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Background-—Mixed valvular disease (MVD), mitral regurgitation (MR) from pre-existing disease in conjunction with paravalvular
leak (PVL) following transcatheter aortic valve replacement (TAVR), is one of the most important stimuli for left ventricle (LV)
dysfunction, associated with cardiac mortality. Despite the prevalence of MVD, the quantitative understanding of the interplay
between pre-existing MVD, PVL, LV, and post-TAVR recovery is meager.

Methods and Results-—We quantified the effects of MVD on valvular-ventricular hemodynamics using an image-based patient-
specific computational framework in 72 MVD patients. Doppler pressure was reduced by TAVR (mean, 77%; N=72; P<0.05), but it
was not always accompanied by improvements in LV workload. TAVR had no effect on LV workload in 22 patients, and LV workload
post-TAVR significantly rose in 32 other patients. TAVR reduced LV workload in only 18 patients (25%). PVL significantly alters LV
flow and increases shear stress on transcatheter aortic valve leaflets. It interacts with mitral inflow and elevates shear stresses on
mitral valve and is one of the main contributors in worsening of MR post-TAVR. MR worsened in 32 patients post-TAVR and did not
improve in 18 other patients.

Conclusions-—PVL limits the benefit of TAVR by increasing LV load and worsening of MR and heart failure. Post-TAVR, most MVD
patients (75% of N=72; P<0.05) showed no improvements or even worsening of LV workload, whereas the majority of patients with
PVL, but without that pre-existing MR condition (60% of N=48; P<0.05), showed improvements in LV workload. MR and its
exacerbation by PVL may hinder the success of TAVR. ( J Am Heart Assoc. 2020;9:e015063. DOI: 10.1161/JAHA.119.
015063.)
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T ranscatheter aortic valve replacement (TAVR) is an
emerging minimally invasive intervention for patients

with aortic stenosis (AS) across a broad risk spectrum.1 TAVR
is increasingly used in lower-risk (moderate valvular disease
and/or young) patients as well. Although TAVR has provided

positive outcomes and has remarkably reduced the mortality
rate, there are risks associated with TAVR procedures. Many
patients experience significant improvements after TAVR
intervention, but in many others, the situation worsens
and pre-existing valvular diseases transform to even
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more-extensive disease (eg worsened mitral regurgitation
[MR] and heart failure).2–4

Despite recent improvements in the design of tran-
scatheter heart valves and implantation techniques, par-
avalvular leak (PVL; leak around the prosthesis) remains a
major complication and an independent predictor of short-
and long-term mortality.5,6 As Pibarot7 noted, “Paravalvular
regurgitation is considered the main Achilles’ heel of
transcatheter aortic valve replacement.” Mild PVL occurs in
20% to 80% of patients, whereas moderate and severe PVL
occur in 5% to 22% of them.7–9

Mixed valvular disease (MVD), mitral regurgitation (MR)
from pre-existing disease in conjunction with PVL following
TAVR, is one of the most important stimuli for left ventricle
(LV) dysfunction resulting in congestive heart failure, associ-
ated with worsening cardiac mortality.2,7,9–13 As indications
and use of TAVR expand, we must advance our understanding
of its interactions with diseases of other valves and the
ventricular state.2,7,10,13–15 However, despite the prevalence
of MVD, the quantitative understanding of the interplay
between pre-existing valvular pathologies, PVL, LV, and

post-TAVR recovery is meager. This study was aimed to
elucidate the relationship between MR, LV function, and
TAVR.

“Cardiology is flow.”16 The main functions of the cardio-
vascular system are to transport, control, and maintain blood
flow in the entire body. Abnormal fluid dynamics greatly alter
this tranquil picture, leading to initiation and progression of
disease17. These abnormalities are often manifested by
disturbed flow, altered biomechanical forces, and, in some
cases, an increase in heart workload. The hypothesis is
increasingly appreciated that valvular disease is a complex
disease that also depends on the dictates of the LV and
arterial system.18–21 There has thus been an emerging call by
many for quantitative investigations of hemodynamics that
take the interactive coupling of the valve, ventricle, and
arterial system into account.18–21

In this study, we developed a Doppler-based, patient-
specific, lumped-parameter modeling framework that takes
interactions of the aortic valve, LV, and arterial system into
account to investigate MVD and estimate LV workload
noninvasively. We showed that effective quantification of
MVD hinges on quantification of the load it imposes on the
LV. We quantified the effect of MVD on LV workload (global
hemodynamics) and investigated the correlation of LV work-
load with the metrics currently used in clinical practice in 72
MVD patients in both pre- and post-TAVR states. In addition to
global hemodynamics, we provide a mechanistic fundamental
understanding about the effect of MVD on the 3-dimensional
flow structures in the LV and LV outflow tract (local
hemodynamics). For local hemodynamics analysis, we devel-
oped a computational fluid mechanics and lumped-parameter
modeling framework based on and correlated with clinically
measured hemodynamic metrics and clinical images in both
pre- and post-TAVR states.

Methods

Data Availability
The data and the code that support the findings of this study
are available from the corresponding author upon request.

Study Population
We retrospectively and randomly selected 205 patients with
severe AS who underwent TAVR from anonymized databases
between 2013 and 2018 from the following institutions: St.
Paul’s Hospital (Vancouver, British Columbia, Canada; N=40);
Massachusetts General Hospital (Boston, MA; N=40)22; and
Hospital Universitario Marques de Valdecilla (IDIVAL, Spain;
N=125). Selections were done by operators blinded to the
objectives and contents of this study at each institution. Of

Clinical Perspective

What Is New?

• Valvular disease is a complex disease that also depends on
the dictates of the left ventricle and the arterial system.

• We developed a computational mechanics framework based
on and correlated with clinically measured hemodynamic
metrics and imaging in patients to noninvasively quantify
the effect of: (1) mixed valvular disease on the left ventricle
workload (global hemodynamics) and (2) mixed valvular
disease on the flow structures (local hemodynamics) in the
left ventricle and investigated the correlation of hemody-
namics parameters with clinical metrics in both pre- and
postintervention states.

What Are the Clinical Implications?

• Paravalvular leak limits the benefit of transcatheter aortic
valve replacement: It may increase left ventricle load, may
potentially worsen mitral regurgitation, and worsens heart
failure. Mitral regurgitation and its possible exacerbation by
paravalvular leak will likely play an important hindering role
in the success of transcatheter aortic valve replacement.

• This represents an important finding, especially considering
the expansion of transcatheter aortic valve replacement
candidacy to lower-risk and/or young patients.

• Our findings suggest that beyond standard clinical indices
for hemodynamic evaluation of the valvular disease, valvular
and ventricular hemodynamics and their interactions should
be quantified and considered for better management of
patients with aortic valve disease.
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Figure 1. Left ventricular function and hemodynamics. (A) Data acquisition. We developed a computational
mechanics framework based on noninvasive clinically measured hemodynamic metrics (brachial blood pressure
and Doppler echocardiography measurements) and computed tomography imaging to estimate local and global
hemodynamics. (B) Schematic diagram of lumped parameter model. Inputs of the lumped model were all
obtained from Doppler echocardiography measurements. This model includes several submodels: left ventricle,
aortic valve, aortic regurgitation, and systemic circulation. (C) Schematic diagram of 3D flow model. Inputs of
the 3D flow model were obtained from CT and Doppler echocardiography. We used CT images from patients to
reconstruct 3D geometries of the LV and valves. These 3D reconstructions were used for investigating
hemodynamic using computational fluid dynamics. Moreover, imposing correct boundary conditions to the flow
model is critical because the local flow dynamics is influenced by down- and upstream conditions. These data
were obtained from a lumped parameter model (part B). Cao indicates aortic compliance; CSAC, systemic arteries
and veins compliance; CT, computed tomography; 3D, 3-dimensional; ELV, left ventricle elastance; Lav, aortic
valve inductance; LPVL, paravalvular leak inductance; LV, left ventricle; Rao, aortic resistance; Rav, aortic valve
resistance; Rpda, proximal descending aorta resistance; RPVL, paravalvular leak resistance; RSA, systemic arteries
resistance; RSV, systemic vein resistance; Rub, upper body resistance.
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these 205 patients, 72 had MVD (MR from pre-existing
disease and PVL following TAVR). The protocol was reviewed
and approved by the ethics committees of the institutions.
Suitability and eligibility for receiving TAVR were determined
by the local clinical team. Data were acquired at 2 time

points: preprocedure and 90-day postprocedure. Valve
type and size were planned before the procedure by
the local clinical team according to preprocedural

Table 1. Baseline Clinical and Echocardiographic
Characteristics

AS Patients (n=72,
Mean�SD)

Patient description

Mean age, y 74.40�6.54

Female sex (48%)

Mean weight, kg 71.71�13.92

Mean height, cm 161.86�10.13

Body surface area, m2 1.77�0.16

Body mass index, kg/m2 32.38�23.20

EuroScore II 7.04�7.68

STS mortality rate 6.62�5.33

Arterial hemodynamics

Systolic arterial
pressure, mm Hg

139.0�22.5

Diastolic arterial pressure, mm Hg 79.0�11.7

Aortic valve hemodynamics

Stenotic aortic valve
effective orifice area, cm2

0.58�0.16

Stenotic aortic valve type Tricuspid: 70;
bicuspid: 2

Maximum aortic valve
pressure gradient, mm Hg

84.50�21.32

Mean aortic valve pressure
gradient, mm Hg

51.52�13.60

Left ventricle hemodynamics

Ejection fraction, % 53.5�12.7

Stroke volume index, mL/m2 45.7�11.5

Heart rate, bpm 71.0�11.5

Associated cardiovascular lesions

Previous percutaneous
coronary intervention

33%

Previous coronary artery
bypass grafting

34%

Previous myocardial infarction 21%

Previous stroke 2%

Atrial fibrillation 29%

Cerebrovascular accident 9%

Peripheral vascular disease 29%

Hypertension 74%

AS indicates aortic stenosis; STS, Society of Thoracic Surgeons.

Table 2. Summarized Cardiovascular Parameters Used in
the Lumped Parameter Modeling to Simulate All Cases

Description Abbreviation Value

COA and valve parameters

Effective orifice area EOA From echocardiography
data

Energy loss coefficient ELCo (EOA)A
A�EOA
From echocardiography data

Variable resistance Rav and RPVL
q

2ELCo
2 Q

Inductance Lav and LPVL
2pqffiffiffiffiffiffiffiffiffi
ELCo

p

Systematic circulation parameters

Aortic resistance Rao 0.05 mm Hg�s�mL�1

Aortic compliance Cao Initial value: 0.5 mL/
mm Hg

Adjust for each degree
of hypertension
(proximal COA compliance)

Systemic vein
resistance

RSV 0.05 mm Hg�s�mL�1

Systemic arteries and
veins compliance

CSAC Initial value: 2 mL/mm Hg
Adjust for each degree
of hypertension
(systemic compliance)

Systemic arteries
resistance
(including arteries,
arterioles
and capillaries)

RSA 0.8 mm Hg�s�mL�1

Adjust according to the
calculated total systemic
resistance

Proximal descending
aorta resistance

Rpda 0.05 mm Hg�s�mL�1

Upper body resistance Rub Adjusted to have 15%
of total flow rate in
healthy case

Output condition

Central venous
pressure

PCV0 4 mm Hg

Input condition

Mitral valve mean
flow rate

Qmv From echocardiography
data

Other

Constant blood density 1050 kg/m3

Heart rate HR From echocardiography
data

Duration of cardiac
cycle

T From echocardiography
data

COA indicates coractation of the aorta.
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echocardiographic, tomographic, and angiographic parame-
ters. Procedural techniques were at the discretion of the
local senior interventional cardiologists.

Doppler echocardiography

Doppler echocardiography data included raw images, and
reports were collected preprocedure and at 90-day post-
procedure. Echocardiograms and reports were reviewed
and analyzed in a blinded fashion by 3 senior cardiologists
using OsiriX imaging software (OsiriX version 8.0.2;
Pixmeo, Bernex, Switzerland). The following metrics were
measured: valve area, valve velocity, pressure gradient,
stroke volume, cardiac output, and left ventricular outflow
tract diameter, as recommended by the American Society
of Echocardiography.

Data acquisition

Demographic and procedural data were collected from the
TAVR database and patient medical records. Clinical outcome
was evaluated using the New York Heart Association
functional class and medical records, evaluated preprocedure
and 90-day post-TAVR.

Statistical analysis

All results are expressed as mean�SD. Normal distribution
was assessed with the Shapiro–Wilk test. Statistical analyses
were performed using SigmaStat software (Version 3.1; Systat
Software, Inc, San Jose, CA). The paired Student t test was
used to detect any significant hemodynamic difference
between pre- and post-TAVR conditions.

Numerical study

Global hemodynamics (LV workload). We developed a
patient-specific, lumped-parameter model that considers
interactions of the aortic valve, LV, and arterial system to
estimate LV workload noninvasively (Figure 1; Tables 1
and 2) in both pre- and postintervention conditions. The
model used a limited number of input parameters, all of
which can be reliably obtained using Doppler echocardio-
graphy and a sphygmomanometer. Doppler echocardiog-
raphy-based parameters (eg, stroke volume, heart rate,
ejection time, ascending aorta area, aortic valve effective
orifice area, and aortic regurgitation effective orifice area)
were measured in the parasternal long axis, parasternal
short axis, and apical 2-, 4-, and 5-chamber views of the
heart.22 Other input parameters of the model were systolic
and diastolic blood pressures measured using a sphygmo-
manometer. Note that the proposed method does not
need catheter data for estimating LV workload. The model
and submodels have already been used and validated
against in vivo cardiac catheterization (N=118) and in vivo

magnetic resonance imaging data (N=57).22–26 LV work-
load (global hemodynamics) was calculated in all 205
patients in both pre- and post-TAVR.

Local hemodynamics (blood flow dynamics). We devel-
oped a fluid-solid interaction and lumped parameter model-
ing framework to calculate 3-dimensional blood flow
dynamics in the LV (Figure 1; Tables 1 and 2). Because
computed tomography images have higher resolution than
Doppler echocardiography data, they were used for 3-
dimensional reconstruction of the LV for fluid-solid interac-
tion calculations. In addition, as described above, the lumped
parameter model in this framework used few input param-
eters, all of which can be measured using Doppler echocar-
diography and a sphygmomanometer. Because of the
massive computational load, the blood flow inside the LV
(local hemodynamics) was computed and analyzed in 28 of
72 patients with MVD.

Please refer to Data S1 for the details related to the
numerical study.

Results

Clinical Measure of Hemodynamics: Doppler
Echocardiography Pressure Gradients
Clinical assessment of AS for management and intervention
decisions is currently performed based on the symptoms

Figure 2. Changes in clinical Doppler echocardiography mea-
surements in patients with MVD between baseline and 90 days
post-TAVR (N=72). Mean Doppler gradient measured was reduced
77% by TAVR.
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and hemodynamics metrics that focus only on the aortic
valve. Our Doppler echocardiography data showed (Figure 2)
that the transvalvular pressure gradient in all patients with

MVD (MRandPVL; Table 1)wasuniversally significantly reduced
by TAVR. Mean and maximum Doppler pressure gradients were
reduced by 77% and 49%, respectively (N=72; P<0.05).

Figure 3. Changes in clinical assessments of LV and LV workloads in patients with MVD between baseline and 90 days post-TAVR
(N=72). (A) LV workload. (B) Heart failure classification. (C) Ejection fraction. LV indicates left ventricle; MVD, mixed valvular disease;
NYHA, New York heart association; TAVR, transcatheter aortic valve replacement.
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Hemodynamics: Left Ventricular Workload and
Fluid Dynamics

LV workload (global hemodynamics)

Despite the universal reduction in the transvalvular pressure
gradient (N=72; Figure 2), TAVR reduced the LV workload in
only 18 of the 72 MVD patients (25%), as Figure 3A shows.

In 22 of the MVD patients, LV workload was not significantly
reduced (<5% reduction) post-TAVR, and in the other 32
patients, LV workload increased post-TAVR. Furthermore,
reductions in transvalvular pressure gradient were not always
accompanied by improvements in clinical metrics such as
New York Heart Association heart failure classification
(Figure 3B) and ejection fraction (Figure 3C). Pre-TAVR,

Figure 4. Examples of LV workloads in patients between baseline and 90 days post-TAVR. (A) MVD Sample#1: pre-TAVR: EF: 65%, brachial
pressures: 65 to 130 mm Hg, aortic valve EOA: 0.66 cm2, no AR, no MR, LV stroke volume: 72 mL; post-TAVR: EF: 60%, brachial pressures: 60 to
130 mm Hg, aortic valve EOA: 1.45 cm2, mild PVL, mild MR, LV stroke volume: 80 mL. LV workload did not improve by TAVR. (B) Non-MVD
Sample#1: pre-TAVR: EF: 58%, brachial pressures: 56 to 86 mm Hg, aortic valve EOA: 0.6 cm2, mild-moderate AR, mild MR, LV stroke volume:
76 mL; post-TAVR: EF: 75%, brachial pressures: 70 to 123 mm Hg, aortic valve EOA: 1.1 cm2, no PVL, noMR, LV stroke volume: 60 mL. LVworkload
improved remarkably (38% reduction) by TAVR. (C) MVD Sample#2: pre-TAVR: EF: 55%, brachial pressures: 74 to 180 mm Hg, aortic valve EOA:
1.95 cm2, mild-moderate AR, mild-moderate MR, LV stroke volume: 87 mL; post-TAVR: EF: 65%, brachial pressures: 40 to 141 mm Hg, aortic valve
EOA: 1.55 cm2, mild PVL, mild-moderate MR, LV stroke volume: 103 mL. LV workload slightly improved (12% reduction) by TAVR. (D) MVD
Sample#3: pre-TAVR: EF: 65%, brachial pressures: 75 to 141 mm Hg, aortic valve EOA: 1.4 cm2, no AR, moderate MR, LV stroke volume: 85 mL;
post-TAVR: EF: 65%, brachial pressures: 60 to 123 mm Hg, aortic valve EOA: 2.3 cm2, mild-moderate PVL, moderate-severe MR, LV stroke volume:
100 mL. LV workload did not improve by TAVR. AR indicates aortic regurgitation; EF, ejection fraction; EOA, effective orifice area; LV, left ventricle;
MR, mitral regurgitation; MVD, mixed valvular disease; PVL, paravalvular leakage; TAVR, transcatheter aortic valve replacement.
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untreated AS increased the burden on the LV attributable to
the augmented flow resistance, which caused an LV pressure
overload. Although the flow resistance and consequently the
LV pressure decreased greatly post-TAVR, the LV workload
did not improve because PVL and MR contributed to a switch
from a ventricular pressure overload to a ventricular volume
overload. Figure 4 shows examples of LV pressure, volume,
and workload in 4 patients who received TAVR: LV workload
improved remarkably in Non-MVD Sample#1 (38% reduc-
tion), slightly improved in MVD Sample#2 (12% reduction),
whereas it did not improve in MVD Samples#1 and 3.

LV fluid dynamics (local hemodynamics)

PVL following TAVR substantially alters vortical structure in the
left ventricular outflow tract and LV, creating disturbed flow
(Figures 5 through 7). The jets emerging from PVL orifices
diverge within the LV. This unfavorable flow condition leads to
high shear stresses (Figures 5 through 7) on transcatheter

aortic valve and mitral valve leaflets (Figures 5 through 7; eg,
peak time-averaged wall shear stress in patient #28 with MVD:
on transcatheter aortic valve leaflets=14.4 Pa; on mitral valve
leaflets=15.5 Pa; peak time-averaged wall shear stress in the
same patient without PVL: on transcatheter aortic valve
leaflets=0.8 Pa; on mitral valve leaflets=5.7 Pa). Moreover,
PVL, characterized by multiple jets, enters the LV chamber,
directly interacts withmitral inflow, hinders formation of normal
fluid vortical structures in the LV, and may worsen the MR post-
TAVR (eg, Figures 5 through 7). We observed similar flow
characteristics inother patientswithmild,moderate, andsevere
PVL. Interestingly, worsening of the average MR status post-
TAVR (measured by clinical Doppler echocardiography) con-
firmed our above findings about the local hemodynamics
(Figure 8A and 8B). We found in 72MVD patients: (1) MR status
was individually improved in only 21 patients (29% of MVD
patients); on average: pre-TAVR,2.4�0.5; post-TAVR,1.2�0.45
(Figure 8C). The average of the LV workload was also improved

Figure 5. Flow modeling in an LV with moderate-to-severe PVL in patient #28. (A) Time-averaged wall shear stress (TAWSS) during diastole.

Total shear stress exerted on the wall throughout was evaluated using the TAWSS, which was obtained as TAWSS ¼ 1
T
RT

0
jsjdt. Here, T and s are

the period and instantaneous wall shear stress, respectively. (B) Velocity magnitude at mid diastole in different planes passing PVL. In patient
#28, PVL, characterized by 2 jets, enters the LV chamber, directly interacts with the mitral inflow, and may worsen the MR post-TAVR (MR status
from Doppler echocardiography measurements: pre-TAVR, mild to moderate; post-TAVR, moderate to severe). This abnormal flow condition
leads to high shear stresses on the mitral valve leaflets, LV wall, and TAV leaflets. LV indicates left ventricle; MR, mitral regurgitation; PVL,
paravalvular leakage; TAV, transcatheter aortic valve; TAVR, transcatheter aortic valve replacement.
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in this patient population (pre-TAVR, 1.99�0.55 J; post-TAVR,
1.37�0.29 J; 31% average decrease); (2) individual MR status
becameworse in 32 otherMVDpatients post-TAVR; on average:
pre-TAVR, 1.15�0.38; post-TAVR, 2.25�0.40 (Figure 8D). The
average of the LV workload was not improved in this patient
population as well (pre-TAVR, 1.37�0.50 J; post-TAVR,
1.6�0.53 J; +17% average increase); and (3) individual MR
status remained unchanged in 18 other MVD patients post-
TAVR; on average: pre-TAVR, 1.66�0.48; post-TAVR,
1.66�0.48 (Figure 8E). The average of the LV workload was

also not improved significantly in these patients (pre-TAVR,
1.45�0.51 J; post-TAVR, 1.31�0.36 J; 10% average decrease).

Figure 9 shows changes in LV workloads versus mitral
valve effective regurgitant orifice area (measured by Doppler
echocardiography) between baseline and 90-day post-TAVR in
patients with MVD (N=72). In all panels of this figure, patients
with negative changes in LV workload benefited from TAVR
(shaded regions). Figure 9A suggests that, in some patients
(quadrant IV), although TAVR worsened the mitral regurgita-
tion condition, it still improved LV workload. Figure 9B

Figure 6. Flow modeling in an LV with mild-to-moderate PVL in patient #59. (A) Velocity vector during diastole. (B) Wall shear stress during
diastole. In patient #59, PVL, described by 1 jet, interacts with the mitral inflow and may worsen the MR post-TAVR (MR status from Doppler
echocardiography measurements: pre-TAVR, mild; post-TAVR, mild to moderate). LV indicates left ventricle; MR, mitral regurgitation; PVL,
paravalvular leakage; TAVR, transcatheter aortic valve replacement.
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suggests that all patients with pre-TAVR regurgitant mitral
valve effective regurgitant orifice area >0.3 (moderate and
worse) benefited from TAVR regardless of the conditions of
other disease constituents. Interestingly, Figure 9C suggests
that LV workload worsened in all patients who were found to
have regurgitant mitral valve effective regurgitant orifice area
>0.3 (moderate and worse) post-TAVR.

Discussion
In MVD, valvular (PVL and MR), and ventricular (eg, LV
dysfunction and heart failure) diseases interact with one
another, and these phenomena are independent predictors of
short- and long-term mortality following TAVR. We showed
that reduction of transvalvular pressure gradient does not

predict outcome of TAVR because of the effects of the PVL on
MR and LV hemodynamics. Given that the benefit of TAVR has
been unequivocally shown, an important concern is how to
address pathologies in other valves—at the same time, before
or after TAVR procedure, and medically or mechanically. Our
study brings mechanistic insight to address this increasingly
common clinical dilemma.

In MVD Patients: Mitral Regurgitation May Be
Exacerbated by Paravalvular Leak Post-TAVR
MR is a common entity in patients with AS—and perhaps it
even arises from the long-term effects of pressure overload
from the stenotic valve. Concomitant MR, left untreated at the
time of TAVR, has been associated with increased all-cause

Figure 7. Flow modeling in an LV with mild PVL in patient #35. (A) Velocity vector during diastole. (B) Wall shear stress during diastole. In patient
#35, PVL, defined by 1 jet, interacts loosely with the mitral inflow (MR status from Doppler echocardiography measurements: pre-TAVR: mild; post-
TAVR: mild). LV indicates left ventricle; MR, mitral regurgitation; PVL, paravalvular leakage; TAVR, transcatheter aortic valve replacement.
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mortality.2,10–12 MR may increase patients’ vulnerability
because any complication leading to fluid dynamics or
workload instability may rapidly decompensate the patient’s
hemodynamic status, leading to a refractory heart failure and
shock. We are already aware that many patients experience a
significant improvement in the MR post-TAVR, but, in many
others, MR worsens.2,10,12 Substantial MR was reported to
increase early (in-hospital or 30-day) mortality post-TAVR.27,28

It is crucial to identify patients in whom MR will not improve or
will even progress post-TAVR.29 In these patients, the
increased risk of a double-valve procedure may be justified.

Pre-existing MR may be exacerbated by PVL

During filling of the healthy heart, the blood entering the LV
through the mitral valve forms a vortex that minimizes energy

dissipation and optimizes pumping efficiency.30 The vortical
structure in the LV is altered in the presence of valvular and
ventricular diseases. In such cases, vortex dynamics become
less synchronized with the heart contraction than the healthy
vortex ring is, and other vortices may emerge and interact
with one another.30 In agreement with findings of Pibarot
et al,6 our results suggest that PVL, characterized by multiple
jets, enters the LV and directly interacts with mitral inflow (eg,
Figures 5 through 7) and worsens MR in MVD patients post-
TAVR. These modeling findings were confirmed by our clinical
Doppler echocardiography data (Figures 8 and 9): From 72
MVD patients, individual MR status worsened in 32 patients
and remained unchanged in 18 others post-TAVR.

Additionally, we observed (Figures 5 through 7) that PVL
leads to elevated shear stresses on mitral valve leaflets. This

Figure 8. Changes in mitral regurgitation status in patients with MVD between baseline and 90 days post-TAVR (N=72). (A) In individual MVD
patients. (B) Average in all 72 MVD patients. (C) Individual MR status was improved. (D) Individual MR status worsened. (E) Individual MR status
remained unchanged. MR indicates mitral regurgitation; MVD, mixed valvular disease; TAVR, transcatheter aortic valve replacement.
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can cause tissue inflammation, which can ultimately lead to
mitral valve failure (34–37).

In Some MVD Patients: No Improvement in Left
Ventricular Hemodynamics Post-TAVR
Some patients, who underwent TAVR, experienced a signifi-
cant improvement in terms of pronounced reverse LV remod-
eling and less congestive heart failure symptoms. However,

the situation in some other patients worsened. LV workload is
an effective metric of LV load and clinical state23,25,31 and
represents the energy that the ventricle delivers to the blood
during ejection plus the energy necessary to overcome the
viscoelastic properties of the myocardium itself. LV workload
is the integral of LV pressure and its volume change and was
calculated as the area encompassed by the LV pressure-
volume loop. Our results revealed that, pre-TAVR, AS increased
the burden on the LV attributable to augmented flow

Figure 9. Changes in LV workloads vs mitral valve effective regurgitant orifice area in patients with MVD between baseline and 90 days post-
TAVR (N=72). LV indicates left ventricle; MVD, mixed valvular disease; TAVR indicates transcatheter aortic valve replacement.

DOI: 10.1161/JAHA.119.015063 Journal of the American Heart Association 12

Intervention in Mixed Valvular Disease Keshavarz-Motamed et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H



resistance, which caused an LV pressure overload. Although
the flow resistance and consequently the LV pressure
decreased greatly postintervention, the LV load did not

improve given that PVL contributed to an immediate switch-
ing from a LV pressure overload to a LV volume overload
(Figures 3 and 4).

Figure 10. Changes in clinical assessments of LV and LV workloads in patients with MVD with pre-existing aortic valve
regurgitation between baseline and 90 days post-TAVR (N=21). (A) LV workload. (B) Heart failure classification. (C) Ejection
fraction. LV indicates left ventricle; MVD, mixed valvular diseases; NYHA, New York heart association; TAVR, transcatheter aortic
valve replacement.
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Patients With MVD Who Benefited From TAVR
Patients with AS and aortic valve regurgitation, representing
up to 40% of the candidates of TAVR, derived great benefits
from TAVR despite even developments of a mild PVL post-
TAVR that had a minimal influence on outcomes.32,33 Our
results showed that TAVR led to significant improvements in
LV workload in MVD patients who had AS and aortic valve
regurgitation before the procedure (N=21; Figure 10A). Such
LV workload improvements are accompanied by improve-
ments in clinical metrics such as NYHA heart failure
classification (Figure 10B) and ejection fraction (Figure 10C).

Patients With PVL Following TAVR, But Without
Pre-Existing MR
We investigated 48 patients with post-TAVR PVL, but without pre-
existing MR. TAVR reduced LV workload in 28 of these 48
patients (60%; P<0.05). In 8 of these patients, LV workload did
not significantly reduce (<5% reduction) post-TAVR, and in 12
others, LV workload increased post-TAVR. Indeed, post-TAVR, LV
pressure decreased, but LV workload did not always improve
because PVL contributed to a switch from LV pressure overload
to LV volume overload. The same process happened in patients
with MVD, but more intensively. In fact, PVL and MR had
mechanical interactions with each other and potentially may
contribute in worsening of MR. Most patients who suffered from
MVD post-TAVR (75% of N=72; P<0.05) showed no improve-
ments or even worsening of LV workload, whereas the majority
of the patients with PVL, but without a pre-existing MR condition
(60% of N=48; P<0.05), showed improvements in LV workload.

Limitations
This study was performed on 72 patients with MVD in both pre-
and postintervention states. Future studies must be conducted
on a larger population of MVD patients to further confirm the
findings of this study. In addition, this study did not consider data
collection immediately post-TAVR. Future studies should be
designed to include this in the data collection protocol. One
limitation that may be associated with our simulations is
modeling the transcatheter aortic valve leaflets to be rigidly
close and mitral valve leaflets to be rigidly open throughout the
diastolic phase. However, this study focuses on diastole, the left
ventricular filling phase, when PVL occurs. Furthermore, the good
agreement between the numerical simulations (in progress for
our other study) and Doppler echocardiography velocity mea-
surements, which include moving valve leaflets, shows that this
limitation does not affect the conclusions of this study. Future
numerical studies will consider the interactions between the fluid
and deforming valve-leaflet structure during the entire cardiac
cycle and will investigate the effects of dynamical opening and
closing of the aortic valve leaflets on vortex dynamics in the LV.

Conclusions
PVL limits the benefit of TAVR; it may increase LV load, may
potentially worsen MR, and worsens heart failure. MR and its
possible exacerbation by PVL will likely play an important
hindering role in the success of TAVR. This presents an
important finding, especially considering the expansion of
TAVR candidacy to lower-risk and/or young patients.

The findings of this study suggest that beyond standard
clinical indices for hemodynamic evaluation of valvular
disease (eg, Doppler echocardiography pressure gradients),
valvular and ventricular hemodynamics and their interactions
should be clinically quantified and considered to better
conduct aortic valve management, treatment planning, and
patient risk stratification.
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A. Lumped parameter model  

The lumped-parameter model (LPM) framework includes the following sub-models: 1) LV; 2) aortic 

valve; 3) aortic regurgitation and 4) systemic circulation (Figure 1, Tables 1 and 2). All input parameters 

were obtained from Doppler echocardiography measurements and brachial pressures in both pre and 

post intervention states. The model and sub-models have already been used and validated against in vivo 

cardiac catheterization (N=113) and in vivo MRI data (N=57) 1–6.  

Heart-arterial model 

The ventricle was filled by a normalized physiological mitral flow waveform adjusted for the required 

stroke volume. Coupling between left ventricle pressure and volume was performed through a time 

varying elastance E(t), a measure of cardiac muscle stiffness. 
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Where PLV(t), V(t) and V0 are left ventricular time-varying pressure, time-varying volume and unloaded 

volume, respectively. The amplitude of E(t) can be normalized with respect to maximal elastance Emax, 

i.e., the slope of the end-systolic pressure-volume relation, giving EN(tN)=E(t)/Emax. Time then can be 

normalized with respect to the time to reach peak elastance, TEmax (tN=t/TEmax).  

0

maxmax
)(

)(
)/(

VtV

tP
TtEE LV

EN
−

=

 

                (2) 

As normalized curve of EN(tN) can be described using Fourier series, therefore, the relation between 

PLV(t) and V(t) can be determined for the left ventricle.  

Modeling aortic valve 



Aortic stenosis (AS) was modeled using Equation 3. This formulation expresses the instantaneous net 

pressure gradient across the stenotic valve (after pressure recovery) as a function of the instantaneous 

flow rate and the energy loss coefficient and links the LV pressure to the aorta pressure:  
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where
ASLCoE ,

AS
EOA , A ,   and Q are the valvular energy loss coefficient, the effective orifice area, 

ascending aorta cross sectional area, the fluid density and the transvalvular flow rate, respectively. 

Variable aortic valve resistance (Rav) and constant aortic valve inductance (Lav) in the LPM are 
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Modeling aortic valve regurgitation  

Aortic regurgitation (AR) was modeled using the same formulation as aortic stenosis. AR pressure 

gradient is the difference between aortic pressure and LV pressure during diastole. 
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where 
ARLCoE  , REOA and LVOTA  are regurgitation energy loss coefficient, regurgitant effective orifice 

area and LVOT area, respectively. Variable aortic valve regurgitation resistance (Rav) and constant aortic 

valve regurgitation inductance (Lav) in model are )(
2
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ARL


 and 

ARLCoE

2
, respectively. 

Determining arterial compliance and peripheral resistance  

The total systemic resistance was computed as the quotient of the average brachial pressure and the 

cardiac output (assuming a negligible peripheral venous pressure (mean ~ 5 mmHg) compared to aortic 

pressure (mean ~ 100 mmHg). This total systemic resistance represents the electrical equivalent 

resistance for all resistances in the current model. Because what the left ventricle faces is the total 

systemic resistance and not the individual resistances, for the sake of simplicity we considered the aortic 

resistance, aoR , and systemic vein resistance, SVR , as constants and adjusted the systemic artery 

resistance, SAR , according to the obtained total systemic resistance.  

For each degree of hypertension, we fit the predicted pulse pressure to the actual pulse pressure (known 

by arm cuff sphygmomanometer) obtained from clinical study by adjusting compliances (aorta (Cao) and 

systemic (CSAC)).  

Computational algorithm 

The lumped parameter model was analyzed numerically by creating and solving a system of ordinary 

differential equations in Matlab Simscape (MathWorks, Inc.), enhanced by adding additional codes to 

meet demands of cardiac model in circuit. A Fourier series representation of an experimental normalized 

elastance curve for human adults was used to generate a signal to be fed into the main program (1,2,3,4). 

Simulations start at the onset of isovolumic contraction. Left ventricle volume, V(t), is calculated using 

left ventricle pressure, PLV, and time varying elastance values (equation 1). Matlab’s ode23t trapezoidal 



rule variable-step solver was used to solve system of differential equations with initial time step of 0.1 

milliseconds. The convergence residual criterion was set to 10-5 and initial voltages and currents of 

capacitors and inductors set to zero. 

B. Computational fluid mechanics model  

In this study, blood flow simulations rely on three dimensions fluid-solid interaction (FSI) 

computational fluid dynamics using FOAM-Extend 7 in which the system of equations governing the 

FSI problem are formulated using the finite volume method.  

Governing equations for fluid domain 

Blood flow was governed by the 3D incompressible Navier-Stokes equations and assumed to be a 

Newtonian and incompressible with a dynamic viscosity of 0.004 Pa·s and a density of 1060 kg/m3 8. 

Continuity and momentum equations were as the following: 
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where n is the normal vector to the surface S, V is the fluid velocity, µ is the fluid dynamic viscosity, P 

is the blood pressure and ρ is the fluid density. Due to the moving boundary of the fluid-solid interface, 

momentum equation (8) was considered in the form of Arbitrary Lagrangian-Eulerian (ALE) as follows: 

1 1
.( ) .[ ]

V
V V V Vss s

d n ds n ds pd
t


 


 


+ − =  − 

     
(9) 

.
s

V
s

d
d n ds

dt



=   

(10) 



where Vs is the velocity of surface. Equation (10) indicates that the rate of changes of the volume and 

velocity of surface are in equilibrium.  

Governing equations for solid domain  

Because during diastole, the LV is passive its deformation depends on the tissue structure and the blood 

pressure inside the LV 9. In this study, we developed a method to adjust patient-specific passive material 

properties of the LV for patients who undergo TAVR, based on our patient-specific DE-based LPM 

algorithm 1–6. LV tissue was assumed to be an isotropic Saint Venant-Kirchhoff solid 10–15. We adjusted 

the ventricular non-linear material properties during diastole using the results of our LPM algorithm as 

follows. The LPM algorithm provided the diastolic pressure as well as the pressure-volume (P-V) 

diagram. We applied the diastolic pressure as the boundary condition at the inner wall of the LV and by 

assuming different values for material properties, we obtained a series                                                                                                                                                                                                                                                     

of P-V diagrams. Material properties were then interpolated to find the best value that can match the P-V 

results obtained using solid modeling to those obtained using the LPM.  

According to the linear momentum conservation law in the total Lagrangian form, deformation of elastic 

and compressible solid were considered as the following: 
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where the subscript 0 describes the undeformed configuration and u is the displacement vector. F is the 

deformation gradient tensor and can be described as: 

( )TF I u= +   
(12) 

where I is the second order Identity tensor. Also, Ʃ in eq. (11) is the second Piola-Kirchhoff stress tensor 

and was described through Cauchy stress tensor (σ) as the following: 



1
. .

det

TF F
F

 =   
(13) 

Using St. Venant-Kirchhoff constitutive material model, Ʃ was explained through isotropic Hooke’s 

law: 

2 ( )E tr E I  = +  
(14) 

where µ and λ are the Lame’s constants (related to the Young’s modulus and Poisson’s ratio of 

material). E is the Green-Lagrangian strain tensor and is defined as follows: 

1
[ ( ) .( ) ]

2

T TE u u u u=  +  +   
(15) 

Fluid-structure interaction (FSI) 

The fluid and solid solvers were coupled together to simulate the LV under pathophysiological flow and 

pressure conditions. Both solid and fluid were modeled using finite-volume approach. Fluid and solid 

solvers were coupled by kinematic and dynamic conditions for the LV. To satisfy the kinematic 

condition, the velocity and the displacement must be continuous across the interface 7: 

, ,f i s iu u=  
(16) 

, ,f i s iV V=  
(17) 

where subscripts i, s and f indicate the interface, solid and fluid regions, respectively. To satisfy the 

dynamic condition, the forces at the interface must be in equilibrium: 

, ,. .i f i i s in n =  
(18) 



The Dirichlet-Neumann procedure at the interface indicates that fluid domain is solved for a given 

velocity/displacement and solid is solved for a given traction 7. 

Boundary conditions & material properties 

We used our patient-specific LPM (Figure 1) 1–5 : (1) to provide the time-dependent trans-mitral blood 

velocity; (2) to set the pressure, inside the LV; (3) to calculate material properties (see section 

Governing equations for solid domain). All geometries were reconstructed based on images at the 

beginning of diastole and, because PVL occurs in the left ventricular filling phase, all simulations were 

performed during diastole. Therefore, the TAVR was modeled to be rigidly closed and the mitral valve 

was modeled fully opened during the diastolic phase. The boundary surfaces between the fluid and solid 

inside the LV was considered as Moving wall boundary condition 15,16. During diastole, there is an 

inflow from the atrium to the LV but there is no outflow from the LV due to the closed aortic valve. 

Since the blood is incompressible, interactions between the solid and fluid domains should be 

considered to allow the blood to expand and contract the LV wall to conserve mass. In order to solve the 

FSI problem inside the nonlinearly deforming LV, we used the Robin boundary condition for pressure 

based on the approach proposed by Tukovic et al 17.  

Reconstructed geometries in patients with TAVR using CT images 

We used CT images from patients with TAVR to segment and reconstruct the 3D geometries of the 

complete ventricle (ventricle, TAVR, coronaries, mitral valve and left atrium) using ITK-SNAP (version 

3.8.0-BETA), a 3D image processing and model generation software package (Figure 1). These 3-D 

reconstructions were used for investigating hemodynamic using computational fluid dynamics.     
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