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Summary
Objectives: With the explosive growth in availability of health 
data captured using non-traditional sources, the goal for this 
work was to evaluate the current biomedical literature on theory-
driven studies investigating approaches that leverage non-
traditional data in personalized medicine applications. 
Methods: We conducted a literature assessment guided by the 
personalized medicine unsolicited health information (pUHI) 
conceptual framework incorporating diffusion of innovations and 
task-technology fit theories. 
Results: The assessment provided an overview of the current 
literature and highlighted areas for future research. In particular, 
there is a need for: more research on the relationship between 
attributes of innovation and of societal structure on adoption; 
new study designs to enable flexible communication channels; 
more work to create and study approaches in healthcare settings; 
and more theory-driven studies with data-driven interventions.
Conclusion: This work introduces to an informatics audience 
an elaboration on personalized medicine implementation with 
non-traditional data sources by blending it with the pUHI con-
ceptual framework to help explain adoption. We highlight areas 
to pursue future theory-driven research on personalized medicine 
applications that leverage non-traditional data sources.
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1   Introduction
Personalized medicine is becoming more 
informed by non-genetic factors with the 
explosive growth in availability of health 
data captured using non-traditional sources 
such as online social networks (e.g., Twitter, 
online health forums) [1, 2], consumer health 
wearables, and medical devices (e.g., FitBit, 
smart phone apps) [3-5]. For personalized 
medicine applications, these health data are 
promising to complement genetics data in 
the development of novel algorithms and risk 
scores that provide a more complete view of 
patient health and wellness. This is particu-
larly true for complex polygenic diseases that 
are especially difficult to predict. For those 
diseases, combining multiple factors such as 
clinical, demographic, environmental, and 
genetic data can offer more precise risk pre-
dictions [6]. For example, genetic risk scores 
developed based solely on multiple contrib-
uting genetic variants leading to common 
conditions such as coronary heart disease 
[7], may be combined with more traditional 
factors (e.g., family history, conventional 
risk scores) including from non-traditional 
sources such as mobile devices to improve 
the accuracy of risk estimates. 

The success of emerging approaches 
combining genetic and non-genetic factors to 
advance personalized medicine will depend 
on our capacity to deploy tools that leverage 
non-traditional data sources in a timely man-
ner [8]. Mobile data capture has potential 
to augment traditional approaches such as 
questionnaires to collecting social factors 
(e.g., habits and preferences), high frequency 
data (e.g., movement) and unstructured 

data (e.g., online activity). Within clinical 
research, mobile devices are already increas-
ingly deployed to gather patient-reported 
outcomes and to associate behaviors with 
clinically informative biomarkers.

There are three areas where approaches 
that leverage multiple data types are having 
an impact on personalized medicine. First, 
healthy individuals are increasingly receiv-
ing health data (e.g., direct to consumer 
genetic testing) that indicate a risk for poor 
outcomes (e.g., diseases or adverse drug 
reactions). When health data collection is 
initiated outside of the clinical setting (“per-
son-generated data” [9, 10]), from a clini-
cian’s perspective they can be characterized 
as “unsolicited health information.” Health 
care providers will need to ensure that results 
from unsolicited health information are han-
dled prudently, by addressing the receipt of 
the results, workflow challenges, and liability 
issues. Second, combining data from multi-
ple sources has potential to provide a more 
complete view of the relationship between 
how health is managed (therapies, lifestyles, 
etc.) and health outcomes (response to ther-
apy, disease burden, etc.) when assessing risk 
compared to risk assessments accounting 
for a single data type alone [6, 11]. Solving 
the problem of integrating data from mul-
tiple sources in risk assessments will have 
a major impact on personalized medicine 
by providing a more complete assessment 
of individual risk for poor outcomes. Third, 
health assessments based on innovative tech-
nologies can lead to population samples that 
contain bias [12, 13] and that can contribute 
to misestimating health risks in those pop-
ulations (e.g., GWAS data for genetic risk 
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scores [14]). In order to minimize bias, data 
collection strategies that minimize over or 
under sampling of a given population (sam-
ple disproportionality), especially among 
racial and ethnic populations, are needed.

The success of personalized medicine 
depends on translational research of tools 
based on algorithms and risk scores, includ-
ing the study of dissemination and imple-
mentation with evidence-based genomic 
applications [15]. Traditional approaches to 
study algorithms and risk scores draw from 
data-driven research. Data-driven research 
[16] involves creating or obtaining sources 
of data relevant to assessments of health and 
risk; cleaning, extracting, and annotating 
data streams to prepare for analyses; inte-
grating, aggregating, and representing data 
to detect insights; analyzing and modeling 
data to place insights in context; and inter-
preting the insights to arrive at solutions. 
Traditional approaches fail, however, to 
assess the implementation and dissemination 
of those solutions with respect to healthcare 
settings. Implementation science is the study 
and application of methods to promote 
adoption of research findings into practice 
[17]. Dissemination science is the study of 
how the outputs of implementation science 
(i.e., evidence-based practices, programs, 
and policies) can be best communicated 
to potential adopters and implementers to 
produce effective results [18]. In order to 
evaluate implementation and dissemination 
of new and emerging tools that leverage 
non-traditional data sources in personalized 
medicine, theory-driven research is required. 
Theory-driven research [16] involves: 
deriving research questions from existing 
or extended theory; formulating hypotheses 
to address the questions; designing studies 
to minimize confounding effects; collecting 
data using appropriate instruments; and 
analyzing data to draw inferences.

The objective of this paper is to provide 
a review of what kinds of theory-driven 
analyses are being applied to study tools 
that use non-traditional data sources and 
their translation into personalized medi-
cine applications. In order to address this 
objective, we conducted a systematic and 
concept-centric review of the biomedical 
literature. We analyzed eight publications in 
terms of constructs from a conceptual frame-

work for technology adoption that we call 
the personalized medicine unsolicited health 
information (pUHI) framework. This allows 
us to understand and structure existing work, 
as well as to derive future research directions.

2   Personalized Medicine 
Unsolicited Health Information 
Conceptual Framework
With a focus on implementation and 
dissemination of personalized medicine 
solutions that use non-traditional data 
sources, different models can be drawn 
from to explain the adoption of information 
technology. Commonly used to assess tech-
nology in health care, are the Technology 
Acceptance Model (TAM) [19-21] and the 
Unified Theory of Acceptance and Use of 
Technology (UTAUT) [22, 23]. The previ-
ously used personalized medicine unsolic-
ited health information (pUHI) framework 
we developed [24] was used to guide the 
literature review. While other models solely 
focus on technology adoption, the pUHI 
framework draws from two theories that 
allow the investigation of both effective 
communication of health information and 
technology: diffusion of innovations (DOI) 
[25] and task-technology fit (TTF) [26] (see 
Figure 1). This framework was previously 
used to guide our study that explored the 
acceptance of electronic health record 
(EHR)-embedded clinical decision support 
to deliver pharmacogenomics information 
to physicians [24].

Diffusion of innovations [25] theory 
seeks to evaluate the rate of technology 
adoption using four key elements to help to 
explain the “Innovation-Decision Process”: 
innovation (a solution that leverages health 
data from non-traditional sources), com-
munication channels (processes enabled 
by the proposed solution), time (when the 
solution is adopted or rejected and the rate 
of adoption), and social system (individuals 
and groups involved in implementation 
and dissemination strategy decisions for 
a solution). TTF [26] theory suggests that 
task-technology fit is achieved by both the 
tasks the user performs and the character-

istics of the technology used. Fit, in turn, 
leads to utilization and performance impact.

Use of pUHI framework offers many 
advantages including the ability to identify 
how, when, and in whom important variables 
from DOI and TTF theories were measured; 
the ability to determine what potential 
sources of variance were evaluated and 
controlled for; and the ability to extract how 
and when solutions are successful. Further-
more, DOI and TTF complement each other. 
The goal for dissemination is broad-based 
adoption of an intervention, and as such, 
both diffusion and implementation factors 
are important. DOI captures dissemination 
factors including those relevant to the inno-
vation, adopter, social system, individual 
adoption-process, and diffusion system. TTF 
captures extent of, quality of, and individual 
responses to implementation. In addition, it 
has been highlighted that cultural differences 
have important implications for perceptions 
of TTF [27]. Whereas cultural perceptions 
are not explicitly part of TTF, communica-
tion channels and social system elements 
from DOI can capture those perceptions. 
For these reasons, we used the pUHI frame-
work to develop the search strategy for the 
biomedical literature review.

3   Methods
Our review is made of three phases. First, 
we retrieved publications from PubMed that 
were published between 2014 and 2018 to 
focus on recently developed and published 
efforts in the clinical and biomedical litera-
ture. The broad keywords and topics used for 
the search are displayed in Table 1. Keywords 
and MeSH terms related to non-traditional 
data sources focused on the data collection 
tool itself (e.g., the survey instrument), 
thus, we did not include platforms such as 
Twitter. The inclusion criteria for screening 
were as follows: mention of a personal data 
collection tool; English article; manuscript 
in peer-reviewed scientific journal; research 
article; and human participants. The exclusion 
criteria for full-text reviews were as follows: 
no study of a tool using non-traditional data; 
not theory-driven in relation to the use of a 
tool; and no genomic medicine application.
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Fig. 1   Personalized medicine unsolicited health information (pUHI) framework to interpret theory-driven studies on tools that use non-traditional data in personalized medicine applications, relative to innovation attributes, 
social system, communication channels, and task-technology fit of the technologies.

Table 1   Terms and filters used in the search.

Theory-driven 
research

Keywords: theory, 
construct.

AND

AND

Personalized medicine application

PubMed Medical Genetics Search 
Filter Categories[28]: diagnosis, 
differential diagnosis, clinical 
description, management, genetic 
counseling, molecular genetics, 
genetic testing.

AND

AND

Collection of non-traditional data source

Keywords and Mesh terms: telemedicine, telehealth, telesurveillance, social 
media, blogging, crowdsourcing, mobile applications, cell phones, handheld 
computers, geographic information systems, global positioning systems, mobile 
health, mHealth, eHealth, Facebook, online social network, social networking 
site, chat room, chat group, short message service, Web-based questionnaire, 
app, personal digital assistant, cell phone, cellphone, cellular phone, cellular 
telephone, mobile phone, mobile telephone, smart phone, smartphone, mobile 
phone, mobile device, wearable sensor, wearable device, wearable technology, 
surveys, questionnaires, momentary assessment, self report.
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Second, we coded the identified literature 
along six dimensions from the pUHI frame-
work (see Table 2): attributes of innovation, 
social system, communication channel, time, 
task characteristics, and technology charac-
teristics. We also included one additional 
dimension to capture the theory being used 
in the research. Last, we analyzed the liter-
ature by using a concept matrix to assess the 
current state of theory-driven analyses being 
applied to study tools that use non-traditional 
data sources and to derive directions for 
future studies.

4   Results
A total of 702 references were retrieved 
from the PubMed search and entered into the 
selection process. Results of the screening 
process are described in the Figure 2 flow 
diagram. First, after review of publication 
titles and abstracts, 430 publications were 
considered irrelevant and were excluded 
from further review. Publications were con-
sidered irrelevant according to our screening 
inclusion and exclusion criteria. Second, the 
full-texts of the remaining 272 publications 
were reviewed against the criteria (a study of 
a tool that used non-traditional data sources, 
the research was theory-driven in relation to 
the tool, and there was a personalized med-
icine application), which excluded another 
264 publications. One exception was that 
randomized controlled trials for which study 
participants were randomized to use of a 
technology was considered theory-driven 
in relation to the technology. Overall, the 
search of the literature identified eight arti-
cles that reported theory-driven research 
on the use of a technology or instrument 
that uses non-traditional data sources for a 
personalized medicine application.

A concept matrix was created to summa-
rize insights gained from the literature (Table 
3). In the following, we present the details of 
our analysis that led to the creation of Table 
3. With regard to the attributes of innovation, 
we considered Roger’s characteristics on 
the adoption of an innovation [25]: relative 
advantage, compatibility, complexity, trial-
ability, and observability of the innovation 
were described. For two of the articles [29, 

30] a description of attributes was the out-
come of the study, five of the articles [31-35] 
provided a general description of attributes, 
and one article [36] provided a reference to a 
description published elsewhere. Concerning 
the social system, all but one article [29] 
studied the influence of social system on 
outcomes. Among those articles, two articles 
[30, 32] studied social system in relation to 
adopting a tool. Communication channels 
represented among the eight studies were 
questionnaires [30, 34], telephone [33, 36], 
interactive presentation [31], pre-test coun-
seling [32], online risk calculator [35], and 

online discussion forum [29]. Time to tool 
adoption was not assessed for any of the 
reviewed articles. For two articles [30, 32], 
however, tool adoption was studied as a spe-
cific outcome. Task characteristics included 
tasks for tool use and were targeted to health-
care providers for one article [30], to patients 
for six articles [29, 31-33, 35, 36], and one 
article did not have a target end-user [34]. 
The healthcare provider task was to identify 
at-risk relatives [30]. Patient tasks included 
communicating risk to family members [31], 
making decisions around genetic testing and 
screening [32, 36], understanding genetic 

Table 2   Coding dimensions informed by theoretical domains from the pUHI framework.

Theoretical 
domain

Diffusion of 
innovations

Task-
Technology Fit

Other

Analysis categories

Attributes of innovation

Social system 

Communication channel

Time

Task characteristics (genomic 
medicine application)

Technology characteristics (non- 
traditional data collection approach)

Theory used

Characteristics within the categories

Relative advantage, compatibility, complexity, trialability, and 
observability of the innovation [25]

Socioeconomic characteristics, norms, expectations, or potential 
consequences of an innovation

Patient portal, cell phone, FitBit, blog, etc.

Speed of adoption

Genetic test ordering, cancer treatment planning, etc.

Genetic testing turn-around time, cancer treatment pre-visit 
education, etc.

Task-technology fit theory

Fig. 2   Flow diagram of the search strategy.

702 studies screened against title and abstract 

272 studies assessed for full-text eligibility 

8 studies included 

430 studies excluded 

264 studies excluded 
• 147  No study of use of personal data tool 

(e.g., survey) 
• 105  No theory/construct in relation to 

personal data tool (e.g., survey) 
• 12  No personalized medicine application 
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test results/assessments of risk [33], and 
making decisions around care coordination 
[29]. Technology characteristics included 
technology design characteristics of three 
tools that were informed by behavior and/
or communication theories [31, 33, 36]. 
Four tools were used to directly character-
ize personal health status [32, 34, 35] or 
the health status of relatives [30]. One tool 
enabled unstructured communication [29]. 
The theory-driven approaches used in the 
reviewed studies included randomized con-
trolled trials [31, 36], Normalization Pro-
cess Theory (NPT) [30], Multidimensional 
Measure of Informed Choice (MMIC) [32], 
Self-Regulation Model of Health Behavior 
(SRTHB) [33], Rasch Unidimensional Mea-
surement Model [34], Theory of Planned 
Behavior [35], and Planning Theory of 
Communication [29].

5   Discussion
The goal of this biomedical literature anal-
ysis was to examine the current state of 
theory-driven research on tools that collect 
and use non-traditional data in personalized 
medicine applications and to provide direc-
tion for future work. The PubMed search was 
limited to articles published between 2014 
and 2018 to focus on recently developed and 
published efforts. Nonetheless, there may 
be relevant publications before 2014 or in 
other databases (e.g., ACM digital library) 
that were missed. For example, our approach 
identified studies that use theory-driven 
approaches such as NPT, but we did not 
identify studies that used popular technology 
acceptance theories such as TAM. In order 
to confirm if a gap exists, a complementary 
survey of the literature might study published 
articles that specifically use technology 
acceptance theories to measure the adoption 
and use of personalized medicine applica-
tions more broadly (without the focus on 
collection and use of non-traditional data).

In addition, our search strategy did not 
identify some studies due to our focus on 
the direct application of theory to study the 
adoption of tools. For example, one effort 
of relevance that was missed is the NIH 
National Human Genome Research Institute 

(NHGRI)-funded Implementing GeNomics 
In pracTicE (IGNITE) Network that supports 
the development of strategies to incorporate 
genomic information into clinical care, and 
also the exploration of methods for effective 
implementation, diffusion, and sustainabil-
ity of those strategies in diverse clinical 
settings [37]. Through the Network, sites 
have adopted the Consolidated Framework 
for Implementation Research (CFIR) [38] to 
guide their evaluation of genomic medicine 
interventions and have identified common 
strategies to address implementation chal-
lenges [39, 40]. They do not assume specific 
relationships between individual constructs 
and outcomes so that commonalities and 
differences in implementation strategies 
across projects that have diverse outcomes 
can be identified. 

Another limitation of our approach is 
that there are some concepts relevant to 
adoption that may have been missed by the 
proposed pUHI framework. For example, 
while DOI theory provides several inno-
vation-related constructs that are relevant 
to healthcare technology adoption such as 
relative advantage and compatibility [41], 
trust is an important element of adopting 
personalized medicine applications that is 
not covered. Indeed, it is well-known that 
trust plays an important role in both adoption 
of healthcare technologies by clinicians (e.g., 
due to a perceived threat to their professional 
autonomy [42]) and by patients (e.g., due to 
privacy concerns [43]). Extensions of the 
pUHI framework should be considered to 
include trust as well as other factors as the 
role on end-user acceptance is clarified.

Overall, we found only eight publications 
that fit our criteria. Given our use of PubMed, 
this may indicate a lack of work published in 
biomedical journals that study the adoption 
of personalized medicine applications that 
use non-traditional data. This is not surpris-
ing given our targeted search and also that 
previous characterization of the scientific 
literature and federally funded grants found 
that the majority of genomic research falls 
within the translational research discovery 
phase (T0) and the phase where candidate 
genomic applications are characterized and 
developed (T1) [44]. Less than 2% of research 
falls within phase 2-4 research (T2-4) that 
attempts to translate genomic discovery into 

real-world settings and improve population 
health outcomes [45]. Furthermore, a recent 
systematic review of T2-4 research found that 
very few studies incorporated implementation 
science theoretical models [46]. Similarly, 
when assessing studies that evaluated IT-based 
applications in healthcare, most did not discuss 
a specific theory being applied [47].

In addition, the few articles that fit our 
criteria may also reflect a lack in the use of 
non-traditional data sources for personalized 
medicine research and practice. In order to 
enable personalized risk assessments from 
non-traditional data sources, there were sev-
eral challenges, largely due to the reliability 
of those data that should be overcome. Many 
potential sources for more data-driven appli-
cations (artificial intelligence and machine 
learning algorithms) were highly unstructured 
and had variable quality depending on the 
source (e.g., online health forums). Moreover, 
properly describing the environment context 
for such applications remains a challenge. 
Proposed solutions to this problem included 
incorporating the review of input data by 
domain experts given that those data can 
contain biases; conducing prospective clinical 
trials with diverse patient populations to help 
address potential racial bias due to the use of 
historical data; and continually calibrating 
models with human feedback [48].

We also found that while articles covered 
in this review had personalized medicine 
applications, the majority of the approaches 
did not involve the direct collection and use 
of genetic data. This is consistent with the 
view that collection of genetic data clinically 
is still inhibited by cost and availability of 
facilities required to handle the clinical 
genomic sequencing of the large number of 
patients needed to impact population-level 
risk modeling [49]. There are, however, sev-
eral large efforts that are studying the value 
of clinical genomics with other data types 
such as the NIH-funded All of Us program 
that is obtaining access to electronic health 
records and collecting personal genetic, life-
style, and environmental data to determine 
relationships to health and disease [50]. 

Based on our assessment, we propose 
four directions for future research (Table 4): 
a) We need more studies on the influence of 

innovation and of societal structure on the 
adoption of strategies that use non-tradi-
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tional data in personalized medicine appli-
cations. We found that few studies measure 
attributes of innovation at baseline. Accord-
ing to pUHI framework, such characteris-
tics influence how rapidly an innovation 
can be adopted. In addition, while the 
majority of studies we identified collected 
data on social system, only two studied 
social system in relation to adoption. 
Indeed, the adoption of technologies that 
collect and use non-traditional data sources 
for personalized medicine (e.g., FitBit for 
quantified self-tracking, social networks 
for physician Q&A) will be strongly 
influenced by social system (e.g., social 
value systems, status [e.g., socio-economic 
levels], cultural backgrounds, etc). As 
evidenced by others, such factors can lead 
to variations in adoption and use, which in 
turn can shape social inequalities in health 
[12]. These contextual variations due to 
social system highlight a need to capture 
how various technologies are accessed and 
used. These are important aspects of data 
context [51] that are important for measur-
ing the quality of personalized medicine 
applications leveraging those data. There 
is also a need to provide multiple channels 
of communication to account for a range 
of societal structures.

b) We need new study designs that allow 
flexible communication channels while 
still preserving the ability to study health 
outcomes of interest. Effective communi-
cation can help to answer questions, build 
familiarity and increase the appeal of an 
innovation or new strategy. Enabling multi-
ple communication channels can influence 
how quickly a strategy is shared in different 
communities and can improve adoption. 
One such study is the NIH-funded IMA-
Gene (Individualized Medicine through 
Application of GENomics) clinical trial 
[52] that is evaluating genomic screening in 
Ashkenazi Jewish and Hispanic communi-
ties. In order to find the best way to commu-
nicate information about genetic screening, 
study participants can decide if they want to 
use self-guided learning via mailed paper 
and DVD, or web-portal education. Partic-
ipants can switch at any time and always 
have access to a genetic counselor. The 
value of measuring adaptation is already 
evident as it relates to health IT adoption 

[53]. Similarly, enabling the flexibility to 
adapt communication processes allows 
different approaches to be tested and has 
potential to maximize adoption. With 
new study designs, tracking the progress 
of how effective different communication 
channels are, can make a greater impact 
by providing lessons that others can draw 
from when establishing implementation 
and dissemination strategies with similar 
interventions. 

c) Third, we can become active in per-
sonalized medicine implementation and 
dissemination by creating and studying 
interventions in healthcare settings. Health 
information systems such as comput-
er-based patient records, EHRs, telemed-
icine, and decision support systems are 
common areas of biomedical informatics 
research [47]. Furthermore, these tech-
nologies are changing patient-provider 
communication by enabling patients to 
ask questions, request medication refills, 
and obtain test results electronically. While 
there is recognition that such systems can 
be of value to accelerate personalized 
medicine practices, there have been few 
studies that demonstrate integration into 
clinical settings in a scalable way (e.g., 
genomic clinical decision support [54]). 
Drawing from the work of others studying 
the adoption of health information systems 

[55], in order to avoid deploying systems 
that are not feasible or acceptable for use 
in practice, studies should also provide a 
forum for end-users to play a role.

d) Translational informatics scholarship can 
make a greater impact if it goes beyond 
data-driven research to conducting the-
ory-driven research with interventions 
based on algorithms and risk scores that 
combine genetics and non-genetics fac-
tors. Research in this area involves more 
engagement with health care practice in 
order to understand the consequences 
of using those interventions across 
contexts and time. One area for more 
theory-driven research is in comparing 
outcomes and acceptability of different 
formats for delivering clinical guidance 
based on algorithms and risk scores. This 
is an area of importance highlighted by 
three main trends: (i) the goal for inter-
ventions to reach diverse populations 
that may have varying levels of compre-
hension in response to different delivery 
formats [56]; (ii) the recent move to 
alternative models to provide genomic 
information to patients [57-59]; and (iii) 
a growing focus on outcomes that are of 
most value to patients [60]. Such efforts 
would contribute to the growing literature 
reporting findings from studying the 
return of genetic test results [61-64].

Table 4   Research directions and rationale.

Direction

(a) Investigate attributes of 
innovation and of societal 
structure.

(b) Conduct studies that 
compare and contrast 
communication channels.

(c) Create and investigate 
personalized medicine interven-
tions in healthcare settings.

(d) Conduct theory-driven 
research with data-driven 
interventions.

Description

Study the interaction of attributes of innova-
tion with the adoption of strategies that use 
non-traditional data sources.

Allow more flexibility in communication 
channels to enable the formulation of design 
principles for implementation.

Explore interventions within healthcare 
settings in order to shed light on patient and 
provider perceptions (e.g., access to provid-
ers) and impact (e.g., provider workload).

Expand research on data-driven interventions 
to also include theory-driven implementation 
and dissemination research.

Rationale

No study investigated attributes of innova-
tion, and only two studied societal structure 
in relation with outcomes.

Two studies investigated multiple commu-
nication channels as part of a randomized 
controlled trial. No study enabled study 
participants to choose their preferred 
communication channel. 

Only one study of a tool targeted to 
healthcare providers and assessed within a 
healthcare setting. None targeted to both 
healthcare providers and patients.

Only one study involved the use of a calcula-
tion with measures from multiple sources.
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6   Conclusion
This work offers two contributions. First, 
we introduced to an informatics audience 
an elaboration on personalized medicine 
implementation with non-traditional data 
sources by blending it with the personalized 
medicine unsolicited health information 
(pUHI) conceptual framework to help 
explain adoption. We believe that this sup-
ports a new line of informatics inquiry that 
will enable gaining a richer understanding 
of how personalized medicine interventions 
disseminate. Second, we highlighted the 
need for: more research on the relationship 
between attributes of innovation and of soci-
etal structure on adoption; new study designs 
to enable flexible communication channels; 
more work to create and study approaches in 
healthcare settings; and more theory-driven 
studies with data-driven interventions. With 
the explosive growth in availability of health 
data captured using non-traditional sources, 
these are areas where biomedical informat-
ics scholars can increase their influence on 
personalized medicine as it becomes more 
informed by those data sources. 
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