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Abstract: Chemical traveling waves play an important role in biological functions, such as the
propagation of action potential and signal transduction in the nervous system. Such chemical waves
are also observed in inanimate systems and are used to clarify their fundamental properties. In
this study, chemical waves were generated with equivalent spacing on an excitable medium of the
Belousov–Zhabotinsky reaction. The homogeneous distribution of the waves was unstable and low-
and high-density regions were observed. In order to understand the fundamental mechanism of
the observations, numerical calculations were performed using a mathematical model, the modified
Oregonator model, including photosensitive terms. However, the homogeneous distribution of
the traveling waves was stable over time in the numerical results. These results indicate that
further modification of the model is required to reproduce our experimental observations and
to discover the fundamental mechanism for the destabilization of the homogeneous-distributed
chemical traveling waves.
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1. Introduction

Traveling waves are widely observed in biological systems, such as the action potential
propagation on cardiac muscles, which results in the pump function of the heart [1–3].
These traveling waves were observed in nonliving chemical systems, such as the Belousov–
Zhabotinsky (BZ) reaction, which is a well-known nonlinear chemical reaction that realizes
periodic oscillation and ordered pattern formation [4,5]. The fundamental mechanism has
been clarified by experimental observations and theoretical approaches using mathematical
models, such as the Oregonator [6,7]. These investigations successfully elucidated a
variety of phenomena, including the origin of spiral patterns [8–10], diode behavior of
traveling waves [11–14], and bifurcation between global oscillation and traveling wave
propagation [15–17].

The speed of chemical traveling waves depends on environmental conditions, such as
the well-known “superspiral pattern” [18–20]. If the core of the spiral wave is periodically
perturbed by electrical stimuli, the spacing of the chemical waves oscillates over time.
As a result, short- and long-spacing regions propagate among the waves, and the long-
spacing region forms a spiral, called “superspiral.” Another example is that the speed
of chemical waves depends on the period of the spiral core, which depends on chemical
conditions [21,22]. A long period of the spiral core generates chemical waves with long
spacings, which travel fast. This relationship between the spacing and traveling speed of
chemical waves is called the “dispersion relation” [21,22].
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The dispersion relation reveals that if there are different spacings, a chemical wave
with long spacing closes the gap with the wave in front with a short spacing. One ex-
ample is the initial inhomogeneous distribution of multiarmed spiral waves approach to
homogeneous distribution [23]. Lázár et al. preliminarily demonstrated the behavior of
inhomogeneous-distributed wave trains [24]. They prepared a circular excitable medium
of the BZ reaction, and unidirectional traveling waves were generated on the medium. Five
chemical waves were initially distributed at inhomogeneous distances. The distribution
changed over time, and the wave train finally reached a homogeneous distribution [24].
Subsequently, the stability of the homogeneous distribution was systematically investi-
gated using the photosensitive BZ reaction with a change in the number of waves [25],
where a circular excitable medium was prepared by controlling the strength of the light
illumination, and unidirectional chemical waves were generated at a local position, in
which the number of waves changed from 5 to 13. Although all experiments finally reached
a homogeneous distribution, the relaxation process depended on the number of waves.
The distance between waves monotonically changed for a small number of waves up to
eight. However, the spacing between waves oscillated for a large number of waves. In
the previous studies, chemical waves were generated in the oscillatory region and led
to a circular excitable region [24,25]. Here, a part of the circular excitable region was
temporarily cut to eliminate chemical waves traveling on one side, and the circular region
was recovered after the desired number of unidirectional chemical waves was prepared.
Therefore, the wave train was generated at a local position, and it was technically difficult
to prepare homogeneously distributed chemical waves as the initial condition.

In this study, the stability in the homogeneous distribution of a wave train with a high
density was investigated by preparing homogeneously distributed chemical waves as the
initial condition. To generate chemical waves with a homogeneous distribution, we used a
characteristic condition of the photosensitive BZ reaction, in which both photoexcitation
and photoinhibition could be realized under the same chemical conditions with different
light fields [26]. Under these conditions, steady light illumination inhibits a chemical
wave, while a sudden increase in light intensity excites a chemical wave. Using this
characteristic photosensitivity, we successfully prepared a homogeneous wave train as the
initial condition and investigated its stability. In addition, to support our experimental
observation, we also carried out numerical calculations using a modified Oregonator model
for such a characteristic photosensitive BZ reaction [26].

2. Materials and Methods

Sodium bromate, malonic acid, sulfuric acid, and sodium bromide were purchased
from Fujifilm Wako Chemicals Corporation. Ruthenium-tris (2,2′-bipyridyl) dichloride was
obtained from Sigma-Aldrich. The chemicals were used without further purification.

The Belousov–Zhabotinsky (BZ) solution, composed of sodium bromide (0.52 M),
sulfuric acid (0.30 M), malonic acid (0.16 M), sodium bromide (0.01 M), and ruthenium
bipyridine as the catalyst (1.7 mM). A filter paper (25 mm in the diameter; 1 µm in the pore
size) was soaked in the BZ solution for one minute and placed on a glass plate (76 mm in
the width; 52 mm in the depth), which was covered with silicone oil to prevent drying.
The state of the BZ reaction was controlled by illumination using a liquid-crystal projector
(EB-S04, Epson, Japan). To control the light intensity (LI), grayscale images (gray value,
0–255) were created on a personal computer (PC) and projected onto the BZ filter paper
(Figure 1). The value of LI at the reaction position monotonically increased with the gray
values from 0 to 200 and reached a plateau (1.0 × 105 lx). The value of LI was fitted using
the following equation:

LI = 1.7x2 + 1.4× 102x + 4.8× 103, (1)

where x is the gray value on the PC. The desired image was prepared and controlled using
PowerPoint (Microsoft) on the PC.
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mm in the width) with high intensity (1.0 × 105 lx), which were inserted directly next to 
the narrow lines of image (i). (iii) Circular dark image. First, the BZ filter paper was illu-
minated with high intensity (1.0 × 105 lx), and all excited regions disappeared. Image (i) 
was projected for 2.5 min. The projection was subsequently changed to image (ii) for 5 s 
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propagated in both directions. After the projection of image (i) for 4 s, it was changed to 
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in a wave train propagating in only a clockwise direction.  

 

Figure 1. Schematic illustration of the experimental setup. A filter paper was soaked in the Belousov–
Zhabotinsky (BZ) solution for one minute and placed on a glass plate, which is indicated as “BZ
filter paper”.

The experimental setup is shown in Figure 1. The state of the BZ reaction was
oscillatory with dark illumination up to 20 and steady state with bright illumination of
over 160 of gray value. Under intermediate conditions, the BZ reaction was an excitable
medium. In addition, a sudden increase in the light from 50 to 200 of gray value induced
excitation of the BZ reaction.

A circular dark region (1.6× 104 lx) was prepared with a white background (1.0 × 105 lx).
The outer and inner diameters of the circular region were 15 and 11 mm, respectively. Thus,
the width of the dark excitable region was 2 mm. To generate unidirectional chemical waves
in a homogeneous distribution in the circular region, three different images were projected
(Figure 2): (i) Narrow lines (0.5 mm in the width) with high intensity (1.0 × 105 lx), which
were homogeneously placed in the circular dark region. (ii) Wide lines (1.5 mm in the
width) with high intensity (1.0 × 105 lx), which were inserted directly next to the narrow
lines of image (i). (iii) Circular dark image. First, the BZ filter paper was illuminated with
high intensity (1.0 × 105 lx), and all excited regions disappeared. Image (i) was projected
for 2.5 min. The projection was subsequently changed to image (ii) for 5 s and returned
to image (i). This short-time irradiation generated chemical waves, which propagated in
both directions. After the projection of image (i) for 4 s, it was changed to image (iii), and
the behavior of the wave train was observed for at least 5 min. The narrow lines inhibited
the chemical waves propagating in a counterclockwise direction, resulting in a wave train
propagating in only a clockwise direction.
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3. Results
3.1. Generation of Unidirectional Chemical Waves

Unidirectional chemical waves were generated using the characteristics of the pho-
tosensitive BZ reaction that is photoinhibition and photoexcitation. No chemical waves
were generated with the illumination of image (i). However, the wide-line illumination
induced excitation of the BZ reaction (Figure 3a), resulting from photoexcitation. This
observation agrees with the previous study, where a sudden increase in the light intensity
induces excitation of the BZ reaction under this chemical condition [26]. The excitation
generated chemical waves in both directions, and the narrow lines inhibited the chemical
wave from traveling only in the counterclockwise direction. Therefore, unidirectional
chemical waves were generated at the periodic positions (see Video S1 as Supplemental
Materials). The chemical wave induction is shown in the space–time diagram for the two
waves (Figure 3a,b).
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Figure 3. (a) Snapshot showing photoexcitation. Rapid increase in the light intensity induced
excitation of the BZ reaction. (b) Space–time diagram showing the generation of unidirectional
chemical waves. The data was obtained on line XY, as indicated in (a). The white regions indicate
strong illumination, corresponding to narrow and wide lines.

The preparation of homogeneously distributed chemical waves was sensitive to the
timing of changes in the light field, and it required careful tuning of the irradiation period of
each image. As described above, the chemical waves propagating in the counterclockwise
direction were eliminated by the narrow white line, which was irradiated by image (i) after
image (ii) was projected (Figure 3b). To successfully generate unidirectional chemical
waves, the irradiation period of image (i) played a crucial role. When the period was
extremely short, it did not completely inhibit the chemical waves in a counterclockwise
direction, which resulted in spiral waves. Oppositely, when the period was extremely long,
chemical waves traveling in a clockwise direction contacted the narrow line in front of the
waves, and a part of the waves was inhibited, which also resulted in spiral waves (Figure 4).
Thus, the irradiation period of image (i) after the photoexcitation had to be adjusted to
the appropriate period. Otherwise, spiral waves were generated. We performed seven
experiments and succeeded only three times, generating 16 unidirectional chemical waves.
However, from a different perspective, our proposed method can be applied to generate
spiral cores at the desired positions.
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Figure 4. An example of failure to generate unidirectional chemical waves. The snapshots show
the process of spiral waves formation owing to the image (i) in Figure 2a irradiated extremely long
period. When a part of the chemical waves contacted the narrow line of light illumination (red circle
in (a)), the contacted regions of the chemical waves were inhibited (b). As a result, spiral waves were
generated (c).

3.2. Stability of Homogeneous Distribution of Chemical Waves

The unidirectional chemical waves were homogeneously distributed in the circular
excitable region (Figure 5a) and propagated in a clockwise direction. The number of waves
was 16. The initial homogeneous distribution gradually broke with the traveling of the
wave train, and high- and low-density regions were generated (Figure 5b, see Video S2
as Supplemental Materials). As shown in Figure 5b, there are only two chemical waves
per 10 mm in the low-density region and three waves in the high-density region. It
was suggested that the equivalent interval of the wave train was unstable under these
conditions. Similar behavior was confirmed three times with good reproducibility.
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Figure 5. Snapshots at t = (a) 0 s and (b) 300 s. Under the initial condition, 16 chemical waves were
distributed with equivalent intervals (homogeneous). Oppositely, low- and high-density regions
appeared at t = 300 s. The arrows in (b) indicate a length of 10 mm. In the low-density region, there
were two chemical waves at 10 mm, while three waves were observed in the high-density region.

The traveling speed of each chemical wave oscillated over time, which reflected the
inhomogeneous distribution of the chemical waves. Initially, all chemical waves accelerated
for 50 s, and several waves maintained the traveling speed at approximately 0.15 mm/s.
Others further accelerated up to 0.20 mm/s (Figure 6a). Afterward, the latter started to
decelerate at t = 120 s, while the former started to accelerate again. Eventually, the traveling
speed reversed at t = 260 s. Similarly, all the chemical waves repeated this acceleration and
deceleration, which depended on the spacing from the wave in front. Namely, the traveling
speed decelerated and accelerated in the high- and low-density regions, respectively.
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Figure 6. (a) Time series of the traveling speed of the chemical waves. (b) Time evolution of the
spacing from the wave in front. The vertical bars corresponding to each wave. The brightness of each
bar indicated the spacing of waves, which were numbered in a clockwise manner from 1 to 16. The
width of the bar was appropriately determined and had no meaning.

The inhomogeneous distribution of the chemical waves was quantitatively indicated
using the spacing between the waves. The time series of the spacing from the wave in front
was measured by image analysis, as shown in Figure 6b. The spacing for each wave was
indicated by brightness; white and black corresponded to 5.0 and 3.0 mm, respectively,
and the waves were assigned a number in a clockwise manner (Figure 6b). Under the
initial condition, the spacing was distributed from 3.6 to 4.0 mm, which corresponded
with the gray color in Figure 6b. The spacing of wave 7 initially increased; that of wave 6
increased thereafter, and the spacing increased one after the other in order (Figure 6b). In
other words, the large spacing (white color) propagated among the wave train backward,
in a counterclockwise direction. The maximum spacing reached 4.8 mm, and the minimum
was 3.2 mm, indicating that the initial homogenous distribution became unstable and low-
and high-density regions were generated.

4. Discussion
4.1. Numerical Simulation Using a Mathematical Model for Photosensitive BZ Reaction

Photoinhibition and photoexcitation of chemical waves were reproduced using a
mathematical model [26]. Here, chemical waves were prepared at equivalent spacings,
using the same model and conditions. The mathematical model is the Oregonator modified
for the photosensitive BZ reaction.

∂u
∂t = Du∇2u + 1

ε1
[qv− uv + u(1− u) + p2φ],

∂v
∂t = Dv∇2v + 1

ε2
[−qv− uv + f w + p1φ],

∂w
∂t = Dw∇2w + u− w +

( p1
2 + p2

)
φ,

(2)

where valuables u, v, and w were the concentrations of HBrO2, Br−, and Ru(bpy)3
3+, respec-

tively. The parameters were set to ε1 = 0.061, ε2 = 2.04× 10−4, Du = Dv = 1, Dw = 0.58,
q = 1.0× 10−4, f = 1.2, p1 = 0.0515, and p2 = 0.964. These parameters corresponded to
[H+] = 0.6 M, [malonic acid] = 0.16 M, and [BrO3

−] = 0.52. The parameter φ represented
light intensity and was set to 0.01, 0.02, and 0.04 for the excitable area, wide lines (photoex-
citation region), and narrow lines (photoinhibition region), respectively. The numerical
simulation was performed in a one-dimensional space with periodic boundary conditions
using the Euler method. The length of the space was 100, which corresponded to 3.5 mm
in the real space. The time step was 10−4, and the spatial mesh size was 0.1.

For the initial condition, all values were set to 0, and the light field φ(x) was set to
0.04 for the narrow lines (x = 20–25 and 70–75) and 0.01 for the excitable field (x = 0–20,
25–70, and 75–100). Owing to the light field, values of u, v, and w changed over time
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and reached a steady-state (Figure 7(ai,bi)). Thereafter, the value of φ(x) at the photoex-
citation regions (x = 25–50 and 75–100) changed to 0.02. This sudden increase in the light
intensity induced the excitation, and u and w drastically increased in the illuminated
regions (Figure 7(aii,bii)), resulting in chemical waves in both directions (Figure 7(aiii,biii)).
However, the waves traveling to the left contacted the inhibited regions prepared by the
narrow lines (Figure 7(aiii,biii)) and disappeared (Figure 7(aiv,biv)). Finally, unidirectional
chemical waves traveling to the right were successfully generated (see Videos S3 and S4 as
Supplemental Materials). This is the result of photoinhibition and photoexcitation.
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Figure 7. (a) Concentration profiles of u, v, and w obtained by numerical calculation. (b) The profile of
light intensity φ(x). (i) Steady-state with narrow light illumination within 20–25 and 70–75 (t = −2.0).
(ii) Photoexcitation with wide light illumination within 25–50 and 75–100 (t = −0.1). (iii) Chemical
waves were generated and traveled to the right and left (t = 1.0). (iv) Chemical waves traveling to the
left disappeared because of the narrow light illumination, and only unidirectional waves to the right
remained (t = 3.0).

The two waves propagated in the one-dimensional space and interacted with each
other. The traveling behavior is shown in the space–time diagram of w (Figure 8a). The
profile of the traveling wave indicated that the activator concentration, u, was high at the
front of the wave, and the inhibitor concentration, v, was high behind the wave (Figure 8b).
The inhibitor concentration at the front of the wave might have affected the traveling speed
of the wave. The initial traveling speed was fast; it drastically decreased over time and
approached 4.5 (Figure 8c). In addition, the spacing between the waves was constant over
time (Figure 8d). These results indicate that the homogeneous distribution of the traveling
waves was stable under this condition.

4.2. Stability of the Homogeneous Distribution of Chemical Waves

The number of waves increased to three, or the length of the space decreased to 50.
Under both conditions, the traveling speed of the wave approached to constant soon, and
the spacing was equal, indicating that the homogeneous distribution of the chemical waves
remained stable. A further increase in the number of waves or a decrease in the length of
the space induced the disappearance of the waves. Therefore, our numerical calculation
indicated that the homogeneous distribution of the traveling waves was stable using the
mathematical model and parameter conditions.

The stability of the homogeneous distribution of traveling waves was numerically
investigated using other models, such as the modified FitzHugh–Nagumo [27] and Aliev–
Panfilov models [28]. These mathematical investigations demonstrated the possibility
of the destabilization of the homogeneous distribution of the traveling waves. These
studies implied that the Oregonator model required further modification to reproduce our
observations and clarify its mechanism.
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Our experimental observations showed that the homogeneous distribution of the
chemical waves became inhomogeneous (Figures 5 and 6). These behaviors were observed
for a short time (5 min), owing to the batch system. Therefore, it was difficult to conclude
that the observations were finitely stable or transient. To conclude, further experiments
such as a long-time observation using a flow system or a systematic investigation with
changes in the number of waves are required. If we find bifurcation of the stability in a
homogeneous distribution of wave train, e.g., stable for a small number and unstable for a
large number of waves, it strongly supports our hypothesis.

In addition, to uncover the mechanism of the destabilization of the homogeneous dis-
tribution, further mathematical approaches for the photosensitive BZ reaction are required.
For example, the Oregonator model used here did not consider the total mass of catalyst,
and thus, the nullcline for w was almost linear at the region with a large value of u. The
Rovinsky–Zhabotinsky model, which is the mathematical model for other catalysts [29],
Ferroin, considers the total mass of the catalyst, and its nullcline for w is nonlinear. The
mathematical approach using the modified FitzHugh–Nagumo [27] indicates that such
modification is one of the possibilities for reproducing experimental observation.

5. Conclusions

In this study, we demonstrated a new experimental method to prepare unidirectional
chemical waves at positions with equivalent spacing. This method used two opposite pho-
tosensitive characteristics of the BZ reaction: photoinhibition and photoexcitation. Using
this method, a homogeneous distribution of unidirectional chemical waves was generated
on a circular excitable field, and the destabilization of the homogeneous distribution of the
wave train was observed. A similar method was reproduced in the numerical calculations
using a mathematical model of the photosensitive BZ reaction. However, the homogeneous
traveling waves were stable using the numerical approach. Therefore, to conclude the
stability of the homogeneous distribution of the BZ waves, further investigations in the
experiments and numerical calculations are required.
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