading to standardisation and op-
erationalisation. The major attribute of the proposed approach is the 
layered computational structure based on the ideals of principles of IoT-
SDN, edge computing for system orchestration, and streams computing. 
These schemes provide support for decentralised network provisioning. 
Agility and flexibility gave rise to improved parametric signalling and 
versatility in the OpenFlow SDN-IoT hardware prototype.

To the best knowledge of the authors, this research represents the 
first practical effort to address the issue of simultaneous IoT node char-
acterisation, using both analytical and applied testbeds with TelosB-IoT 
nodes. Explicit analytical relations describing the TelosB sensor node-
system reliability constraints are derived. The main objective of this 
article is to optimise data transmission characteristics.

Section 2 focusses on the existing literature about this study. Sec-
tion 3 presents the system model for edge log normality distribution. 
Section 4 describes the field TelosB deployment specifications. Section 5
presents the OpenFlow SDN integration architecture. Section 6 presents 
the deployment system testbed. In Section 7, a StreamRobot fog detec-
tion cloud predictive machine learning model (FD-CPMLM) is discussed. 
Section 8 presents the hardware prototype. Finally, Section 9 concludes 
the article.

2. Literature review

2.1. Service robots

There are current efforts on sensor applications in service robots. For 
instance, the IoT blockchain integration on TelosB MSP430 platform 
CC2420 IEEE 802.15.4 radio interface has been developed for reliable 
data transmission [7]. In terms of signalling, research efforts have been 
carried out to determine LQI, a channel prediction model, and RSSI in 
an outdoor environment [10]. The authors [11] applied TelosB sensor 
nodes in web services for battlefield management systems. The article 
[12] discussed single-chip nodes for autonomous node programming 
over USB model design. In [13], medical sensor networks (MSN) were 
developed for e-healthcare systems, considering trust management in 
TelosB nodes where collection tree protocols were applied. In [14], an 
experimental study on the ZigBee frequency agile (FA) scheme was im-
plemented on the TelosB testbed via test case experiments. In [15], an 
accuracy-aware diffusion process mapping scheme was developed with 
smart aquatic mobile sensors – TelosB nodes. In their work, schedul-
ing movements were introduced while validating their profile accuracy 
with TelosB nodes.
3

2.2. System optimisation algorithms

In developing intelligent service robots, various contributions to the 
optimisation scheme are studied. The authors [16] have discussed a 
hybrid technique capturing particle swarm optimisation (PSO) and bac-
terial foraging optimisation (BFO) for a multi-machine power loading 
design system stability. The article [17] proposes BAT search algorithm 
(BSA) for the optimal design of power system stabilisers (PSSs) in a mul-
timachine environment. The optimisation problem is solved, using BSA 
under parameter tuning. The authors [18] introduce the Cuckoo search 
(CS) algorithm for an optimal power system stabiliser (PSS) design in a 
multimachine power system. The PSS parameter tuning problem is for-
mulated as an optimisation problem that is solved by a CS algorithm. 
The article [19] presents ant colony optimisation for the identification 
of the number as well as locations of IoT relays within QoS thresholds.

In [20], the authors propose the Bettle antennae algorithm (BAA) in 
wireless sensor networks for jamming attack points. The authors [21] 
focus on a new approach, deployed for human motion-denoising via a 
joint optimisation of kinematic and anthropometric constraints. This is 
considered as noisy-wave skeleton data meant for depth-sensor-based 
motion capture (D-Mocap). The captured data are usually error-prone, 
outliers, and distorted. The article [22] proposes an energy-aware and 
trust-based routing protocol for WSNs, leveraging adaptive genetic algo-
rithms for resisting routing attacks and minimising energy consumption 
triggered by data transmission. The authors [23] focus on a topology 
optimisation method (TOM) needed for precise multi-axis inertia sens-
ing needed in self-positioning autonomous robot control. The work [24] 
explores a soft sensing optimisation scheme for detecting obstacles and 
discriminating the scalable obstacles using an untethered miniature, 
soft, C-legged robot, M-SQuad, the first modular C-legged quadruped 
consisting of three modules. The authors [25] have developed an op-
timisation model, addressed with an elitist preservation genetic al-
gorithm (EGA). There have been some optimisation techniques and 
research efforts in real-time monitoring of signals within and outside 
healthcare systems. Most are found in service-robot monitoring models 
discussed in robotic computing repositories, for instance, the service-
robot types (SRT), industrial robots, human-aware robots, AI-assisted 
smart robots, high-speed industrial robots, and robot frameworks [26]. 
This work compares with selected reliability optimisation schemes dis-
cussed in Section 6.

2.3. Research gaps

i. Existing literature suggests a lack of discussion and findings at the 
IoT sensor node log normality distribution, especially in TelosB ser-
vice robotic applications.

ii. None of the research focusses on continuous traffic monitoring, 
such as real-time scanning of patients for COVID-19 vulnerabili-
ties.

iii. Most efforts fail to identify optimal operational metrics in sensor 
activities.

iv. There are very few works on real-time information gathering, using 
IoT nodes for indoor data acquisition with zero error deviation, 
especially in mobile robots deployed in cities during COVID-19.

v. There are non-existent IoT open-source TelosB nodes used in 
StreamRobots for the estimation of physical node characteristics 
from the existing studies.

vi. Orphan node problems are yet to be fully addressed in complex 
networks. However, for replication of a typical TelosB system, 
the details of IEEE 802.15.4 characteristics (compatible IoT open-
source TelosB) are needed for classical experimental studies [27, 
28, 29]. This can be used to estimate temperature, relative humid-
ity, and light parameters in the ISCR. The next section will discuss 
the system architecture and mathematical background for the im-
plementation testbed.
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Fig. 2. StreamRobot edge sub-system layout.

3. Edge system model formulation

3.1. Edge cluster log-normality distribution model

In this section, log normality distribution (LND) is described for 
StreamRobot TelosB sensor node clusters with buffers storing the gen-
erated data streams, as shown in Fig. 2.

LND is the continuous probability distribution of a random IoT node 
variable whose logarithm is normally distributed. This is adapted into 
the sensor nodes for stream end-to-end data transmission. In Fig. 2, the 
IoT sensor node data-streams reliability and the payload is constrained 
by the mean and standard deviation parameter to the sink server where 
analytics takes place. For random stream variables, it has implications 
on the traffic parameters of StreamRobots, such as battery life, LQI, 
RSSI, and transmission throughputs in ISCRs. Any deviation from the 
expected patterns (or both the parent and orphan nodes) may lead to 
predictive errors. For the edge clusters, transmission reliability is very 
important. The baseline sensor nodes (OTs) provide active data stream 
propagation into the ODLS (head aggregator). An efficient optimisa-
tion algorithm can reliably transmit data streams into the server sink 
through the SDN clusters.

3.2. StreamRobot reliability model

Consider a lognormal distribution for edge nodes 𝑋1, 𝑋2, 𝑋3… …
… 𝑋n+1 in StreamRobots whose traffic strength of data streams is given 
as 𝑆𝑡, and its payload is given as 𝐿𝑝. Both are constrained to a sink 
logger (cf. Fig. 2).

For a scenario of continuous data streaming from edge devices, there 
is a need to derive a reliability function for such distribution. Therefore, 
Eq. (1) is used as the baseline reliability model, which is theoretically 
defined as the probability of success at time 𝑡, which is denoted 𝑅(𝑡)
[30].

𝑅(𝑡) = Pr{𝑇 > 𝑡} =

∞

∫
𝑡=0

𝑓 (𝑥)𝑑𝑥 (1)

where 𝑓 (𝑥) is the failure probability density function and 𝑡 is the length 
of the period (which is assumed to start from time zero).

In the case of Fig. 2, for a new random variable 𝑋𝑇 , 𝑅(𝑡) is given as 
the ratio of traffic strength 𝑆𝑡, to data stream payload 𝐿p [30]. Let us 
now define the intrinsic reliability of a new random variable 𝑋T (i.e., 
edge node) as the ratio of traffic strength 𝑆𝑡, to data stream payload 𝐿𝑝,
hence, using (1), which gives Eq. (2). Complete characterization of the 
system reliability
4

𝑅(𝑡) = Pr{𝑇 > 𝑡} =

∞

∫
𝑡=0

𝑓 (𝑥)𝑑𝑥 =
𝑆𝑡,

𝐿𝑝,
(2)

This then gives (3):

Ln𝑅(𝑡) = ln𝑆𝑡, − ln𝐿𝑝, (3)

However, Ln𝑅(𝑡) can be observed to be normally distributed, since both 
ln𝑆𝑡, and ln𝐿𝑝, are also distributed normally. Now, the edge reliability 
of the TelosB nodes can be expressed as Eq. (4):

𝑅(𝑡) = Pr
(
𝑆𝑡,

𝐿𝑝,
> 1

)
= Pr(𝑋𝑇 , > 1) =

∞

∫
𝑡=0

𝑓 (𝑥)𝑑𝑥 (4)

Since Ln𝑅(𝑡) is normally distributed, 𝑋𝑇 , follows a lognormal distribu-
tion. Hence, it is feasible to define a standard normal variate 𝑍 using 
Eq. (5) as

𝑍(𝑡) = ln𝑥− 𝜇ln𝑥
𝜎𝑖𝑛𝑥

(5)

where 𝜇ln𝑥 and 𝜎𝑖𝑛𝑥 are the mean and standard deviation of Ln𝑋𝑇 ,……
(𝑋𝑛+1,) respectively.

If Eq. (5) is rewritten in terms of 𝑍, the new limits of integration 
can be defined such that when 𝑥 = 1, 𝑍(𝑡) =𝑍1 =

lnx−𝜇𝑙𝑛𝑥
𝜎𝑖𝑛𝑥

= 0−(𝜇𝑙𝑛𝑠−𝜇𝑙𝑛𝐿)√
𝜎2
𝑖𝑛𝑆

+𝜎2
𝑖𝑛𝐿

, 

and when 𝑥 = ∞, 𝑍 = 𝑍2 = ∞. The random variable 𝑋𝑇 , is the sensor 
node with normal distribution, while 𝑥 is the instance of the failure 
probability density function of 𝑋𝑇 ,. Therefore, Eq. (4) can be rewritten 
in terms of 𝑍 using Eq. (6):

𝑅 =

∞

∫
𝑍1

1√
2𝜋
𝑒−1∕2𝑥

2
𝑑𝑧 (6)

where

𝑍1 =
−(𝝁𝒍𝒏𝒔− 𝝁𝒍𝒏𝑳)√

𝝈𝟐
𝒊𝒏𝑺

+ 𝝈𝟐
𝒊𝒏𝑳

for 𝑇 > 𝑡 (7)

Eq. (7) gives the bounded 𝑍 from Eq. (5). Now, if 𝑋𝑇 , is log-normally 
distributed, its probability density function is given by Eq. (8).

𝑓 (𝑥) = 1√
2𝜋𝜎𝑥

exp

{
−1
2

(
𝐿𝑛𝑥− 𝜇
𝜎

)2
}

for 𝑋𝑇 > 0 (8)

where 𝜇 =∈ (𝐿𝑛𝑥) = 𝜇𝑖𝑛𝑥, 𝜎 = 𝜎𝑖𝑛𝑥 and the variable 𝐿𝑛𝑥 are normally 
distributed. By defining 𝑌 = 𝐿𝑛𝑥, it is feasible to obtain the expected 
value (edge data stream) and the standard deviation of 𝑥 as Eq. (9):

𝐸(𝑥) =

∞

∫
−∞

1√
2𝜋

exp
{
−1
2

(
𝐿𝑛𝑥− 𝜇
𝜎

)2}
𝑑𝑥 (9)

Since 𝑥 = 𝑒𝑦 and 𝑑𝑦 = 1
𝑥
𝑑𝑥 or 𝑑𝑥 = 𝑥𝑑𝑦, then (9) can be written as 

Eq. (10):

𝐸(𝑥) =𝐸
(
𝑒𝑦
)
=

∞

∫
−∞

1√
2𝜋
𝑒𝑦exp

{
−1
2

(
𝐿𝑛𝑥− 𝜇
𝜎

)2}
𝑑𝑦 (10)

Then (10) can be further simplified concerning (2) and given by 
Eq. (11):

𝐸(𝑥) = exp
(
𝜇 + 𝜎

2

2

)
(11)

The computation of 𝜎𝑥 requires the evaluation of 𝐸(𝑥2) and is repre-
sented in Eq. (12):

𝐸
(
𝑥2
)
=𝐸

(
𝑒−2𝑦

)
=

∞

∫
𝑒2𝑦√
2𝜋𝜎𝑥

exp
{
−1
2

(
𝐿𝑛𝑥− 𝜇
𝜎

)2}
𝑑𝑥 (12)
−∞
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For the edge plane, (12) can be further simplified to (4), using Eq. (13):

𝐸
(
𝑥2
)
= exp

{
2
(
𝜇 + 𝜎2

)}
(13)

Therefore, the estimated variance of the edge node clusters, 𝑋𝑛+1 is 
given by Eq. (14):

𝜎2
𝑥
=𝐸(

{(
𝑥−𝐸(𝑥)

}2) =𝐸(𝑥)2 − {
𝐸(𝑥)

}2
𝜎2
𝑥
= exp

{
2
(
𝜇 + 𝜎2

)}
− exp

{
2
(
𝜇 + 𝜎

2

2

)}
𝜎2
𝑥
= exp

(
𝜇 + 𝜎2

)
(exp

(
𝜎2

)
− 1 (14)

This means that Eq. (11) and Eq. (14) can be resolved to find 𝜇 and 𝜎2
as presented in Eq. (15):

𝜇 =𝐿𝑛𝐸(𝑥) − 𝜎
2

2
= Ln𝜇𝑥 −

𝜎2

2
and

𝜎2 = Ln
[
𝜎2
𝑥

(𝐸(𝑥))2
+ 1

]
(15)

From a linear programming perspective, the objective function in 
StreamRobots is to optimise data transmission reliability and avoid 
losses based on well-selected constraints and its relation map between 
the decision variables. In the StreamRobot, the constraints refer to 
capacity, availability, resources, technology, etc., and reflect the lim-
itations of the business environment.

From Eq. (15), the reliability of the traffic strength 𝑆𝑡, and its pay-
load 𝐿𝑝, are constrained by the mean and standard deviation to a sink-
logger. This optimisation derivative has implications on traffic delivery 
and can affect the performance of StreamRobots in their deployed en-
vironments. For instance, with a limit of very low value, this will imply 
that the values transmitted will be very close to the mean or expected 
value, eliminating the need for parity checks. With a lower payload re-
duction, a transmission efficiency will be guaranteed. To achieve LND 
for random OTs distributed at scale, an exponential function is needed 
for only positive real nodes in Eq. (15).

3.3. StreamRobot equilibria and stability

Let us assume a contextual case of an autonomous linear discrete 
model of the form Eq. (16). This leads to joint kinematics optimization 
described [21].

𝑈𝑛 = 𝑎𝑈𝑛−1 + 𝑏(𝑎 ≠ 1) (16)

where 𝑎 and 𝑏 are constant coefficients in the StreamRobot. If 𝑈∗ is the 
equilibrium solution of the model, then

𝑈𝑛 =𝑈𝑛−1 =𝑈∗

𝑎𝑈∗ + 𝑏 =𝑈∗, therefore Eq. (17) holds.

𝑈∗ = 𝑏

1 − 𝑎
(17)

The equilibrium point 𝑈∗ is said to be stable if all the solutions of 𝑈𝑛 =
𝑎𝑈𝑛−1 + 𝑏 approach Eq. (17) as 𝑛 becomes large (→∞). The equilibrium 
point 𝑈∗ is unstable if all solutions (if it exists) diverge from 𝑈∗ to 
±∞. The stability of the equilibrium solution 𝑈∗ of the equation 𝑈𝑛 =
𝑎𝑈𝑛−1 + 𝑏 depends on 𝑎. For the reliability test conditions in Eq. (17), it 
is stable if |𝑎| < 1 and unstable if |𝑎| > 1.

As depicted in Fig. 2, the TelosB CC2420 sensor node with ORTM is 
used to collect real-world data, as discussed in Section 5. By increasing 
the number of edge nodes in the topology, packets are easily forwarded 
to the next hop by using a tree routing mechanism. In this case, the 
ORTM computes the packet destination address, using its distributed 
Internet protocol (IP) address assignment mechanism. However, in a 
very complex node deployment, network parameter constraints may 
trigger an IoT orphan node problem (IONP). Orphan nodes are devices 
that are unable to obtain network addresses and are thus disconnected 
5

from the network. This is the only major limitation of complex node 
deployment. The algorithm is used to describe how the TelosB node 
uses link-state-on-demand characterisation infusion (LS-ODCI) applica-
tion Programming Interface (API) to process the wireless parameters. 
This is used to transfer data from the edge to the sink where higher 
analytic processing takes into account the small memory space, energy 
life, node failure, and quality of service requirements.

The input and output variables were carefully scheduled to optimise 
traffic transmission. This is fully coordinated through machine-node to 
machine-node communication. Unlike in most works, the parametric 
variables are processed within the QoS thresholds without draining the 
battery quickly.

Algorithm 1 Log normality TelosB integration API with LS-ODCI.

Inputs: R(t), OT( );, LQI ( );, RSSI ( );, Batterylife ( );, Throughput ( );
Output: Sink_ODLS ( );
Begin ( ) LS-ODCI ( );

Parameters: SensorRouterC_parameters_weight←Set;
// Node parameters Ready
configuration. SensorRouter AppC { }

int i←0;

While i < SensorRouterC_monitorCallSchedule do

Metrics_historyItem←HistoryList.get (HistoryList.Size) ( );
CallEnergymodel ( );
NodeTxDataMoving←SenorRouterC (Container history);
totalSensorRouterC_weight ←total NodeTxDataMoving_weight;
i++;

end while

Receive.receive(message_t* msg, void *payload, uint8_t len) {
NodeTxnData* in = (NodeTxnData*) payload;

NodeTxnData* out; //Ophan reconnection trigger mechanism
in->sensorNodeparameter = call CC2420Packet.
getparameter (msg);

Return

Considering the mathematical perspective offered by the objective 
function in Eq. (18) to maximise transmission reliability, as 𝑋𝑖 is the 
designated set of activities in the StreamRobot. 𝑖 precisely indicates the 
activity set in active operation from the 1𝑠𝑡 to the 𝑛𝑡ℎ state. This also 
gives the activity list of actions in the state transition. Added to that, 
𝐶𝑖 is the compounded streams aggregation payload parity control that 
activity 𝑖 generates (i.e., the 1𝑠𝑡 to the 𝑛𝑡ℎ). This optimization model 
[30] is enhanced in Eq. (18)

Max𝑓 (𝑥) =
𝑛∑
𝑖=1
𝐶𝑖𝑋𝑖(𝜇𝑙𝑛𝑥, 𝜎𝑖𝑛𝑥) (18)

To maximise data transmission reliability in StreamRobots:

∙ 𝑐𝑖 is the coefficient that matches the 𝑖th variable.
∙ 𝑋𝑖 is the ISCR 𝑖th decision variable.
∙ ∖Subject to reliability test conditions in Eq. (17).

4. Field sensor node deployment

4.1. TelosB testbed characterisation

This section describes the testbed design parameters of the TelosB 
device used in the StreamRobot deployment. An experimental task is 
used to characterise the device setup while gathering key para-meters 
needed for the service sensor edge analytics system. Using previous 
details in [28] and [29], a discussion on the sensor node design and 
deployment is highlighted in Section 5. To validate the ISN reliability 
model, four TelosB nodes were used to facilitate the test measurements. 
This was because of cost and convenience at the time of this study. 
However, the setup was sufficient for the data acquisition needed for 
this study, but it can be scaled up, depending on the deployment en-
vironment. A demonstration of how the sensors could rapidly acquire 
physical parameters and then transmit the data streams into the sink, is 
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Fig. 3. A log-normality FUTO outdoor testbed for edge analytics with sink 
nodes.

shown. This was done regardless of the data size and the transitional ki-
netic energy needed to forward the data to the server. The experimental 
setup process/testbed design parameters and deployments are discussed 
in section below.

4.2. Optimal addressing scheme

In this section, the optimal addressing scheme for reliable paramet-
ric transmission is discussed. In this case, the IEEE 802.15.4 standard 
is used. This has a TI-MSP430F1611 microcontroller and Texas instru-
ments CC2420 RF chip (i.e., IEEE 802.15.4 2.4 GHz wireless module). 
It uses a TinyOS 2.x that is compatible with a USB interface. The 48Kb 
memory is then used with a 12-bit ADC, having eight channels. In this 
work, the USB interface is attached to the sink server for telemetry cap-
tures.

For the StreamRobot testbed architecture in Fig. 3a, four nodes 
(CC2420 TelosB nodes) are considered for ease of configuration and 
simplicity per domain site. Fig. 3b depicts the sink analytics for data 
aggregation from the ISCRs/StreamRobot. The design of the address-
ing scheme for OTs and ODLS (including the server sink) leveraged 
a scheme known as classless inter-domain routing (CIDR) [31]. Simi-
larly, stateful Multi-Index Hybrid Trie (MIHT) can be used for a network 
scale of any size [32]. Hence, CIDR and MIHT achieve scalability, route 
aggregation (summarisation), dynamic updating, lower administrative 
distances, split horizon, and route poison control. These are very impor-
tant in the system design.

The CIDR IP address assignment policy introduced may be conser-
vative for a very large-scale deployment. This could result in a poor 
utilisation of the available pool in a subnet for such complex deploy-
ments. IoT nodes that could fail to receive real-time network addresses 
will be disconnected from the service network, making them orphan 
nodes. This boundary problem is resolved, using the reliability orphan-
node relive algorithm (RONRA). This is introduced to boost the reliabil-
ity of data transmission and effectively reduce such problems as shown 
in Fig. 3a and 3b. Fig. 3a shows the physical testbed with linearised IoT 
node clusters, communicating with a sink logger in Fig. 3b (i.e., sink an-
alytics). A reliability optimisation is built into Algorithm 2, considering 
Fig. 3a-b. It shows a reliability node recovery scheme called the orphan 
reconnection trigger mechanism (ORTM). This is based on an improved 
probability distribution function which includes multi-node instances 
(MNIs) in-service field deployments. The ORTM selects nodes with ac-
tive IP addresses to connect similar node instances or sink nodes. This 
is done to scale up connectivity in the node-to-sink network. It effec-
tively leads to reduced cases of IoT orphan nodes, especially in complex 
deployments.

Algorithm 2 shows a more complex analysis. It shows both orphan 
and parent nodes established for seamless communication. From the 
orphan path, parent nodes are checked in the broadcast range. Once 
satisfied, it requests for the get-IP address of all nodes. When all the 
IP addresses are retrieved, it then compares the mean and standard de-
viation (SD) for the best node ID. After confirmation, a joint request 
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is sent to the parent node with the largest SD. The parent nodes, in 
all instances, will check for their neighbours, send IP get-requests, and 
execute the algorithm. As such, an association established with the or-
phan node and parent nodes is made. This takes care of the case of an 
increased number of nodes on the robot.

Algorithm 2 Log normality TelosB integration with ORTM.

1: Inputs: R(t), total number of IoT nodes on site, node-

parent; (Np parent), Node.Array,

Output: Sink_ODLS // parent node terminal for rounds

Begin ( ) Np parent ← remaining capability

// outstanding capability of the parent

Parameters: Define_Array.SensorRouterC_pa-

rameters ← Set; // Node array

Ready

Configuration.SensorRouterAppC { }

int I ← 0;

While i < SensorRouterC_monitorCallSchedule do

Cal_inf (Num,Np_Node.parent,Array.Sensor)

← HistoryList.get(HistoryList.Size ();

for (int i = 0; i < Num; i++);

if (node [i].parent = = Np parent && node[i].type = = ZR

i! ← Np parent;

for (node [i].MaxDepth > 0);

Cal_inf (Num,Next,Node.Array.Npparent

←HistoryList.get(HistoryList.Size ( );

Else

IPparent = Npparent;

if (node [i].parent = = Np parent && node[i].type = =
Sink_ODLS;

IPparent = Npparent;//

end while

Receive.receive (message_t* msg, void *payload, uint8_t len) {

NodeTxnData* in = (NodeTxnData*) payload;

NodeTxnData* out; //Ophan reconnection trigger mechanism

in->sensorNodeparameter = call CC2420Packet.getparameter(msg);

Return IPparent
End for

End

Return Sink_ODLS

The experimental setup employed a reliable field characterisation 
of the IoT nodes for optimal data transmission. This is because the re-
liability of the traffic/data streams strength 𝑆𝑡 and its payload 𝐿𝑝, is 
expected to be constant in an on-demand fashion. After developing the 
IP mapping, static and dynamic IP mapping were explored for the main 
deployment. The generic dynamic host configuration protocol (DHCP) 
of the sink-based station was used to allocate addresses, thereby opti-
mising administrative costs/overheads. In the testbed, a combination of 
CIDR and MIHT gave scalable inter-domain routing addressing scheme 
(SIRAS) for Fig. 1 for all the TelosB nodes (i.e., Node 100, 200, 300, 
400, 𝑛 + 1).

Now, assuming that a disposable IP block of 192.168.10.33/27 is 
needed for the service robot nodes, the network address can be given 
as 192.168.10.0, since this is a Class C address. Then, the subnet mask 
S𝑚 is given by 255.255.255.244 (since the CIDR value of/27 = 244). The 
number of valid nodes for site_1, v_Nℎ are given by 2𝑁 = 25 − 2 = 30
nodes where 𝑁 = off bits. The number of subnets for Site_1, Nsite_1

are given by 2𝑋 = 23 = 8 subnets where 𝑋 = on bits. The block size or 
valid subnets is given by 28 − 244 = 32 i.e., [0 32 64 96 128 160 192 
224], hence 8 subnets. The IP map identification subnet for the CC2340 
TelsoB nodes is derived as shown in Table 1.

Hence, for site_1, the valid range for CC2420 is 192.168.10.33–
192.168.10.62 (subnet 32). In site_2, the valid range for CC2420 is 
192.168.10.65–192.168.10.94 (subnet 64). Additionally, in site_3, the 
valid range for CC2420 is 192.168.10.97–192.168.10.126 (subnet 69). 
Hence, any address outside the valid node range becomes either a sub-
net or broadcast address which is unassignable in this design. In this 
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Table 1. Reliable log normality IP subnet mapping.

Subnets 0 32 64 96 128 160 192 224

First _ CC2420 IoT node 1 33 65 97 129 161 193 225

Last _ CC2420 IoT node 30 62 94 126 158 190 222 254

Broadcast CC2420 IoT node 31 63 95 127 159 191 223 255
work, broadcast addresses were used to register the initial presence of 
sensor nodes in the coverage deployment field. The remaining IP blocks 
from subnet 128 to 224 were not utilised because only a few sensor 
nodes were considered. However, this has no significant impact on the 
IoT node’s baseline performance, considering the ORTM.

4.3. OutDoor testbed description

The Cisco LAB of the Federal University of Technology, Owerri 
(FUTO), situated in South-East Nigeria (FUTO-Cisco LAB), was used as 
the testbed for parametric outdoor scanning as shown in Fig. 3. The 
StreamRobot monitoring follows the LND, described previously. It ac-
counts for both indoor and outdoor environmental deployments. The 
first testbed is the outdoor setup phase with the geographical coordi-
nates (6◦ 14’ 0” north, 7◦ 17’ 0” East). In this testbed, four TelosB 
sensors were used in the experiment by calibrating the nodes at vari-
ous distances, while attaching one of the sensor nodes to a laptop that 
served as the sink via an ODLS shown in Fig. 3a and 3b.

The remaining three sensor nodes were placed at 0◦, 90◦, and 180◦

from the sink with equal distances of 10 metres apart. The measure-
ments were taken at several distances every 1 minute, and the data 
obtained were recorded. The nodes are assigned to ID 100, 200, 300, 
and 400 respectively.

The second testbed shown in Fig. 4 is an indoor setup, located at 
the School of Engineering building complex’s overhead control corridor. 
Because of cost and convenience, these four-sensor nodes were deployed 
for data capture. However, the four-node setup was sufficient for the 
preliminary data acquisition needed for the study. One of the sensor 
nodes was attached to the server laptop as the sink while the other 
nodes were placed in the first testbed, as measurements were taken 
from the sink-analytics in Fig. 4.

The TelosB sensor node’s characteristics are highlighted in [28] 
and [29]. The main composition of the node includes the CC2420 
transceiver, a microcontroller with 3.3V CMOS compatible batteries. 
The ranges of the parametric variables such as temperature, humid-
ity, and visible light sensors are highlighted. As shown in Fig. 4, the 
TelosB nodes have a smart USB slot with a programmed API driver in 
the Core i7 server machine, and TinyOS in DOS emulation mode maps 
with Cygwin libraries. With high-level TinyOS 2.x-Java GUI sockets de-
veloped on the IDE, the final API code was used to acquire real-time 
data as shown in Fig. 4, using Algorithm 1. Fig. 4b shows how the Sink 
SIRAS configuration palette is used to visually setup various nodes such 
as Node 100, 300, … , 𝑁 + 1, etc., regardless of their location (indoor 
or outdoor). Cases of TelosB captured parameters for analytics on the 
node cluster head (N#100), while node 200, 300, etc. were obtained as 
indicated in Fig. 4.

Using the setup shown in Fig. 4, three case scenarios involving 
IoT-TelosB captured parameters for analytics were determined. These 
include temperature, light intensity, humidity, RSSI, LQI, and frame 
sizes. It was used to determine indoor deployment locations for the IS-
CRs.

4.4. Outdoor results analysis

In this section, the observations from the previous experimental 
testbed are discussed. From Fig. 5, the LQI depicts the amount of data 
stream packets/bytes received on the sink. For the COVID-19 ISCRs, 
moving data streams have implications on the LQI. As the placement 
distance increases, the LQI continues to drop. In the case of LS-ODC, 
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Fig. 4. TelosB Indoor Calibration with Sink SIRAS configuration palette.

network topological changes will drop the LQI, thereby showing log-
normality distribution observation for the available nodes. The LQI 
status for all the attached nodes determines connectivity pathways. 
Any path with a satisfactory LQI profile is optimised to deliver mes-
sages/data streams to the sink reliably. Hence, Fig. 5 shows that to 
deliver data streams to the sink servers, the energy efficiency of the 
TelosB nodes must rely on defined short distances. Therefore, for the 
battery-powered nodes, a uniform trend was observed for LQI, start-
ing from 105.5 dBm, considering the various placement distances. This 
implies that the measured and captured data streams under LS-ODC 
reached the sink server for possible analytics.

Fig. 6 shows the obtained RSSI behaviour under LS-ODC. It de-
picts a considerable measure of data stream signal quality on the fly. 
For energy conservation during traffic routing, path selection can draw 
enormous power. Hence, the energy model positively impacted RSSI, 
using Algorithm 1. The total energy received for the physical TelosB 
nodes is −40 dBm. It was observed that given the various placement dis-
tances, the RSSI appears to be dropping as the node distances increase 
under the influence of LS-ODC. This means that the service robots need 
to be very close to the targeted objects to avoid a loss of signal with the 
central server.

This implies that the service-care robot’s (SCR) RF can receive sig-
nals based on the connectivity profiled with RSSI. This reveals the true 
power level of the TelosB node when receiving traffic or when its sink 
head aggregator receives a similar data stream. As a thread-off, the 
throughput can be seriously impaired at a very low RSSI. From the 
measurement testbed, the various battery profiles (i.e., energy conser-
vation usage) are highlighted in Fig. 7. It is important to note that a 
CMOS electrochemical battery (AA 3.3 V) was used to power the TelosB 
sensor node in the testbed. Clearly, with the LS-ODCI, the wake-up sta-
tus with active power is made very small, thereby reducing the energy 
consumption and its discharge characteristics of TelosB nodes. The im-
plication is that the nodes can be active for a longer duration of time, as 
shown in the various discharge rate profiles in Fig. 7. This result offers 
the basis for battery-efficient discharge and sensing capabilities.

Fig. 8 shows the influence of the log normality distribution on 
throughput parameters under LS-ODCI. All the joined nodes are rep-
resented with node four as a test case orphan that got disconnected. 
In reality, the nodes transmit data streams from the off-takers, but it 
was observed that node placement distances affect the network per-
formance, especially for complex deployments. TelosB node 3, placed 
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Fig. 5. Impact of LQI on TelosB sensor placement distance (m).

Fig. 6. Impact of RSSI on TelosB sensor placement distance (M).

Fig. 7. Impact of battery life under LS-ODCI.
8
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Fig. 8. Impact of the log normality distribution on throughput under LS-ODCI.

Fig. 9. StreamRobot cloud application interface.
closer to the sink, experienced the highest throughput without any de-
viation. Similarly, nodes 2 and 1 were placed closer to the sink after 
node 3 – both experienced differential a throughput behaviour with LS-
ODCI. Results shown in Fig. 8 indicate that the LS-ODC nodes closer 
to the sink analytic server experienced better throughput compared to 
those behind the lead node. This is a normal distribution confirmed 
from the experiment. Therefore, the introduced ORTM can trigger in-
stant node recommendations for complex network setups [33]. This is 
good for the StreamRobot optimisation of data transmission. To migrate 
these parameters to the cloud, a set of fog devices can be employed 
for streams analytics. The insights gathered can be used for intelligent 
decision-making in the deployed context [34] and [35].

With such smart task placement in StreamRobot IoT TelosB nodes on 
a large-scale computing platform, workload optimisations will deliver 
sensitive data traffic, involving low power drain at the edge nodes. The 
fog will improve latency and can be applied in container orchestration 
domains, while machine learning heuristics could be applied to achieve 
quicker decisions in terms of scheduling. Future efforts will consider re-
inforcement learning and evolutionary schemes for dynamic IoT TelosB 
edge to cloud transactions.
9

In all cases, the throughput increases as the data stream increases 
from the off-takers to the sink. RSSI and LQI can affect the through-
put, especially if the node placement distances are wrongly calibrated 
or if an orphan node exits. So far, using the proposed scheme, the re-
sults show that data stream transmission, considering LQI, RSSI, battery 
life, or energy conservation reliability, and throughput (under efficient 
node placements), can sustain optimal traffic flows through any wire-
less vector path. Therefore, reliable physical calibrations are necessary 
for the proposed ISCR.

Furthermore, with an increasing number of IoT edge nodes, the total 
number of the joined nodes with ORTM will remain higher than that of 
conventional IP TelosB nodes. Using ORTM, offers similar results even 
in a complex experiment. In this article, the network employed a smaller 
number of joined IoT TelosB nodes for parameter gathering in a service 
robot. The behaviour of the individual nodes was studied for a relia-
bility analysis. As the number of nodes increases, the ORTM eliminates 
possible saturation effects. The implication is that more nodes can join 
in a subnet cluster using CIDR or MIHT. Also, in an unstructured deploy-
ment, ORTM can accommodate a massive node deployment, improve 
the overall joined ratio, and regulate all active deployment interactions. 



K.C. Okafor and O.M. Longe
Fig. 10. StreamRobot Kendall’s correlations map.

Fig. 11. StreamRobot Pearson’s correlations.

It is difficult to notice the disjoined/unconnected state when the nodes 
are increased with ORTM. Consequently, an increase in the node place-
ment will have less impact on the overall network at any given location, 
especially the battery lifespan. Fig. 9 shows the StreamRobot cloud in-
terface for all the cyber-physical parametric captures.

Fig. 10 shows Kendall’s correlations map for capturing the ordi-
nal association between the measured quantities by the StreamRobot. 
Fig. 11 shows the Pearson’s correlations for the StreamRobot multivari-
able. It depicts the statistical relation between the continuous variables. 
Fig. 12 shows the Phi_K correlation coefficient obtained from several 
adjustments to Pearson’s hypothesis test of independence among multi-
variables. Fig. 13 shows Spearman’s correlations between the variables. 
The various test statistics depict a common similarity pattern in terms of 
all the captured variables by the StreamRobot. In Section 5, a discussion 
of the complex system-of-systems with OpenFlow SDN is presented.

5. OpenFlow SDN integration architecture

In most mission-critical environments, the use of service robots is 
unpopular, and the legacy computing systems depend on human agent 
operators who manually monitor and manage the system conditions. 
The efficiency depends on the overall system-of-systems integration. 
This ensures proper coordination and offers system stability at deploy-
ment sites.

Apart from the edge parameter transmission, critical intelligence 
is realised using self-monitoring and feedback control schemes in the 
StreamRobot. Such a system-of-systems model (cf. Fig. 14) can have an 
average lifespan of 10 to 30 years with SDN deep learning integrations 
[36, 37]. The issues of orphan node problems in the systems-of-systems 
architecture leads to the premature death of the StreamRobot. This 
10
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Fig. 12. StreamRobot Phik correlations.

Fig. 13. StreamRobot Spearman’s p correlations.

Fig. 14. Proposed StreamRobot SDN-ML architecture.
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Fig. 15. FD-CM predictive model with computation neural controller.

abruptly ends its operational lifecycle. Since existing parameter mon-
itoring systems for data acquisition in Nigeria has no smart way of 
accounting for the health status of the design components during active 
operation and fails to schedule routine maintenance based on analytic 
reports, another reliability optimisation is now introduced in Stream-
Robots to minimise orphan node failures as a result of non-derived 
system visibility.

In this section, robust monitoring and prediction systems based on 
a machine learning (ML) engine are introduced. This is used to achieve 
real-time monitoring of each StreamRobot deployment. In this case, 
the software-defined networking machine learning (SDN-ML) scheme 
is deployed, as shown in Fig. 15. With SDN-ML, smart network pro-
grammability is used to speed up management and data manipulation 
in StreamRobot networks. This was used to separate the data plane from 
the control plane. The data plane decouples the forwarding hardware 
for fog agent decision-making (routing and control algorithms). Simi-
lar to the work [37], the authors streamlined the plane separation to 
achieve flexibility, programmability, and cost-economy from the fog to 
the cloud infrastructure as indicated in Fig. 14. By infusing SDN-ML in 
the StreamRobot network, configuration policies are now executed on 
the controller rather than executing from network devices.

From Fig. 14, the SDN-ML controllers offer scaled visibility of the 
StreamRobot’s topology, allowing for a unified configuration of the 
nodes from the management plane. The benefit of this optimal reli-
ability approach is to offer granular and resilient systems-of-systems 
management of StreamRobots’ large-scale deployment with a lower ad-
ministrative overhead. As shown in Fig. 14, the forwarding table uses 
the SDN engine to complete the data transmission forwarding, based 
on lookup table traffic matching. The fog OpenFlow protocol is used 
to push transactions between the StreamRobot SDNs and fog OpenFlow 
multilayer switches. From the hardware controller (discussed in Sec-
tion 8), the OpenFlow protocols comprise structured logic messages, 
exchanged among the controllers, and the switch in a secured connec-
tivity channel. At this stage, the SDN controller moves updates/adver-
tised logic messages with keys such as add, remove, modify, etc., from 
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the lookup forwarding tables. Every time an incoming signal gets into 
the SDN OpenFlow switch, the signal-packet details are checked against 
the forwarding table for concurrence. Matched validity results in for-
warding accent to the designated port. If this is invalid, a smart query 
request is to be sent to the SDN controller for advice updates, defin-
ing the exact location to forward the packetized signal. This is then 
achieved by allowing the SDN-controller to carry out quick topological 
database queries with deep learning and confirm new rules or notifica-
tion states.

The proposed StreamRobot SDN-ML architecture in Fig. 14 fuses its 
forwarding plane optimally. It depicts the OpenFlow engine meant for 
the core IoT wireless network. Above this layer is the smart control 
plane. This gives a clear picture of the data manipulation and route 
management supports. A highly secure channel interface, the core SDN, 
and sink-SDN controllers were introduced in the architecture. The rea-
son was to ensure security and optimal reliability. Finally, the manage-
ment layer provides the compute storage and real-time deterministic 
sensing domain, housing all fault-error predictions in the system-of-
systems network.

6. Deployment system testbed

A production deployment for the proposed StreamRobot SDN-ML 
comprises a Linux-based virtual server. The main data centre network 
executes the SDN design, having seven SDN controllers with their re-
spective fail-over supports. The OpenFlow switch is used as the forward-
ing engine (i.e., OpenFlow multiplayer vswitch (3) [37]. An Ubuntu 
server was used with a 16-port NIC Intel ethernet [38], mininet [39], 
and a floodlight-controller [40] being deployed as SDN components. 
This was upgraded to fit the proposed network demands for the Stream-
Robot. The matching constructs determine the data stream forwarding 
verified from the lookup table. The SDN floodlight was used to deter-
mine which device should receive forwarded packets.

The TelosB sensor nodes provide a critical wireless tunnel for the 
StreamRobot. Bluetooth LoRa RF provides sensor capability for a va-
riety of readings. The TelosB IoT wireless network works with the 
SDN controller. While the SDN sink-node forms the SDN controller, the 
other SDNs provide an OpenFlow forwarding engine. This article de-
pends on the modified SDN algorithm [37]. This was used to achieve 
StreamRobot communication seamlessly (cf. Fig. 14). The system setup 
also has both virtualised and StreamRobot hardware prototypes em-
ployed to achieve the deployment. The virtualised domain supplies the 
baseline network with the smart SDN and OpenFlow switches. TelosB 
nodes for various sensing attributes are used to measure all the phys-
ical parameters as well as to trigger notifications on the application 
management plane via north- and southbound APIs. First, the physical 
variables were profiled on the analytic dashboards. These nodes capture 
analogue variables, mapped via signal conditioners into the Arduino 
UNO microcontroller. This processes the analogue-to-digital conversion 
while activating the LoRa module for data transmission. For failure 
predictions on the StreamRobot and the network conditions, this work 
introduced a reliability fault predict agent, leveraging past TelosB nodes 
historical datasets. Section 8 discusses the hardware proof of concept.

7. StreamRobot fog detection cloud predictive machine learning 
model (FD-CPMLM)

7.1. FD-CPMLM-MSE analysis

In this section, FD-CPMLM was introduced in Fig. 15 to train the ac-
curacy of the StreamRobot’s predictions. This is also called enhanced 
neural discriminant analysis (ENDA), based on SDN intelligence propa-
gation (i.e., OpenFlow-SDN). In this case, the number of hidden neurons 
chosen is based on the mean square error (MSE) and regression (𝑅). The 
prediction model design is the neural-based training data classification 
for a StreamRobot’s IoT datasets. Ten neurons were chosen to design 
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Table 2. Neural classification tuning parameters.

Neural Specification Specification Values

Network type Predictive neural controller

Number of samples 6,000

Hidden layer 10

Sampling time 20 sec

Sampling interval 0.2

Plant input/output 2

Training samples 6,000

Training epochs 200

Training function Trainlm

Control weighing factor (𝑝) 0.00229

Search parameter 0.001

Control horizon (N2) 2

Cost horizon 2

Reliability coefficient 1

the network prediction model due to the number of data complexity in-
volved. In evaluating a model’s performance, error measurements were 
considered. The MSE refers to the error that is to be minimised to realise 
an acceptable output from the artificial neural network (ANN). When 
the MSE between two consecutive epochs is less than the minimum er-
ror that is specified, then the training stops. Essentially, the training also 
stops when the validation resolves that overfitting occurs. The MSE also 
determines how well the network output fits the desired output. The 𝑅-
value is considered, as it measures the correlation between outputs and 
targets. An 𝑅-value close to 1 means a close relation, while the reverse 
indicates a random relation. A comparison of the MSE and 𝑅-values for 
all numbers of nodes was carried out. The lowest MSE value was se-
lected as the optimum number of nodes in the hidden layer, and also 
the 𝑅-value, which is the highest. MATLAB 17 is the multi-paradigm 
numerical computing environment employed in this regard. It has a 
network fitting tool referred to as NFTOOL used for solving data fitting 
problems. It maps a data set of numeric inputs and a set of numeric tar-
gets. Table 2 shows the tuning parameters for the predictive training 
classifications.

Fig. 15 shows a typical NN model with multiple hidden layers. The 
major consideration in computing the error level in the StreamRobot 
prediction model, including testing reliability of systems-of-systems 
prediction states, is the already mentioned mean square error (MSE) 
and root-mean-square error (RMSE). These represent the objective-cost 
function in the StreamRobot.

Essentially, the smaller the objective cost function in the system, 
the more reliable its fault prediction analytics becomes. Eq. (19) and 
Eq. (20) are used to express the MSE and RMSE in the proposed system. 
The differentials in both equations allow RMSE to give more computa-
tional weights to huge errors. This is certainly reasonable in the instance 
of unacceptable errors predicted [37].

Obj(𝑘1, 𝑘2, 𝑘3, 𝑘4…… .𝑘𝑛+1) =
1
𝑛

𝑛∑
𝑛=1

(𝑅𝐿Pred −𝑅𝐿targ)2 (19)

Obj(𝑘1, 𝑘2, 𝑘3, 𝑘4…… .𝑘𝑛+1) =

√√√√1
𝑛

𝑛∑
𝑛=1

(𝑅𝐿Pred −𝑅𝐿targ)2 (20)

From Eq. (19) and Eq. (20), the system is routinely trained in a repeti-
tive fashion, accommodating new events on an hourly basis.

With the backpropagation model [41], cost-effective retraining is 
achieved in the SDN-ML/FD-CPMLM. The baseline MSE estimated refer-
ence used is 7.6 ∗ 10−3 [42]. After using the deployed machine learning 
model (cf. Fig. 15), it was observed that it provides efficient accuracy 
in all of its predictions with similarity patterns in respect of the mea-
sured variables. This monitors the entire system status. In this case, 
a prediction status profile (PSP) was assumed as a significant tool for 
determining the operational health state of the StreamRobot. Added 
to that, the PSP is considered to be significant on the baseline scales 
of 0 to 1 where < 0 denotes ‘no serious status’ and 1 denotes a ‘high 
12
Fig. 16. Machine predictive model with slow rate data streams.

Fig. 17. FD-CPMLM/predictive model (SDN) with more accurate detection.

health condition’ without orphan nodes. The fuzzy states between 0 
and 1 are denoted as the operational conditions of the SDN-powered 
StreamRobot. By mapping the TelosB sensor data streams into a sigmoid 
function, the optimal reliability of the StreamRobots can be deduced. 
Take 𝑋𝑖 to denote the PSP of a TelosB sensor node. The PSP for mul-
tivariable inputs is now given as a typical logistic regression model in 
Eq. (21) [37]:

SI = 1
1 + 𝑒−

∑𝑛
𝑖=1(𝛽𝑋𝑖 )

× 100% (21)

When 𝛽 denotes the computational weight effect of each IoT node 
variable, this typically ranges between 1 and 10. Fig. 16 illustrates a 
predictive machine model with slow rate data streams for a four-input 
sample over 200 simulation cycles. For the four input samples, the mean 
square error is between 0 and 0.5. The classified neural output shows 
no significant moving trend – hence a very small error was detected. It 
shows that a machine predictive model (OpenFlow-SDN) in which the 
four input samples have a mean square error, is between −0.5 and 1. 
The classified neural output shows a significant moving trend – hence 
some error states were detected. Fig. 17 shows a composite machine 
predictive SDN with improved detection. In this case, the mean square 
error is between −1 and 1. Similarly, the classified neural output shows 
a significant moving trend – hence internal state errors were detected.

Fig. 18 shows the completed StreamRobot schedule training data 
validation, using a SDN data mining predictive controller. To obtain the 
training residual of 0.19422, the target (T) must approximately corre-
spond to the predictive output (Y) i.e., 𝑌 → 𝑇 . Hence, in the validation 
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Fig. 18. StreamRobot SDN training data validation with a data mining predic-
tive controller.

Fig. 19. StreamRobot SDN test data validation using a data mining predictive 
controller.

Fig. 20. Complete StreamRobot training data validation (FD-CPMLM).

plot of the training residual at 0.16013, the target completely approx-
imates the predictive output 𝑇 (22) → 𝑌 (22). Additionally, in Fig. 18, a 
complete StreamRobot test data validation using a data mining predic-
tive controller, is demonstrated. For the test residual (R = 0.18492), 
the target (T = 22.5) linearly approximated the predictive output (Y =
22.5). Similarly, in Fig. 19, for the validated test residual, R = 0.10523. 
Here, the validated target (T = 23) has linearly approximated the pre-
dictive output (Y = 23). Fig. 20 shows the complete streamRobot train-
ing data validation (FD-CPMLM) as discussed above. It illustrates the 
regression plot of the training, which shows the relation existing be-
tween the outputs of the network and the targets. Essentially, the four 
plots represent the training, validation, testing, and general data for the 
model. The dashed line in each plot represents the targets or perfect 
result-outputs. The solid line represents the best fit linear regression 
line between the outputs and targets.

Fig. 20 illustrates the StreamRobot data mining predictive controller 
(FD-CPMLM) MSE validation. As shown in Fig. 21, the dotted path 
13
shows the best path. The best validation performance is experienced 
in which the dotted horizontal line and the dotted vertical line inter-
sects. This was achieved after six iterations. The performance stopped 
increasing at this point, and the training was stopped. For this model, 
the best validation performance was observed at epoch 1 without fur-
ther increase, so the training was stopped at the eighth epoch. It was 
observed that out of the 14 epochs for training, test, and best residuals, 
the best validation performance was obtained at the eighth epoch, at 
1.7562 MSR error. The significance of these results is that the proposed 
system offers a very reliable/accurate region of failure/error classifi-
cation. From these results, it is clear that the established data mining 
predictive controller has 1.7562 MSE for the discriminant function’s 
0.00229 critical value (threshold). This makes it difficult to have or-
phan nodes.

7.2. FD-CPMLM-MSE validation and testing

In this section, the performance evaluation of selected identified ma-
chining learning models is carried out. The idea is to discover the most 
optimal model that is accurate, consistent, and reliable in a Stream-
Robot. In this regard, three reliability optimisation schemes were stud-
ied for error/failure detection, namely decision tree (DT) [43, 44], lo-
gistic regression (LR) [45], and the deployed SDN scheme (i.e., ENDA).

Fig. 22 shows the validation plots for data clustering mean square 
latencies for the three optimisation algorithms. It was observed that 
three algorithms, namely decision tree, logistic regression, and SDN-
ENDA (proposed) gave a latency hit-clustering of 40.00%, 33.33%, and 
26.67% respectively, for the predictive fog model.

Fig. 23 shows the StreamRobot’s linear predictive scalability be-
haviour of the selected algorithms on the network plane. These al-
gorithms vary significantly in predictive scalability, especially as data 
samples are increased. These scalable algorithms, namely decision tree, 
logistic regression, and enhanced neural discriminant analysis (pro-
posed) (ND) offer a clustering scalability of 30.12%, 33.73%, and 
36.15% respectively.

From the analysis so far, it is obvious that the optimal SDN com-
putational strategy (i.e., SDN-ENDA) offers a better prediction of errors 
than existing decision trees and regression schemes. However, identify-
ing the proper attributes and mapping exact thresholds may even offer 
more precise results.

8. Experimental hardware prototype

Fig. 14 depicts the systems architecture powered by an optimal SDN 
packet flow engine. The integral part of the network is denoted as 
the fog cloud. This has multiplexed-multipath route connections driven 
by the SDN controllers, which activate and enforce off-taker forward-
ing engines to fix recurring query requests. All the location-based SDN 
controllers are linked via cascaded SDN with OpenFlow switches. This 
depends on TelosB IoT sensor data streams to the major SDN controller 
deployed at the cloud edge. The StreamRobot experimental cloud is the 
Linux-based virtualised hypervisor machine. In practical deployment, 
mininet and floodlight controllers are the SDN controller implemen-
tation agents. At the open vSwitch engine, the rule-base was deployed 
fully. The proof of concept for the systems-of-systems is presented at the 
fog control plane. Automatic encasement deployment for the Stream-
Robot gate is discussed below, as depicted in Figs. 24 to 26. This 
addresses the disaster issues in the COVID-19 incident response con-
cerns in Nigeria and other African countries. The StreamRobot has the 
following specifications as depicted in Table 3.

In the deployment context, a facial recognition system powered by 
a deep learning neural convolutional script agent, coordinates the ac-
cess control to the StreamRobot gate (Fig. 25). This is integrated with 
the temperature screening function. This quickly takes a skin-surface 
temperature and uploads abnormal temperature events to the network 
operating centre orchestrated in the private cloud network operating 
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Fig. 21. Data mining predictive controller (FD-CPMLM) MSE validation.

Fig. 22. Validation plots for data clustering latency.

Table 3. Features of the StreamRobot prototype.

StreamRobot gate features Parametric values

Disinfection scheme Aerosol-vent sprayer methods

Disinfectant molecular size when applied 0,1-0, 3-0,5 microns

Surface retention time after application 6 hours

Internal tank on full state 40 litres

Number of the points that apply disinfectant to the surface nozzle 12 pcs

Nozzle type Aluminium

Nozzle angle 80 degrees/fan

Automation Digital control

Tank internal capacity 75 litres

Pressure pump 35 bar

Main flow pump 1 litre/minute

Voltage 220-230v/60 Hhz

Device dimension (cm) E: 130x180x220 cm

Weight 120 kg

Sensors (distance, tank capacity, temperature, oxygen level, etc.) Default/Enabled
14
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Fig. 23. Validation plots for data clustering latency.
Fig. 24. a) StreamRobot gate face camera mode without face mask; b) Face-
mask detection mode; c) StreamRobot gate deep learning scan for final verifi-
cation to fog-cloud agents; and d) StreamRobot temperature mode.

centre (NOC). The StreamRobot deployment provides support for the 
Vanadium Oxide uncooled sensor that measures the target tempera-
ture range: 30 ◦C to 45 ◦C (86 ◦C-113 ◦C); accuracy: 0.1 ◦C; deviation: 
±0.53 ◦C; recognition distance: 0.3 to 1.8 metre. The camera resolution 
is 120*160, with a framerate of 25fps and 2MP dual-lens. At deploy-
ment, the fast temperature measurement mode detects faces and takes 
temperature readings without identity authentication (Fig. 24).

However, multiple authentication modes are supported, such as card 
and temperature, face and temperature, card and face, and temperature. 
Another feature introduced is the face mask-wearing alert, foglet agent. 
In this case, the moment the face-recognition face module fails to iden-
tify the face mask, the device IoT voice reminder is activated. Fig. 26
shows the entry, standstill, and verification modes upon receiving con-
trol commands from the StreamRobot front-end depicted in Figs. 1 and 
14.
15
Fig. 25. a) StreamRobot gate face camera mode without face mask; b) Face-
mask detection mode; c) StreamRobot gate deep learning scan for final verifi-
cation to fog-cloud agents; and d) StreamRobot temperature mode.

Similarly, the authentication and attendance are flagged as valid, 
once the facial recognition engine verifies the captures. Forced mask 
alerting wearing alert can occur. In this case, if the recognising face 
does not wear a mask, the device prompts the IoT voice reminder. At 
the same time, the authentication or attendance will fail. Furthermore, 
the display temperature measurements are captured on the authentical 
page (cf. Fig. 25a). For accurate temperature measurement, the sys-
tem is powered on for 90 minutes for warm-power-up. A voice prompt 
is triggered to indicate an abnormal temperature reading. The system 
works in both indoor and outdoor environments.

As shown in Fig. 24, the face recognition duration is less than 0.2 
second per user. The face accuracy rate is ≥ 99%, with over 6,000 to 
50,000 face capacity. The card capacity is 6,000 to 50,000 and can 
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Fig. 26. a) StreamRobot gate entry mode; b) standstill mode; and c) final veri-
fication to fog-cloud agents.

handle an event capacity of 100,000 to 200,000 event capacity. The 
facial height for image recognition is between 1.4 and 1.9 metres. By 
default, the system supports over 6 attendance status, including check-
in, check-out, break-in, break-out, overtime-in, overtime-out. At a high 
field programmable controller auto-synchronisation clock, the watch-
dog design and tamper functions are enabled. The audio prompt for 
authentication results is enabled for errors (cf. Fig. 3). The system con-
nects to an external access control unit via a bluetooth radio and fog 
radio frequency of 2.4 GHz at 1 Mbps data rate. From the deployment, 
datasets are imported or exported from the StreamRobot via the foglets 
into the private cloud NOC. The StreamRobot’s gate chamber uses its 
configurable status (open/close) when detecting abnormal temperature 
or orphan node problems. The front end equally displays the informa-
tion via the TCP/IP communication APIs and stores it on its internal 
memory for next reference.

In Fig. 27, the StreamRobot SDN IoT bode prototype is depicted. 
This is constructed with a customised IoT core, programmed with SDN 
constellation scripts. The prototype hardware module is based on an 
Arduino board working as a programmable microcontroller device with 
SDN supports. The module has various sensors such as temperature, 
humidity, proximity distance sensor, humidity, and tank capacity. The 
TelosB sensor device-nodes are mapped with an OpenFlow orchestra-
tor, which interacts with the terminal SDN controller, leveraging the 
long-range network connectivity LoRa network. This fog gateway SDN 
supports various heterogenous transactions and handles all sink-SDN 
controllers that gather sensor datasets meant for the forwarding aggre-
gation to the cloud sink NoC. Immediately the data stream is processed 
and computed, and these are polled into the prediction dashboard for 
prediction analytics on cyber-physical real-timed sensed datasets. With 
reliable predictions, failure modes or errors can be identified in the de-
ployed StreamRobot whose encasement gates are shown in Figs. 25 and 
26 respectively.

This work has shown that with the reliability optimisation technique 
in the StreamRobot, it is feasible to predict and even analyse critical re-
tention profiles from the global trained datasets. The SDN intelligence 
fully achieves this capability and eliminates the orphan node problem. 
The robot has multiple arrays of sensors and can be deployed in vari-
ous scenarios, like enterprises, stations, residential buildings, factories, 
schools, hospitals, campuses, etc.

The developed intelligent service-care robots will benefit mission-
critical sectors such as healthcare systems [46], transportation, man-
ufacturing, and environmental applications. For instance, the system 
can be deployed as a smart surveillance model for predictive-early 
detection/notification of community-induced epidemics (SSMPEDCIE). 
16
Fig. 27. OpenFlow SDN IoT substrate prototype.

The practical significance is that the system offers a predictive early 
warning, especially for strange/unusual health status conditions in data-
aggregated captures. Such clinical (structured) and nonclinical (un-
structured) data information can give insights to perceived syndrome 
or unconventional health updates. Other crisis areas include hospital 
sanitising, drug deliveries, and frontline healthcare workers’ support to 
mitigate a COVID-19 exposure.

In summary, recent studies have justified the significance of ISCR, 
especially in collaborative sensing robots (cobots) [47, 48, 49, 50]. 
Other new areas include IoT-telemedicine robots [51], service robots 
[52], companion cloud-based robots [53], telepresence robots [54], so-
cial care geriatric robots [55], human-care robots [56, 57], telerobotics 
[58], and social assistive robots [59, 60]. These works offer greater 
potential for the internet of medical robots (IoMR). The adaptation of 
deep learning and unsupervised machine learning can create a huge 
computational workload for the edge controllers. Therefore, lightweight 
computation using dockers/containers at the edge appears preferable 
for ISCRs using LS-ODCI API and SDN.

In this article, LS-ODCI API offers a lightweight approach to pro-
cessing ISCR wireless parameters, and draws less system resources in 
terms of computational complexity (space and time). On the other hand, 
the SDN offers a robust technique for a robotic network management 
and logically supports dynamic programmability and configurability, 
thereby improving system performance. It supplies a better approach 
towards monitoring networks, unlike other schemes that run on static 
architecture of traditional robotic network designs. When deployed on a 
robot to centrally manage all the traffic processes, this disassociates the 
wireless network forwarding process (data plane) from the routing pro-
cess (control plane). The control plane is the brainbox of the ISCR-SDN. 
The only issue is that of scalability and elasticity within the OpenFlow 
remote communication network.

9. Conclusion

In this article, the physical design and experimentation of a Stream-
Robot have been carried out using reliability optimisation techniques. 
Unlike exiting service care robots, the proposed StreamRobot uses LS-
ODCI and SDN to address reliable data transmission gaps in the liter-
ature. It achieved link resilience and log normality distribution with 
ORTM. LS-ODCI with ORTM handled performance issues relating to IP 
enhancement probability and standard deviation effects of edge nodes 
in the TelosB network field as a link connectivity scheme. Additionally, 
an investigation into the LND feasibility of a StreamRobot to enhance 
the connectivity concerns was discussed. Experiments were conducted 
using a real-world testbed. Added to that, an analysis into the use-case 
scenario (accurate data streams are seamlessly delivered from the IoT 
nodes to the sink servers) was carried out. The work analysed sensor 
nodes’ deployment parameters such as LQI, RSSI, throughput, and en-
ergy consumption lifespan for sustained data stream transactions. An 
investigation into the connectivity scheme in respect of an efficient 
battery/energy consumption is considered. A satisfactory LQI, RSSI, 



K.C. Okafor and O.M. Longe Heliyon 8 (2022) e09634
and transmission throughput for a limited number of TelosB nodes 
in the StreamRobot were also observed. The work showed that a few 
selected metrics presented a normality distribution for operational effi-
ciency with the IoT node placement distances. A smart SDN IoT engine 
was introduced to monitor errors and orphan node issues in the de-
ployed environment. The customised controller programmability and 
its functional operations for the baseline and sink deployments were 
discussed. Using an intelligent SDN scheme, the IoT nodes were effi-
ciently managed in the StreamRobot. An implementation of the core 
testbed on a virtualised Linux-based NOC, having multiplexed path 
redundancy, was also realised. Using the MATLAB neural prediction 
tool, the prediction accuracy was achieved beside the Python scripting 
on the OpenFlow virtual switch. Further validation results provided a 
prediction for data clustering mean square latencies. Considering the 
three optimisation algorithms, it was observed that decision tree, logis-
tic regression, and SDN-ENDA (proposed) gave data streams latency as 
40.00%, 33.33%, and 26.67% respectively for the fog predictive model. 
For the StreamRobot’s linear predictive scalability behaviour of the 
selected algorithms on the network plane, these algorithms vary signif-
icantly, especially as data samples are increased. In this case, decision 
tree, logistic regression and SDN-ENDA (proposed) offer streams clus-
tering scalability as 30.12%, 33.73%, and 36.15% respectively. Various 
experimental tests were carried out to validate the hardware prototype, 
constructed with IoT-SDN sensors and controller modules. The obser-
vation is that the proposed reliability optimisation scheme eliminates 
the orphan node problem during data stream transmissions. Finally, the 
proposed reliability optimisation schemes offer low-cost overheads and 
eliminate orphan node conditions while providing a satisfactory real-
time management of the StreamRobot processes. Future work will fully 
investigate node-level optimisations, data stream error controls, and se-
curity constraints. Lastly, the impact of ORTM will be explored with 
other computational algorithms to improve connectivity in a very com-
plex deployment.
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[27] J. Milošević, Implementation of LT codes on TelosB platform, in: 2011 19th 
Telecommunications forum (TELFOR), Proc. of Papers, 2011, pp. 1632–1635.

[28] E. Schiller, E. Esati, S.R. Niya, B. Stiller, Blockchain on MSP430 with IEEE 802.15.4, 
in: IEEE 45th Conference on Local Computer Networks (LCN), 2020, pp. 345–348.

http://refhub.elsevier.com/S2405-8440(22)00922-7/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibC20AD4D76FE97759AA27A0C99BFF6710s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibC20AD4D76FE97759AA27A0C99BFF6710s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibC20AD4D76FE97759AA27A0C99BFF6710s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibC20AD4D76FE97759AA27A0C99BFF6710s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibC74D97B01EAE257E44AA9D5BADE97BAFs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibC74D97B01EAE257E44AA9D5BADE97BAFs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib6F4922F45568161A8CDF4AD2299F6D23s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib6F4922F45568161A8CDF4AD2299F6D23s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib98F13708210194C475687BE6106A3B84s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib98F13708210194C475687BE6106A3B84s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib98F13708210194C475687BE6106A3B84s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibB6D767D2F8ED5D21A44B0E5886680CB9s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibB6D767D2F8ED5D21A44B0E5886680CB9s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibB6D767D2F8ED5D21A44B0E5886680CB9s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib1FF1DE774005F8DA13F42943881C655Fs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib1FF1DE774005F8DA13F42943881C655Fs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib1FF1DE774005F8DA13F42943881C655Fs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib8E296A067A37563370DED05F5A3BF3ECs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib8E296A067A37563370DED05F5A3BF3ECs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib8E296A067A37563370DED05F5A3BF3ECs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib4E732CED3463D06DE0CA9A15B6153677s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib4E732CED3463D06DE0CA9A15B6153677s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib02E74F10E0327AD868D138F2B4FDD6F0s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib02E74F10E0327AD868D138F2B4FDD6F0s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib33E75FF09DD601BBE69F351039152189s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib33E75FF09DD601BBE69F351039152189s1


K.C. Okafor and O.M. Longe Heliyon 8 (2022) e09634
[29] A. Makhoul, H. Harb, Data reduction in sensor networks: performance evaluation in 
a real environment, IEEE Embed. Syst. Lett. 9 (4) (Dec. 2017) 101–104.

[30] M. Rausand, A. Hsyland, System Reliability Theory Models, Statistical Methods, and 
Applications, 2nd edition, John Wiley & Sons, Hoboken, 2004.

[31] K.S. Senevirathna, L. Samaranayake, IPv6 multi-homing with structured CIDR, 
in: 6th International Conference on Industrial and Information Systems, 2011, 
pp. 453–456.

[32] C. Lin, C. Hsu, S. Hsieh, A multi-index hybrid trie for lookup and updates, IEEE 
Trans. Parallel Distrib. Syst. 25 (10) (2014) 2486–2498.

[33] M.A. Imtiaz, D. Starobinski, A. Trachtenberg, Investigating orphan transactions in 
the bitcoin network, IEEE Trans. Netw. Serv. Manag. 18 (2) (2021) 1718–1731.

[34] K.C. Okafor, G.C. Ononiwu, S. Goundar, V.C. Chijindu, C.C. Udeze, Towards complex 
dynamic fog network orchestration using embedded neural switch, Int. J. Comput. 
Appl. 43 (2) (2021) 91–108.

[35] A. Hussain, K. Zafar, A.R. Baig, Fog-centric IoT based framework for healthcare mon-
itoring, management and early warning system, IEEE Access 9 (2021) 74168–74179.

[36] T. Wu, P. Zhou, B. Wang, A. Li, X. Tang, Z. Xu, K. Chen, X. Ding, Joint traffic 
control and multi-channel reassignment for core backbone network in SDN-IoT: a 
multi-agent deep reinforcement learning approach, IEEE Trans. Netw. Sci. Eng. 8 (1) 
(2021) 231–245.

[37] A.K. Al Mhdawi, H.S. Al-Raweshidy, A smart optimization of fault diagnosis in elec-
trical grid using distributed software-defined IoT system, IEEE Syst. J. 14 (2) (June 
2020) 2780–2790.

[38] Ubuntu 14.04.5 LTS (Trusty Tahr), 2018 [Online]. Available: http://releases .
ubuntu .com /14 .04/. (Accessed 8 October 2014).

[39] Mininet, 2018 [Online]. Available: http://mininet .org/. (Accessed 18 July 2021).
[40] Floodlight Controller, 2018 [Online]. Available: http://www .projectfloodlight .org /

floodlight/. (Accessed 8 July 2021).
[41] J. Parab, M. Sequeira, M. Lanjewar, C. Pinto, G. Naik, Backpropagation neural 

network-based machine learning model for prediction of blood urea and glucose 
in CKD patients, IEEE J. Transl. Eng. Health Med. 9 (2021) 4900608.

[42] M.C. Mabel, E. Fernandez, Estimation of energy yield from wind farms using artifi-
cial neural networks, IEEE Trans. Energy Convers. 24 (2) (2009) 459–464.

[43] J. Wang, Y. Qian, F. Li, J. Liang, W. Ding, Fusing fuzzy monotonic decision trees, 
IEEE Trans. Fuzzy Syst. 28 (5) (May 2020) 887–900.

[44] L.C.M.M. Fontoura, H.W. de Castro Lins, A.S. Bertuleza, A.G. D’assunção, A.G. Neto, 
Synthesis of multiband frequency selective surfaces using machine learning with the 
decision tree algorithm, IEEE Access 9 (2021) 85785–85794.

[45] L. Wang, T. Wang, X. Hu, Logistic regression region weighting for weakly supervised 
object localization, IEEE Access 7 (2019) 118411–118421.

[46] R. Saher, M. Anjum, Role of technology in COVID-19 pandemic, in: Researches and 
Applications of Artificial Intelligence to Mitigate Pandemics, 2021, pp. 109–138.

[47] G. Pang, G. Yang, Z. Pang, Review of robot skin: a potential enabler for safe collab-
oration, immersive teleoperation, and affective interaction of future collaborative 
robots, IEEE Trans. Med. Robot. Bionics 3 (3) (2021) 681–700.

[48] Z. Ye, G. Pang, K. Xu, Z. Hou, H. Lv, Y. Shen, G. Yang, Soft robot skin with confor-
mal adaptability for on-body tactile perception of collaborative robots, IEEE Robot. 
Autom. Lett. (2022) 1–8.

[49] S. Bharti, A. McGibney, CoRoL: a reliable framework for computation offloading in 
collaborative robots, IEEE Int. Things J. (2022) 1–13.

[50] H. Yu, Z. Zhou, Optimization of IoT-based artificial intelligence assisted 
telemedicine health analysis system, IEEE Access 9 (2021) 85034–85048.

[51] I. El Makrini, G. Mathijssen, S. Verhaegen, T. Verstraten, B. Vanderborght, A vir-
tual element-based postural optimization method for improved ergonomics during 
human-robot collaboration, IEEE Trans. Autom. Sci. Eng. (2022) 1–12.

[52] M. Tröbinger, C. Jähne, Z. Qu, J. Elsner, A. Reindl, S. Getz, T. Goll, B. Loinger, T. 
Loibl, C. Kugler, C. Calafell, M. Sabaghian, T. Ende, D. Wahrmann, S. Parusel, S. 
Haddadin, S. Haddadin, Introducing GARMI – a service robotics platform to sup-
port the elderly at home: design philosophy, system overview and first results, IEEE 
Robot. Autom. Lett. 6 (3) (2021) 5857–5864.

[53] Z. Su, F. Liang, H.M. Do, A. Bishop, B. Carlson, W. Sheng, Conversation-based med-
ication management system for older adults using a companion robot and cloud, 
IEEE Robot. Autom. Lett. 6 (2) (2021) 2698–2705.

[54] M. Wang, C. Pan, P.K. Ray, Technology entrepreneurship in developing countries: 
role of telepresence robots in healthcare, IEEE Eng. Manag. Rev. 49 (1) (2021) 
20–26.

[55] H. Do Manh, W. Sheng, E.E. Harrington, A.J. Bishop, Clinical screening interview 
using a social robot for geriatric care, IEEE Trans. Autom. Sci. Eng. 18 (July 2021) 
1229–1242.

[56] C.R.d. Cos, D.V. Dimarogonas, Adaptive cooperative control for human-robot load 
manipulation, IEEE Robot. Autom. Lett. 7 (2) (April 2022) 5623–5630.

[57] W. He, C. Xue, X. Yu, Z. Li, C. Yang, Admittance-based controller design for physical 
human – robot interaction in the constrained task space, IEEE Trans. Autom. Sci. 
Eng. 17 (4) (2020) 1937–1949.

[58] H. Zhou, G. Yang, H. Lv, X. Huang, H. Yang, Z. Pang, IoT-enabled dual-arm motion 
capture and mapping for telerobotics in home care, IEEE J. Biomed. Health Inform. 
24 (6) (2020) 1541–1549.

[59] E. Martinez-Martin, M. Cazorla, A socially assistive robot for elderly exercise pro-
motion, IEEE Access 7 (2019) 75515–75529.

[60] Y.-H. Byeon, D. Kim, J. Lee, K.-C. Kwak, Ensemble three-stream RGB-S deep neu-
ral network for human behavior recognition under intelligent home service robot 
environments, IEEE Access 9 (2021) 73240–73250.
18

http://refhub.elsevier.com/S2405-8440(22)00922-7/bib6EA9AB1BAA0EFB9E19094440C317E21Bs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib6EA9AB1BAA0EFB9E19094440C317E21Bs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib34173CB38F07F89DDBEBC2AC9128303Fs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib34173CB38F07F89DDBEBC2AC9128303Fs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibC16A5320FA475530D9583C34FD356EF5s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibC16A5320FA475530D9583C34FD356EF5s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibC16A5320FA475530D9583C34FD356EF5s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib6364D3F0F495B6AB9DCF8D3B5C6E0B01s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib6364D3F0F495B6AB9DCF8D3B5C6E0B01s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib182BE0C5CDCD5072BB1864CDEE4D3D6Es1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib182BE0C5CDCD5072BB1864CDEE4D3D6Es1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibE369853DF766FA44E1ED0FF613F563BDs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibE369853DF766FA44E1ED0FF613F563BDs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibE369853DF766FA44E1ED0FF613F563BDs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib1C383CD30B7C298AB50293ADFECB7B18s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib1C383CD30B7C298AB50293ADFECB7B18s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib19CA14E7EA6328A42E0EB13D585E4C22s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib19CA14E7EA6328A42E0EB13D585E4C22s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib19CA14E7EA6328A42E0EB13D585E4C22s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib19CA14E7EA6328A42E0EB13D585E4C22s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibA5BFC9E07964F8DDDEB95FC584CD965Ds1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibA5BFC9E07964F8DDDEB95FC584CD965Ds1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibA5BFC9E07964F8DDDEB95FC584CD965Ds1
http://releases.ubuntu.com/14.04/
http://releases.ubuntu.com/14.04/
http://mininet.org/
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib3416A75F4CEA9109507CACD8E2F2AEFCs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib3416A75F4CEA9109507CACD8E2F2AEFCs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib3416A75F4CEA9109507CACD8E2F2AEFCs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibA1D0C6E83F027327D8461063F4AC58A6s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibA1D0C6E83F027327D8461063F4AC58A6s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib17E62166FC8586DFA4D1BC0E1742C08Bs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib17E62166FC8586DFA4D1BC0E1742C08Bs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibF7177163C833DFF4B38FC8D2872F1EC6s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibF7177163C833DFF4B38FC8D2872F1EC6s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibF7177163C833DFF4B38FC8D2872F1EC6s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib6C8349CC7260AE62E3B1396831A8398Fs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib6C8349CC7260AE62E3B1396831A8398Fs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibD9D4F495E875A2E075A1A4A6E1B9770Fs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibD9D4F495E875A2E075A1A4A6E1B9770Fs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib67C6A1E7CE56D3D6FA748AB6D9AF3FD7s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib67C6A1E7CE56D3D6FA748AB6D9AF3FD7s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib67C6A1E7CE56D3D6FA748AB6D9AF3FD7s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib642E92EFB79421734881B53E1E1B18B6s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib642E92EFB79421734881B53E1E1B18B6s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib642E92EFB79421734881B53E1E1B18B6s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibF457C545A9DED88F18ECEE47145A72C0s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibF457C545A9DED88F18ECEE47145A72C0s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibC0C7C76D30BD3DCAEFC96F40275BDC0As1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibC0C7C76D30BD3DCAEFC96F40275BDC0As1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib2838023A778DFAECDC212708F721B788s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib2838023A778DFAECDC212708F721B788s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib2838023A778DFAECDC212708F721B788s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib9A1158154DFA42CADDBD0694A4E9BDC8s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib9A1158154DFA42CADDBD0694A4E9BDC8s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib9A1158154DFA42CADDBD0694A4E9BDC8s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib9A1158154DFA42CADDBD0694A4E9BDC8s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib9A1158154DFA42CADDBD0694A4E9BDC8s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibD82C8D1619AD8176D665453CFB2E55F0s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibD82C8D1619AD8176D665453CFB2E55F0s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibD82C8D1619AD8176D665453CFB2E55F0s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibA684ECEEE76FC522773286A895BC8436s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibA684ECEEE76FC522773286A895BC8436s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibA684ECEEE76FC522773286A895BC8436s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibB53B3A3D6AB90CE0268229151C9BDE11s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibB53B3A3D6AB90CE0268229151C9BDE11s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bibB53B3A3D6AB90CE0268229151C9BDE11s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib9F61408E3AFB633E50CDF1B20DE6F466s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib9F61408E3AFB633E50CDF1B20DE6F466s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib72B32A1F754BA1C09B3695E0CB6CDE7Fs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib72B32A1F754BA1C09B3695E0CB6CDE7Fs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib72B32A1F754BA1C09B3695E0CB6CDE7Fs1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib66F041E16A60928B05A7E228A89C3799s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib66F041E16A60928B05A7E228A89C3799s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib66F041E16A60928B05A7E228A89C3799s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib093F65E080A295F8076B1C5722A46AA2s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib093F65E080A295F8076B1C5722A46AA2s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib072B030BA126B2F4B2374F342BE9ED44s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib072B030BA126B2F4B2374F342BE9ED44s1
http://refhub.elsevier.com/S2405-8440(22)00922-7/bib072B030BA126B2F4B2374F342BE9ED44s1

	Smart deployment of IoT-TelosB service care StreamRobot using software-defined reliability optimisation design
	1 Introduction
	2 Literature review
	2.1 Service robots
	2.2 System optimisation algorithms
	2.3 Research gaps

	3 Edge system model formulation
	3.1 Edge cluster log-normality distribution model
	3.2 StreamRobot reliability model
	3.3 StreamRobot equilibria and stability

	4 Field sensor node deployment
	4.1 TelosB testbed characterisation
	4.2 Optimal addressing scheme
	4.3 OutDoor testbed description
	4.4 Outdoor results analysis

	5 OpenFlow SDN integration architecture
	6 Deployment system testbed
	7 StreamRobot fog detection cloud predictive machine learning model (FD-CPMLM)
	7.1 FD-CPMLM-MSE analysis
	7.2 FD-CPMLM-MSE validation and testing

	8 Experimental hardware prototype
	9 Conclusion
	Declarations
	Author contribution statement
	Funding statement
	Data availability statement
	Declaration of interests statement
	Additional information

	Acknowledgements
	References


