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Summary

Objectives: With the explosive growth in availability of health
data captured using non-traditional sources, the goal for this
work was fo evaluate the current biomedical literature on theory-
driven studies investigating approaches that leverage non-
fraditional data in personalized medicine applications.
Methods: We conducted a literature assessment guided by the
personalized medicine unsolicited health information (pUHI)
conceptual framework incorporating diffusion of innovations and
fask-technology fit theories.

Results: The assessment provided an overview of the current
literature and highlighted areas for future research. In particular,
there is a need for: more research on the relationship between
atfributes of innovation and of sociefal structure on adoption;
new sfudy designs to enable flexible communication channels;
more work to create and study approaches in healthcare setfings;
and more theory-driven studies with data-driven inferventions.
Conclusion: This work introduces to an informatics audience

an elaboration on personalized medicine implementation with
non-traditional data sources by blending it with the pUHI con-
ceptual framework to help explain adoption. We highlight areas
fo pursue future theory-driven research on personalized medicine
applications that leverage non-traditional data sources.
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1 Introduction

Personalized medicine is becoming more
informed by non-genetic factors with the
explosive growth in availability of health
data captured using non-traditional sources
such as online social networks (e.g., Twitter,
online health forums)[1, 2], consumer health
wearables, and medical devices (e.g., FitBit,
smart phone apps) [3-5]. For personalized
medicine applications, these health data are
promising to complement genetics data in
the development of novel algorithms and risk
scores that provide a more complete view of
patient health and wellness. This is particu-
larly true for complex polygenic diseases that
are especially difficult to predict. For those
diseases, combining multiple factors such as
clinical, demographic, environmental, and
genetic data can offer more precise risk pre-
dictions [6]. For example, genetic risk scores
developed based solely on multiple contrib-
uting genetic variants leading to common
conditions such as coronary heart disease
[7], may be combined with more traditional
factors (e.g., family history, conventional
risk scores) including from non-traditional
sources such as mobile devices to improve
the accuracy of risk estimates.

The success of emerging approaches
combining genetic and non-genetic factors to
advance personalized medicine will depend
on our capacity to deploy tools that leverage
non-traditional data sources in a timely man-
ner [8]. Mobile data capture has potential
to augment traditional approaches such as
questionnaires to collecting social factors
(e.g., habits and preferences), high frequency
data (e.g., movement) and unstructured

181
|

©2019 IMIA and Georg Thieme Verlag KG

data (e.g., online activity). Within clinical
research, mobile devices are already increas-
ingly deployed to gather patient-reported
outcomes and to associate behaviors with
clinically informative biomarkers.

There are three areas where approaches
that leverage multiple data types are having
an impact on personalized medicine. First,
healthy individuals are increasingly receiv-
ing health data (e.g., direct to consumer
genetic testing) that indicate a risk for poor
outcomes (e.g., diseases or adverse drug
reactions). When health data collection is
initiated outside of the clinical setting (“per-
son-generated data” [9, 10]), from a clini-
cian’s perspective they can be characterized
as “unsolicited health information.” Health
care providers will need to ensure that results
from unsolicited health information are han-
dled prudently, by addressing the receipt of
the results, workflow challenges, and liability
issues. Second, combining data from multi-
ple sources has potential to provide a more
complete view of the relationship between
how health is managed (therapies, lifestyles,
etc.) and health outcomes (response to ther-
apy, disease burden, etc.) when assessing risk
compared to risk assessments accounting
for a single data type alone [6, 11]. Solving
the problem of integrating data from mul-
tiple sources in risk assessments will have
a major impact on personalized medicine
by providing a more complete assessment
of individual risk for poor outcomes. Third,
health assessments based on innovative tech-
nologies can lead to population samples that
contain bias [12, 13] and that can contribute
to misestimating health risks in those pop-
ulations (e.g., GWAS data for genetic risk
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scores [14]). In order to minimize bias, data
collection strategies that minimize over or
under sampling of a given population (sam-
ple disproportionality), especially among
racial and ethnic populations, are needed.

The success of personalized medicine
depends on translational research of tools
based on algorithms and risk scores, includ-
ing the study of dissemination and imple-
mentation with evidence-based genomic
applications [15]. Traditional approaches to
study algorithms and risk scores draw from
data-driven research. Data-driven research
[16] involves creating or obtaining sources
of data relevant to assessments of health and
risk; cleaning, extracting, and annotating
data streams to prepare for analyses; inte-
grating, aggregating, and representing data
to detect insights; analyzing and modeling
data to place insights in context; and inter-
preting the insights to arrive at solutions.
Traditional approaches fail, however, to
assess the implementation and dissemination
of those solutions with respect to healthcare
settings. Implementation science is the study
and application of methods to promote
adoption of research findings into practice
[17]. Dissemination science is the study of
how the outputs of implementation science
(i.e., evidence-based practices, programs,
and policies) can be best communicated
to potential adopters and implementers to
produce effective results [18]. In order to
evaluate implementation and dissemination
of new and emerging tools that leverage
non-traditional data sources in personalized
medicine, theory-driven research is required.
Theory-driven research [16] involves:
deriving research questions from existing
or extended theory; formulating hypotheses
to address the questions; designing studies
to minimize confounding effects; collecting
data using appropriate instruments; and
analyzing data to draw inferences.

The objective of this paper is to provide
a review of what kinds of theory-driven
analyses are being applied to study tools
that use non-traditional data sources and
their translation into personalized medi-
cine applications. In order to address this
objective, we conducted a systematic and
concept-centric review of the biomedical
literature. We analyzed eight publications in
terms of constructs from a conceptual frame-
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work for technology adoption that we call
the personalized medicine unsolicited health
information (pUHI) framework. This allows
us to understand and structure existing work,
as well as to derive future research directions.

2 Personalized Medicine
Unsolicited Health Information
Conceptual Framework

With a focus on implementation and
dissemination of personalized medicine
solutions that use non-traditional data
sources, different models can be drawn
from to explain the adoption of information
technology. Commonly used to assess tech-
nology in health care, are the Technology
Acceptance Model (TAM) [19-21] and the
Unified Theory of Acceptance and Use of
Technology (UTAUT) [22, 23]. The previ-
ously used personalized medicine unsolic-
ited health information (pUHI) framework
we developed [24] was used to guide the
literature review. While other models solely
focus on technology adoption, the pUHI
framework draws from two theories that
allow the investigation of both effective
communication of health information and
technology: diffusion of innovations (DOI)
[25] and task-technology fit (TTF) [26] (see
Figure 1). This framework was previously
used to guide our study that explored the
acceptance of electronic health record
(EHR)-embedded clinical decision support
to deliver pharmacogenomics information
to physicians [24].

Diffusion of innovations [25] theory
seeks to evaluate the rate of technology
adoption using four key elements to help to
explain the “Innovation-Decision Process”:
innovation (a solution that leverages health
data from non-traditional sources), com-
munication channels (processes enabled
by the proposed solution), time (when the
solution is adopted or rejected and the rate
of adoption), and social system (individuals
and groups involved in implementation
and dissemination strategy decisions for
a solution). TTF [26] theory suggests that
task-technology fit is achieved by both the
tasks the user performs and the character-

istics of the technology used. Fit, in turn,
leads to utilization and performance impact.

Use of pUHI framework offers many
advantages including the ability to identify
how, when, and in whom important variables
from DOI and TTF theories were measured;
the ability to determine what potential
sources of variance were evaluated and
controlled for; and the ability to extract how
and when solutions are successful. Further-
more, DOl and TTF complement each other.
The goal for dissemination is broad-based
adoption of an intervention, and as such,
both diffusion and implementation factors
are important. DOI captures dissemination
factors including those relevant to the inno-
vation, adopter, social system, individual
adoption-process, and diffusion system. TTF
captures extent of, quality of, and individual
responses to implementation. In addition, it
has been highlighted that cultural differences
have important implications for perceptions
of TTF [27]. Whereas cultural perceptions
are not explicitly part of TTF, communica-
tion channels and social system elements
from DOI can capture those perceptions.
For these reasons, we used the pUHI frame-
work to develop the search strategy for the
biomedical literature review.

3 Methods

Our review is made of three phases. First,
we retrieved publications from PubMed that
were published between 2014 and 2018 to
focus on recently developed and published
efforts in the clinical and biomedical litera-
ture. The broad keywords and topics used for
the search are displayed in Table 1. Keywords
and MeSH terms related to non-traditional
data sources focused on the data collection
tool itself (e.g., the survey instrument),
thus, we did not include platforms such as
Twitter. The inclusion criteria for screening
were as follows: mention of a personal data
collection tool; English article; manuscript
in peer-reviewed scientific journal; research
article; and human participants. The exclusion
criteria for full-text reviews were as follows:
no study of a tool using non-traditional data;
not theory-driven in relation to the use of a
tool; and no genomic medicine application.
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Fig. 1 Personalized medicine unsolicited health information (pUHI) framework to interpret theory-driven studies on tools that use non-fraditional data in personalized medicine applications, relative to innovation atfributes,
social system, communication channels, and task-technology fit of the technologies.

Table 1 Terms and filters used in the search.

Theory-driven AND Personalized medicine application AND Collection of non-traditional data source
research
HKeywords: theory, AND PubMed Medical Genetics Search AND Keywords and Mesh ferms: telemedicine, telehealth, telesurveillance, social
construct. Filter Categories/28)- diagnosis, media, blogging, crowdsourcing, mobile applications, cell phones, handheld
differential diagnosis, clinical computers, geographic information systems, global positioning systems, mobile
description, management, genetic health, mHealth, eHealth, Facebook, online social network, social networking
counseling, molecular genetics, site, chat room, chat group, short message service, Web-hased questionnaire,
genefic testing. app, personal digital assistant, cell phone, cellphone, cellular phone, cellular
telephone, mobile phone, mobile telephone, smart phone, smartphone, mobile
phone, mobile device, wearable sensor, wearable device, wearable technology,
surveys, questionnaires, momentary assessment, self report.
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Second, we coded the identified literature
along six dimensions from the pUHI frame-
work (see Table 2): attributes of innovation,
social system, communication channel, time,
task characteristics, and technology charac-
teristics. We also included one additional
dimension to capture the theory being used
in the research. Last, we analyzed the liter-
ature by using a concept matrix to assess the
current state of theory-driven analyses being
applied to study tools that use non-traditional
data sources and to derive directions for
future studies.

4 Results

A total of 702 references were retrieved
from the PubMed search and entered into the
selection process. Results of the screening
process are described in the Figure 2 flow
diagram. First, after review of publication
titles and abstracts, 430 publications were
considered irrelevant and were excluded
from further review. Publications were con-
sidered irrelevant according to our screening
inclusion and exclusion criteria. Second, the
full-texts of the remaining 272 publications
were reviewed against the criteria (a study of
a tool that used non-traditional data sources,
the research was theory-driven in relation to
the tool, and there was a personalized med-
icine application), which excluded another
264 publications. One exception was that
randomized controlled trials for which study
participants were randomized to use of a
technology was considered theory-driven
in relation to the technology. Overall, the
search of the literature identified eight arti-
cles that reported theory-driven research
on the use of a technology or instrument
that uses non-traditional data sources for a
personalized medicine application.

A concept matrix was created to summa-
rize insights gained from the literature (Table
3). In the following, we present the details of
our analysis that led to the creation of Table
3. With regard to the attributes of innovation,
we considered Roger’s characteristics on
the adoption of an innovation [25]: relative
advantage, compatibility, complexity, trial-
ability, and observability of the innovation
were described. For two of the articles [29,
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Table 2 Coding dimensions informed by theoretical domains from the pUHI framework.

Theoretical Analysis categories Characteristics within the categories

domain
Attributes of innovation Relative advantage, compatibility, complexity, trialability, and

observability of the innovation [25]
.D |ffu5|qn of Social system Socioeconomic characteristics, norms, expectations, or potential
innovations ; §
consequences of an innovation
Communication channel Patient portal, cell phone, FitBit, blog, efc.
Time Speed of adoption
Task characteristics (genomic Genetic fest ordering, cancer freatment planning, etc.

Tosk- medicine application)

Technology Fit — . ) —
Technology characteristics (non- Genetic testing turn-around time, cancer treatment pre-visit
traditional data collection approach) | education, etc.

Other Theory used Task-technology fit theory

’ 702 studies screened against title and abstract ‘

’ 272 studies assessed for full-text eligibility ‘

{ 430 studies excluded

264 studies excluded
147 No study of use of personal data tool
(e.g., survey)

8 studies included

105 No theory/construct in relation to
personal data tool (e.g., survey)
12 No personalized medicine application

Fig. 2 Flow diagram of the search sirategy.

30] a description of attributes was the out-
come of the study, five of the articles [31-35]
provided a general description of attributes,
and one article [36] provided a reference to a
description published elsewhere. Concerning
the social system, all but one article [29]
studied the influence of social system on
outcomes. Among those articles, two articles
[30, 32] studied social system in relation to
adopting a tool. Communication channels
represented among the eight studies were
questionnaires [30, 34], telephone [33, 36],
interactive presentation [31], pre-test coun-
seling [32], online risk calculator [35], and

online discussion forum [29]. Time to tool
adoption was not assessed for any of the
reviewed articles. For two articles [30, 32],
however, tool adoption was studied as a spe-
cific outcome. Task characteristics included
tasks for tool use and were targeted to health-
care providers for one article [30], to patients
for six articles [29, 31-33, 35, 36], and one
article did not have a target end-user [34].
The healthcare provider task was to identify
at-risk relatives [30]. Patient tasks included
communicating risk to family members [31],
making decisions around genetic testing and
screening [32, 36], understanding genetic
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test results/assessments of risk [33], and
making decisions around care coordination
[29]. Technology characteristics included
technology design characteristics of three
tools that were informed by behavior and/
or communication theories [31, 33, 36].
Four tools were used to directly character-
ize personal health status [32, 34, 35] or
the health status of relatives [30]. One tool
enabled unstructured communication [29].
The theory-driven approaches used in the
reviewed studies included randomized con-
trolled trials [31, 36], Normalization Pro-
cess Theory (NPT) [30], Multidimensional
Measure of Informed Choice (MMIC) [32],
Self-Regulation Model of Health Behavior
(SRTHB)[33], Rasch Unidimensional Mea-
surement Model [34], Theory of Planned
Behavior [35], and Planning Theory of
Communication [29].

5 Discussion

The goal of this biomedical literature anal-
ysis was to examine the current state of
theory-driven research on tools that collect
and use non-traditional data in personalized
medicine applications and to provide direc-
tion for future work. The PubMed search was
limited to articles published between 2014
and 2018 to focus on recently developed and
published efforts. Nonetheless, there may
be relevant publications before 2014 or in
other databases (e.g., ACM digital library)
that were missed. For example, our approach
identified studies that use theory-driven
approaches such as NPT, but we did not
identify studies that used popular technology
acceptance theories such as TAM. In order
to confirm if a gap exists, a complementary
survey of the literature might study published
articles that specifically use technology
acceptance theories to measure the adoption
and use of personalized medicine applica-
tions more broadly (without the focus on
collection and use of non-traditional data).
In addition, our search strategy did not
identify some studies due to our focus on
the direct application of theory to study the
adoption of tools. For example, one effort
of relevance that was missed is the NIH
National Human Genome Research Institute

(NHGRI)-funded Implementing GeNomics
InpracTicE (IGNITE) Network that supports
the development of strategies to incorporate
genomic information into clinical care, and
also the exploration of methods for effective
implementation, diffusion, and sustainabil-
ity of those strategies in diverse clinical
settings [37]. Through the Network, sites
have adopted the Consolidated Framework
for Implementation Research (CFIR) [38] to
guide their evaluation of genomic medicine
interventions and have identified common
strategies to address implementation chal-
lenges [39, 40]. They do not assume specific
relationships between individual constructs
and outcomes so that commonalities and
differences in implementation strategies
across projects that have diverse outcomes
can be identified.

Another limitation of our approach is
that there are some concepts relevant to
adoption that may have been missed by the
proposed pUHI framework. For example,
while DOI theory provides several inno-
vation-related constructs that are relevant
to healthcare technology adoption such as
relative advantage and compatibility [41],
trust is an important element of adopting
personalized medicine applications that is
not covered. Indeed, it is well-known that
trust plays an important role in both adoption
of healthcare technologies by clinicians (e.g.,
due to a perceived threat to their professional
autonomy [42]) and by patients (e.g., due to
privacy concerns [43]). Extensions of the
pUHI framework should be considered to
include trust as well as other factors as the
role on end-user acceptance is clarified.

Overall, we found only eight publications
that fit our criteria. Given our use of PubMed,
this may indicate a lack of work published in
biomedical journals that study the adoption
of personalized medicine applications that
use non-traditional data. This is not surpris-
ing given our targeted search and also that
previous characterization of the scientific
literature and federally funded grants found
that the majority of genomic research falls
within the translational research discovery
phase (T0) and the phase where candidate
genomic applications are characterized and
developed (T1) [44]. Less than 2% of research
falls within phase 2-4 research (T2-4) that
attempts to translate genomic discovery into

real-world settings and improve population
health outcomes [45]. Furthermore, a recent
systematic review of T2-4 research found that
very few studies incorporated implementation
science theoretical models [46]. Similarly,
when assessing studies that evaluated [ T-based
applications in healthcare, most did not discuss
a specific theory being applied [47].

In addition, the few articles that fit our
criteria may also reflect a lack in the use of
non-traditional data sources for personalized
medicine research and practice. In order to
enable personalized risk assessments from
non-traditional data sources, there were sev-
eral challenges, largely due to the reliability
of those data that should be overcome. Many
potential sources for more data-driven appli-
cations (artificial intelligence and machine
learning algorithms) were highly unstructured
and had variable quality depending on the
source (e.g., online health forums). Moreover,
properly describing the environment context
for such applications remains a challenge.
Proposed solutions to this problem included
incorporating the review of input data by
domain experts given that those data can
contain biases; conducing prospective clinical
trials with diverse patient populations to help
address potential racial bias due to the use of
historical data; and continually calibrating
models with human feedback [48].

We also found that while articles covered
in this review had personalized medicine
applications, the majority of the approaches
did not involve the direct collection and use
of genetic data. This is consistent with the
view that collection of genetic data clinically
is still inhibited by cost and availability of
facilities required to handle the clinical
genomic sequencing of the large number of
patients needed to impact population-level
risk modeling [49]. There are, however, sev-
eral large efforts that are studying the value
of clinical genomics with other data types
such as the NIH-funded All of Us program
that is obtaining access to electronic health
records and collecting personal genetic, life-
style, and environmental data to determine
relationships to health and disease [50].

Based on our assessment, we propose
four directions for future research (Table 4):
a) We need more studies on the influence of

innovation and of societal structure on the

adoption of strategies that use non-tradi-
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tional data in personalized medicine appli-
cations. We found that few studies measure
attributes of innovation at baseline. Accord-
ing to pUHI framework, such characteris-
tics influence how rapidly an innovation
can be adopted. In addition, while the
majority of studies we identified collected
data on social system, only two studied
social system in relation to adoption.
Indeed, the adoption of technologies that
collect and use non-traditional data sources
for personalized medicine (e.g., FitBit for
quantified self-tracking, social networks
for physician Q&A) will be strongly
influenced by social system (e.g., social
value systems, status [e.g., socio-economic
levels], cultural backgrounds, etc). As
evidenced by others, such factors can lead
to variations in adoption and use, which in
turn can shape social inequalities in health
[12]. These contextual variations due to
social system highlight a need to capture
how various technologies are accessed and
used. These are important aspects of data
context [51] that are important for measur-
ing the quality of personalized medicine
applications leveraging those data. There
is also a need to provide multiple channels
of communication to account for a range
of societal structures.

b) We need new study designs that allow

flexible communication channels while
still preserving the ability to study health
outcomes of interest. Effective communi-
cation can help to answer questions, build
familiarity and increase the appeal of an
innovation or new strategy. Enabling multi-
ple communication channels can influence
how quickly a strategy is shared in different
communities and can improve adoption.
One such study is the NIH-funded IMA-
Gene (Individualized Medicine through
Application of GENomics) clinical trial
[52] that is evaluating genomic screening in
Ashkenazi Jewish and Hispanic communi-
ties. In order to find the best way to commu-
nicate information about genetic screening,
study participants can decide if they want to
use self-guided learning via mailed paper
and DVD, or web-portal education. Partic-
ipants can switch at any time and always
have access to a genetic counselor. The
value of measuring adaptation is already
evident as it relates to health IT adoption

[53]. Similarly, enabling the flexibility to
adapt communication processes allows
different approaches to be tested and has
potential to maximize adoption. With
new study designs, tracking the progress
of how effective different communication
channels are, can make a greater impact
by providing lessons that others can draw
from when establishing implementation
and dissemination strategies with similar
interventions.

¢) Third, we can become active in per-

sonalized medicine implementation and
dissemination by creating and studying
interventions in healthcare settings. Health
information systems such as comput-
er-based patient records, EHRs, telemed-
icine, and decision support systems are
common areas of biomedical informatics
research [47]. Furthermore, these tech-
nologies are changing patient-provider
communication by enabling patients to
ask questions, request medication refills,
and obtain test results electronically. While
there is recognition that such systems can
be of value to accelerate personalized
medicine practices, there have been few
studies that demonstrate integration into
clinical settings in a scalable way (e.g.,
genomic clinical decision support [54]).
Drawing from the work of others studying
the adoption of health information systems

Table 4 Research directions and rationale.

[55], in order to avoid deploying systems
that are not feasible or acceptable for use
in practice, studies should also provide a
forum for end-users to play a role.

d) Translational informatics scholarship can

make a greater impact if it goes beyond
data-driven research to conducting the-
ory-driven research with interventions
based on algorithms and risk scores that
combine genetics and non-genetics fac-
tors. Research in this area involves more
engagement with health care practice in
order to understand the consequences
of using those interventions across
contexts and time. One area for more
theory-driven research is in comparing
outcomes and acceptability of different
formats for delivering clinical guidance
based on algorithms and risk scores. This
is an area of importance highlighted by
three main trends: (i) the goal for inter-
ventions to reach diverse populations
that may have varying levels of compre-
hension in response to different delivery
formats [56]; (ii) the recent move to
alternative models to provide genomic
information to patients [57-59]; and (iii)
a growing focus on outcomes that are of
most value to patients [60]. Such efforts
would contribute to the growing literature
reporting findings from studying the
return of genetic test results [61-64].

Direction Description

Rationale

() Investigate attributes of
innovation and of societal
structure.

(b) Conduct studies that
compare and contrast
communication channels.

(¢) Create and investigate

tions in healthcare settings.

(d) Conduct theory-driven
research with dafa-driven
interventions.

personalized medicine interven-

Study the inferaction of attributes of innova-
tion with the adoption of strategies that use
non-traditional data sources.

Allow more flexibility in communication
channels to enable the formulation of design
principles for implementation.

Explore interventions within healthcare
settings in order to shed light on patient and
provider perceptions (e.g., access to provid-
ers) and impact (e.g., provider workload).

Expand research on data-driven interventions
to also include theory-driven implementation
and dissemination research.

No study investigated attributes of innova-
tion, and only two studied societal structure
in relation with outcomes.

Two studies investigated multiple commu-
nication channels as part of a randomized
controlled trial. No study enabled study
participants to choose their preferred
communication channel.

Only one study of a tool targeted fo
healthcare providers and assessed within a
healthcare setting. None targeted to both
healthcare providers and patients.

Only one study involved the use of a calcula-
tion with measures from multiple sources.
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6 Conclusion

This work offers two contributions. First,
we introduced to an informatics audience
an elaboration on personalized medicine
implementation with non-traditional data
sources by blending it with the personalized
medicine unsolicited health information
(pUHI) conceptual framework to help
explain adoption. We believe that this sup-
ports a new line of informatics inquiry that
will enable gaining a richer understanding
of how personalized medicine interventions
disseminate. Second, we highlighted the
need for: more research on the relationship
between attributes of innovation and of soci-
etal structure on adoption; new study designs
to enable flexible communication channels;
more work to create and study approaches in
healthcare settings; and more theory-driven
studies with data-driven interventions. With
the explosive growth in availability of health
data captured using non-traditional sources,
these are areas where biomedical informat-
ics scholars can increase their influence on
personalized medicine as it becomes more
informed by those data sources.
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